File: Ed25519.cpp

package info (click to toggle)
i2pd 2.58.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,612 kB
  • sloc: cpp: 59,663; makefile: 224; sh: 138
file content (537 lines) | stat: -rw-r--r-- 16,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
* Copyright (c) 2013-2025, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/

#include <openssl/evp.h>
#include "Log.h"
#include "Crypto.h"
#include "Ed25519.h"

namespace i2p
{
namespace crypto
{
	Ed25519::Ed25519 ()
	{
		BN_CTX * ctx = BN_CTX_new ();
		BIGNUM * tmp = BN_new ();

		q = BN_new ();
		// 2^255-19
		BN_set_bit (q, 255); // 2^255
		BN_sub_word (q, 19);

		l = BN_new ();
		// 2^252 + 27742317777372353535851937790883648493
		BN_set_bit (l, 252);
		two_252_2 = BN_dup (l);
		BN_dec2bn (&tmp, "27742317777372353535851937790883648493");
		BN_add (l, l, tmp);
		BN_sub_word (two_252_2, 2); // 2^252 - 2

		// -121665*inv(121666)
		d = BN_new ();
		BN_set_word (tmp, 121666);
		BN_mod_inverse (tmp, tmp, q, ctx);
		BN_set_word (d, 121665);
		BN_set_negative (d, 1);
		BN_mod_mul (d, d, tmp, q, ctx);

		// 2^((q-1)/4)
		I = BN_new ();
		BN_free (tmp);
		tmp = BN_dup (q);
		BN_sub_word (tmp, 1);
		BN_div_word (tmp, 4);
		BN_set_word (I, 2);
		BN_mod_exp (I, I, tmp, q, ctx);
		BN_free (tmp);

		// 4*inv(5)
		BIGNUM * By = BN_new ();
		BN_set_word (By, 5);
		BN_mod_inverse (By, By, q, ctx);
		BN_mul_word (By, 4);
		BIGNUM * Bx = RecoverX (By, ctx);
		BN_mod (Bx, Bx, q, ctx); // % q
		BN_mod (By, By, q, ctx); // % q

		// precalculate Bi256 table
		Bi256Carry = { Bx, By }; // B
		for (int i = 0; i < 32; i++)
		{
			Bi256[i][0] = Bi256Carry; // first point
			for (int j = 1; j < 128; j++)
				Bi256[i][j] = Sum (Bi256[i][j-1], Bi256[i][0], ctx); // (256+j+1)^i*B
			Bi256Carry = Bi256[i][127];
			for (int j = 0; j < 128; j++) // add first point 128 more times
				Bi256Carry = Sum (Bi256Carry, Bi256[i][0], ctx);
		}

		BN_CTX_free (ctx);
	}

	Ed25519::Ed25519 (const Ed25519& other): q (BN_dup (other.q)), l (BN_dup (other.l)),
		d (BN_dup (other.d)), I (BN_dup (other.I)), two_252_2 (BN_dup (other.two_252_2)),
		Bi256Carry (other.Bi256Carry)
	{
		for (int i = 0; i < 32; i++)
			for (int j = 0; j < 128; j++)
				Bi256[i][j] = other.Bi256[i][j];
	}

	Ed25519::~Ed25519 ()
	{
		BN_free (q);
		BN_free (l);
		BN_free (d);
		BN_free (I);
		BN_free (two_252_2);
	}


	EDDSAPoint Ed25519::GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const
	{
		return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian
	}

