1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* Copyright (c) 2013-2020, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include <openssl/rand.h>
#include "Crypto.h"
#include "Elligator.h"
namespace i2p
{
namespace crypto
{
Elligator2::Elligator2 ()
{
// TODO: share with Ed22519
p = BN_new ();
// 2^255-19
BN_set_bit (p, 255); // 2^255
BN_sub_word (p, 19);
p38 = BN_dup (p); BN_add_word (p38, 3); BN_div_word (p38, 8); // (p+3)/8
p12 = BN_dup (p); BN_sub_word (p12, 1); BN_div_word (p12, 2); // (p-1)/2
p14 = BN_dup (p); BN_sub_word (p14, 1); BN_div_word (p14, 4); // (p-1)/4
A = BN_new (); BN_set_word (A, 486662);
nA = BN_new (); BN_sub (nA, p, A);
BN_CTX * ctx = BN_CTX_new ();
// calculate sqrt(-1)
sqrtn1 = BN_new ();
BN_set_word (sqrtn1, 2);
BN_mod_exp (sqrtn1, sqrtn1, p14, p, ctx); // 2^((p-1)/4
u = BN_new (); BN_set_word (u, 2);
iu = BN_new (); BN_mod_inverse (iu, u, p, ctx);
BN_CTX_free (ctx);
}
Elligator2::~Elligator2 ()
{
BN_free (p); BN_free (p38); BN_free (p12); BN_free (p14);
BN_free (sqrtn1); BN_free (A); BN_free (nA);
BN_free (u); BN_free (iu);
}
bool Elligator2::Encode (const uint8_t * key, uint8_t * encoded, bool highY, bool random) const
{
bool ret = true;
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
uint8_t key1[32];
for (size_t i = 0; i < 16; i++) // from Little Endian
{
key1[i] = key[31 - i];
key1[31 - i] = key[i];
}
BIGNUM * x = BN_CTX_get (ctx); BN_bin2bn (key1, 32, x);
BIGNUM * xA = BN_CTX_get (ctx); BN_add (xA, x, A); // x + A
BN_sub (xA, p, xA); // p - (x + A)
BIGNUM * uxxA = BN_CTX_get (ctx); // u*x*xA
BN_mod_mul (uxxA, u, x, p, ctx);
BN_mod_mul (uxxA, uxxA, xA, p, ctx);
if (Legendre (uxxA, ctx) != -1)
{
uint8_t randByte = 0; // random highest bits and high y
if (random)
{
RAND_bytes (&randByte, 1);
highY = randByte & 0x01;
}
BIGNUM * r = BN_CTX_get (ctx);
if (highY)
{
BN_mod_inverse (r, x, p, ctx);
BN_mod_mul (r, r, xA, p, ctx);
}
else
{
BN_mod_inverse (r, xA, p, ctx);
BN_mod_mul (r, r, x, p, ctx);
}
BN_mod_mul (r, r, iu, p, ctx);
SquareRoot (r, r, ctx);
bn2buf (r, encoded, 32);
if (random)
encoded[0] |= (randByte & 0xC0); // copy two highest bits from randByte
for (size_t i = 0; i < 16; i++) // To Little Endian
{
uint8_t tmp = encoded[i];
encoded[i] = encoded[31 - i];
encoded[31 - i] = tmp;
}
}
else
ret = false;
BN_CTX_end (ctx);
BN_CTX_free (ctx);
return ret;
}
bool Elligator2::Decode (const uint8_t * encoded, uint8_t * key) const
{
bool ret = true;
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
uint8_t encoded1[32];
for (size_t i = 0; i < 16; i++) // from Little Endian
{
encoded1[i] = encoded[31 - i];
encoded1[31 - i] = encoded[i];
}
encoded1[0] &= 0x3F; // drop two highest bits
BIGNUM * r = BN_CTX_get (ctx); BN_bin2bn (encoded1, 32, r);
if (BN_cmp (r, p12) <= 0) // r < (p-1)/2
{
// v = -A/(1+u*r^2)
BIGNUM * v = BN_CTX_get (ctx); BN_mod_sqr (v, r, p, ctx);
BN_mod_mul (v, v, u, p, ctx);
BN_add_word (v, 1);
BN_mod_inverse (v, v, p, ctx);
BN_mod_mul (v, v, nA, p, ctx);
BIGNUM * vpA = BN_CTX_get (ctx);
BN_add (vpA, v, A); // v + A
// t = v^3+A*v^2+v = v^2*(v+A)+v
BIGNUM * t = BN_CTX_get (ctx); BN_mod_sqr (t, v, p, ctx);
BN_mod_mul (t, t, vpA, p, ctx);
BN_mod_add (t, t, v, p, ctx);
int legendre = Legendre (t, ctx);
BIGNUM * x = BN_CTX_get (ctx);
if (legendre == 1)
BN_copy (x, v);
else
{
BN_sub (x, p, v);
BN_mod_sub (x, x, A, p, ctx);
}
bn2buf (x, key, 32);
for (size_t i = 0; i < 16; i++) // To Little Endian
{
uint8_t tmp = key[i];
key[i] = key[31 - i];
key[31 - i] = tmp;
}
}
else
ret = false;
BN_CTX_end (ctx);
BN_CTX_free (ctx);
return ret;
}
void Elligator2::SquareRoot (const BIGNUM * x, BIGNUM * r, BN_CTX * ctx) const
{
BIGNUM * t = BN_CTX_get (ctx);
BN_mod_exp (t, x, p14, p, ctx); // t = x^((p-1)/4)
BN_mod_exp (r, x, p38, p, ctx); // r = x^((p+3)/8)
BN_add_word (t, 1);
if (!BN_cmp (t, p))
BN_mod_mul (r, r, sqrtn1, p, ctx);
if (BN_cmp (r, p12) > 0) // r > (p-1)/2
BN_sub (r, p, r);
}
int Elligator2::Legendre (const BIGNUM * a, BN_CTX * ctx) const
{
// assume a < p, so don't check for a % p = 0, but a = 0 only
if (BN_is_zero(a)) return 0;
BIGNUM * r = BN_CTX_get (ctx);
BN_mod_exp (r, a, p12, p, ctx); // r = a^((p-1)/2) mod p
if (BN_is_word(r, 1))
return 1;
else if (BN_is_zero(r))
return 0;
return -1;
}
static std::unique_ptr<Elligator2> g_Elligator;
std::unique_ptr<Elligator2>& GetElligator ()
{
if (!g_Elligator)
{
auto el = new Elligator2();
if (!g_Elligator) // make sure it was not created already
g_Elligator.reset (el);
else
delete el;
}
return g_Elligator;
}
}
}
|