	EDDSAPoint Ed25519::DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const
	{
		return DecodePoint (buf, ctx);
	}

	void Ed25519::EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const
	{
		EncodePoint (Normalize (publicKey, ctx), buf);
	}

	bool Ed25519::Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature) const
	{
		BN_CTX * ctx = BN_CTX_new ();
		BIGNUM * h = DecodeBN<64> (digest);
		// signature 0..31 - R, 32..63 - S
		// B*S = R + PK*h => R = B*S - PK*h
		// we don't decode R, but encode (B*S - PK*h)
		auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
		BN_mod (h, h, l, ctx); // public key is multiple of B, but B%l = 0
		auto PKh = Mul (publicKey, h, ctx); // PK*h
		uint8_t diff[32];
		EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded
		bool passed = !memcmp (signature, diff, 32); // R
		BN_free (h);
		BN_CTX_free (ctx);
		if (!passed)
			LogPrint (eLogError, "25519 signature verification failed");
		return passed;
	}

	void Ed25519::Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded,
		const uint8_t * buf, size_t len, uint8_t * signature) const
	{
		BN_CTX * bnCtx = BN_CTX_new ();
		// calculate r
		EVP_MD_CTX * ctx = EVP_MD_CTX_create ();
		EVP_DigestInit_ex (ctx, EVP_sha512(), NULL);
		EVP_DigestUpdate (ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key
		EVP_DigestUpdate (ctx, buf, len); // data
		uint8_t digest[64];
		unsigned int dl = 64;
		EVP_DigestFinal_ex (ctx, digest, &dl);
		EVP_MD_CTX_destroy (ctx);
		BIGNUM * r = DecodeBN<32> (digest); // DecodeBN<64> (digest); // for test vectors
		// calculate R
		uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
		EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
		// calculate S
		ctx = EVP_MD_CTX_create ();
		EVP_DigestInit_ex (ctx, EVP_sha512(), NULL);
		EVP_DigestUpdate (ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
		EVP_DigestUpdate (ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
		EVP_DigestUpdate (ctx, buf, len); // data
		dl = 64;
		EVP_DigestFinal_ex (ctx, digest, &dl);
		EVP_MD_CTX_destroy (ctx);
		BIGNUM * h = DecodeBN<64> (digest);
		// S = (r + h*a) % l
		BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (expandedPrivateKey); // left half of expanded key
		BN_mod_mul (h, h, a, l, bnCtx); // %l
		BN_mod_add (h, h, r, l, bnCtx); // %l
		memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
		EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
		BN_free (r); BN_free (h); BN_free (a);
		BN_CTX_free (bnCtx);
	}

	void Ed25519::SignRedDSA (const uint8_t * privateKey, const uint8_t * publicKeyEncoded,
		const uint8_t * buf, size_t len, uint8_t * signature) const
	{
		BN_CTX * bnCtx = BN_CTX_new ();
		// T = 80 random bytes
		uint8_t T[80];
		RAND_bytes (T, 80);
		// calculate r = H*(T || publickey || data)
		EVP_MD_CTX * ctx = EVP_MD_CTX_create ();
		EVP_DigestInit_ex (ctx, EVP_sha512(), NULL);
		EVP_DigestUpdate (ctx, T, 80);
		EVP_DigestUpdate (ctx, publicKeyEncoded, 32);
		EVP_DigestUpdate (ctx, buf, len); // data
		uint8_t digest[64];
		unsigned int dl = 64;
		EVP_DigestFinal_ex (ctx, digest, &dl);
		EVP_MD_CTX_destroy (ctx);
		BIGNUM * r = DecodeBN<64> (digest);
		BN_mod (r, r, l, bnCtx); // % l
		EncodeBN (r, digest, 32);
		// calculate R
		uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
		EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R);
		// calculate S
		ctx = EVP_MD_CTX_create ();
		EVP_DigestInit_ex (ctx, EVP_sha512(), NULL);
		EVP_DigestUpdate (ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
		EVP_DigestUpdate (ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
		EVP_DigestUpdate (ctx, buf, len); // data
		dl = 64;
		EVP_DigestFinal_ex (ctx, digest, &dl);
		EVP_MD_CTX_destroy (ctx);
		BIGNUM * h = DecodeBN<64> (digest);
		// S = (r + h*a) % l
		BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (privateKey);
		BN_mod_mul (h, h, a, l, bnCtx); // %l
		BN_mod_add (h, h, r, l, bnCtx); // %l
		memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
		EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
		BN_free (r); BN_free (h); BN_free (a);
		BN_CTX_free (bnCtx);
	}

	EDDSAPoint Ed25519::Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
	{
		// x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2)
		// y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2)
		// z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2)
		// t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2)
		BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new ();

		BN_mul (x3, p1.x, p2.x, ctx); // A = x1*x2
		BN_mul (y3, p1.y, p2.y, ctx); // B = y1*y2

		BN_CTX_start (ctx);
		BIGNUM * t1 = p1.t, * t2 = p2.t;
		if (!t1) { t1 = BN_CTX_get (ctx); BN_mul (t1, p1.x, p1.y, ctx); }
		if (!t2) { t2 = BN_CTX_get (ctx); BN_mul (t2, p2.x, p2.y, ctx); }
		BN_mul (t3, t1, t2, ctx);
		BN_mul (t3, t3, d, ctx); // C = d*t1*t2

		if (p1.z)
		{
			if (p2.z)
				BN_mul (z3, p1.z, p2.z, ctx); // D = z1*z2
			else
				BN_copy (z3, p1.z); // D = z1
		}
		else
		{
			if (p2.z)
				BN_copy (z3, p2.z); // D = z2
			else
				BN_one (z3); // D = 1
		}

		BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
		BN_add (E, p1.x, p1.y);
		BN_add (F, p2.x, p2.y);
		BN_mul (E, E, F, ctx); // (x1 + y1)*(x2 + y2)
		BN_sub (E, E, x3);
		BN_sub (E, E, y3); // E = (x1 + y1)*(x2 + y2) - A - B
		BN_sub (F, z3, t3); // F = D - C
		BN_add (G, z3, t3); // G = D + C
		BN_add (H, y3, x3); // H = B + A

		BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F
		BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H
		BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G
		BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H

		BN_CTX_end (ctx);

		return EDDSAPoint {x3, y3, z3, t3};
	}

	void Ed25519::Double (EDDSAPoint& p, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * z2 = BN_CTX_get (ctx), * t2 = BN_CTX_get (ctx);

		BN_sqr (x2, p.x, ctx); // x2 = A = x^2
		BN_sqr (y2, p.y, ctx); // y2 = B = y^2
		if (p.t)
			BN_sqr (t2, p.t, ctx); // t2 = t^2
		else
		{
			BN_mul (t2, p.x, p.y, ctx); // t = x*y
			BN_sqr (t2, t2, ctx); // t2 = t^2
		}
		BN_mul (t2, t2, d, ctx); // t2 = C = d*t^2
		if (p.z)
			BN_sqr (z2, p.z, ctx); // z2 = D = z^2
		else
			BN_one (z2); // z2 = 1

		BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
		// E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy
		BN_mul (E, p.x, p.y, ctx);
		BN_lshift1 (E, E);	// E =2*x*y
		BN_sub (F, z2, t2); // F = D - C
		BN_add (G, z2, t2); // G = D + C
		BN_add (H, y2, x2); // H = B + A

		BN_mod_mul (p.x, E, F, q, ctx); // x2 = E*F
		BN_mod_mul (p.y, G, H, q, ctx); // y2 = G*H
		if (!p.z) p.z = BN_new ();
		BN_mod_mul (p.z, F, G, q, ctx); // z2 = F*G
		if (!p.t) p.t = BN_new ();
		BN_mod_mul (p.t, E, H, q, ctx); // t2 = E*H

		BN_CTX_end (ctx);
	}

	EDDSAPoint Ed25519::Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
	{
		BIGNUM * zero = BN_new (), * one = BN_new ();
		BN_zero (zero); BN_one (one);
		EDDSAPoint res {zero, one};
		if (!BN_is_zero (e))
		{
			int bitCount = BN_num_bits (e);
			for (int i = bitCount - 1; i >= 0; i--)
			{
				Double (res, ctx);
				if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx);
			}
		}
		return res;
	}

	EDDSAPoint Ed25519::MulB (const uint8_t * e, BN_CTX * ctx) const // B*e, e is 32 bytes Little Endian
	{
		BIGNUM * zero = BN_new (), * one = BN_new ();
		BN_zero (zero); BN_one (one);
		EDDSAPoint res {zero, one};
		bool carry = false;
		for (int i = 0; i < 32; i++)
		{
			uint8_t x = e[i];
			if (carry)
			{
				if (x < 255)
				{
					x++;
					carry = false;
				}
				else
					x = 0;
			}
			if (x > 0)
			{
				if (x <= 128)
					res = Sum (res, Bi256[i][x-1], ctx);
				else
				{
					res = Sum (res, -Bi256[i][255-x], ctx); // -Bi[256-x]
					carry = true;
				}
			}
		}
		if (carry) res = Sum (res, Bi256Carry, ctx);
		return res;
	}

	EDDSAPoint Ed25519::Normalize (const EDDSAPoint& p, BN_CTX * ctx) const
	{
		if (p.z)
		{
			BIGNUM * x = BN_new (), * y = BN_new ();
			BN_mod_inverse (y, p.z, q, ctx);
			BN_mod_mul (x, p.x, y, q, ctx); // x = x/z
			BN_mod_mul (y, p.y, y, q, ctx); // y = y/z
			return EDDSAPoint{x, y};
		}
		else
			return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)};
	}

	bool Ed25519::IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * tmp = BN_CTX_get (ctx);
		BN_sqr (x2, p.x, ctx); // x^2
		BN_sqr (y2, p.y, ctx); // y^2
		// y^2 - x^2 - 1 - d*x^2*y^2
		BN_mul (tmp, d, x2, ctx);
		BN_mul (tmp, tmp, y2, ctx);
		BN_sub (tmp, y2, tmp);
		BN_sub (tmp, tmp, x2);
		BN_sub_word (tmp, 1);
		BN_mod (tmp, tmp, q, ctx); // % q
		bool ret = BN_is_zero (tmp);
		BN_CTX_end (ctx);
		return ret;
	}

	BIGNUM * Ed25519::RecoverX (const BIGNUM * y, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * y2 = BN_CTX_get (ctx), * xx = BN_CTX_get (ctx);
		BN_sqr (y2, y, ctx); // y^2
		// xx = (y^2 -1)*inv(d*y^2 +1)
		BN_mul (xx, d, y2, ctx);
		BN_add_word (xx, 1);
		BN_mod_inverse (xx, xx, q, ctx);
		BN_sub_word (y2, 1);
		BN_mul (xx, y2, xx, ctx);
		// x = srqt(xx) = xx^(2^252-2)
		BIGNUM * x = BN_new ();
		BN_mod_exp (x, xx, two_252_2, q, ctx);
		// check (x^2 -xx) % q
		BN_sqr (y2, x, ctx);
		BN_mod_sub (y2, y2, xx, q, ctx);
		if (!BN_is_zero (y2))
			BN_mod_mul (x, x, I, q, ctx);
		if (BN_is_odd (x))
			BN_sub (x, q, x);
		BN_CTX_end (ctx);
		return x;
	}

	EDDSAPoint Ed25519::DecodePoint (const uint8_t * buf, BN_CTX * ctx) const
	{
		// buf is 32 bytes Little Endian, convert it to Big Endian
		uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH];
		for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes
		{
			buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i];
			buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i];
		}
		bool isHighestBitSet = buf1[0] & 0x80;
		if (isHighestBitSet)
			buf1[0] &= 0x7f; // clear highest bit
		BIGNUM * y = BN_new ();
		BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y);
		BIGNUM * x = RecoverX (y, ctx);
		if ((bool)BN_is_bit_set (x, 0) != isHighestBitSet)
			BN_sub (x, q, x); // x = q - x
		BIGNUM * z = BN_new (), * t = BN_new ();
		BN_one (z); BN_mod_mul (t, x, y, q, ctx); // pre-calculate t
		EDDSAPoint p {x, y, z, t};
		if (!IsOnCurve (p, ctx))
			LogPrint (eLogError, "Decoded point is not on 25519");
		return p;
	}

	void Ed25519::EncodePoint (const EDDSAPoint& p, uint8_t * buf) const
	{
		EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH);
		if (BN_is_bit_set (p.x, 0)) // highest bit
			buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit
	}

	template<int len>
	BIGNUM * Ed25519::DecodeBN (const uint8_t * buf) const
	{
		// buf is Little Endian convert it to Big Endian
		uint8_t buf1[len];
		for (size_t i = 0; i < len/2; i++) // invert bytes
		{
			buf1[i] = buf[len -1 - i];
			buf1[len -1 - i] = buf[i];
		}
		BIGNUM * res = BN_new ();
		BN_bin2bn (buf1, len, res);
		return res;
	}

	void Ed25519::EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const
	{
		bn2buf (bn, buf, len);
		// To Little Endian
		for (size_t i = 0; i < len/2; i++) // invert bytes
		{
			uint8_t tmp = buf[i];
			buf[i] = buf[len -1 - i];
			buf[len -1 - i] = tmp;
		}
	}

	void Ed25519::BlindPublicKey (const uint8_t * pub, const uint8_t * seed, uint8_t * blinded)
	{
		BN_CTX * ctx = BN_CTX_new ();
		// calculate alpha = seed mod l
		BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
		BN_mod (alpha, alpha, l, ctx); // % l
		uint8_t priv[32];
		EncodeBN (alpha, priv, 32); // back to Little Endian
		BN_free (alpha);
		// A' = BLIND_PUBKEY(A, alpha) = A + DERIVE_PUBLIC(alpha)
		auto A1 = Sum (DecodePublicKey (pub, ctx), MulB (priv, ctx), ctx); // pub + B*alpha
		EncodePublicKey (A1, blinded, ctx);
		BN_CTX_free (ctx);
	}

	void Ed25519::BlindPrivateKey (const uint8_t * priv, const uint8_t * seed, uint8_t * blindedPriv, uint8_t * blindedPub)
	{
		BN_CTX * ctx = BN_CTX_new ();
		// calculate alpha = seed mod l
		BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
		BN_mod (alpha, alpha, l, ctx); // % l
		BIGNUM * p = DecodeBN<32> (priv); // priv is in Little Endian
		BN_add (alpha, alpha, p); // alpha = alpha + priv
		// a' = BLIND_PRIVKEY(a, alpha) = (a + alpha) mod L
		BN_mod (alpha, alpha, l, ctx); // % l
		EncodeBN (alpha, blindedPriv, 32);
		// A' = DERIVE_PUBLIC(a')
		auto A1 = MulB (blindedPriv, ctx);
		EncodePublicKey (A1, blindedPub, ctx);
		BN_free (alpha); BN_free (p);
		BN_CTX_free (ctx);
	}

	void Ed25519::ExpandPrivateKey (const uint8_t * key, uint8_t * expandedKey)
	{
		SHA512 (key, EDDSA25519_PRIVATE_KEY_LENGTH, expandedKey);
		expandedKey[0] &= 0xF8; // drop last 3 bits
		expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x3F; // drop first 2 bits
		expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
	}

	void Ed25519::CreateRedDSAPrivateKey (uint8_t * priv)
	{
		uint8_t seed[32];
		RAND_bytes (seed, 32);
		BIGNUM * p = DecodeBN<32> (seed);
		BN_CTX * ctx = BN_CTX_new ();
		BN_mod (p, p, l, ctx); // % l
		EncodeBN (p, priv, 32);
		BN_CTX_free (ctx);
		BN_free (p);
	}

	static std::unique_ptr<Ed25519> g_Ed25519;
	std::unique_ptr<Ed25519>& GetEd25519 ()
	{
		if (!g_Ed25519)
		{
			auto c = new Ed25519();
			if (!g_Ed25519) // make sure it was not created already
				g_Ed25519.reset (c);
			else
				delete c;
		}
		return g_Ed25519;
	}
}
}