File: Identity.cpp

package info (click to toggle)
i2pd 2.58.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,612 kB
  • sloc: cpp: 59,663; makefile: 224; sh: 138
file content (899 lines) | stat: -rw-r--r-- 29,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/*
* Copyright (c) 2013-2025, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/

#include "Crypto.h"
#include "I2PEndian.h"
#include "Log.h"
#include "Timestamp.h"
#include "CryptoKey.h"
#include "Identity.h"

namespace i2p
{
namespace data
{
	Identity& Identity::operator=(const Keys& keys)
	{
		// copy public and signing keys together
		memcpy (publicKey, keys.publicKey, sizeof (publicKey));
		memcpy (signingKey, keys.signingKey, sizeof (signingKey));
		memset (certificate, 0, sizeof (certificate));
		return *this;
	}

	size_t Identity::FromBuffer (const uint8_t * buf, size_t len)
	{
		if (len < DEFAULT_IDENTITY_SIZE) return 0; // buffer too small, don't overflow
		memcpy (this, buf, DEFAULT_IDENTITY_SIZE);
		return DEFAULT_IDENTITY_SIZE;
	}

	IdentHash Identity::Hash () const
	{
		IdentHash hash;
		SHA256((const uint8_t *)this, DEFAULT_IDENTITY_SIZE, hash);
		return hash;
	}

	IdentityEx::IdentityEx ():
		m_ExtendedLen (0)
	{
	}

	IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type, CryptoKeyType cryptoType)
	{
		uint8_t randomPaddingBlock[32];
		RAND_bytes (randomPaddingBlock, 32);
		if (cryptoType == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD)
		{
			memcpy (m_StandardIdentity.publicKey, publicKey ? publicKey : randomPaddingBlock, 32);
			for (int i = 0; i < 7; i++) // 224 bytes
				memcpy (m_StandardIdentity.publicKey + 32*(i + 1), randomPaddingBlock, 32);
		}
		else
		{
			if (publicKey)
				memcpy (m_StandardIdentity.publicKey, publicKey, 256);
			else
				for (int i = 0; i < 8; i++) // 256 bytes
					memcpy (m_StandardIdentity.publicKey + 32*i, randomPaddingBlock, 32);
		}
		if (type != SIGNING_KEY_TYPE_DSA_SHA1)
		{
			size_t excessLen = 0;
			uint8_t * excessBuf = nullptr;
			switch (type)
			{
				case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
				{
					size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64
					RAND_bytes (m_StandardIdentity.signingKey, padding);
					memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH);
					break;
				}
				case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
				{
					size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96
					RAND_bytes (m_StandardIdentity.signingKey, padding);
					memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH);
					break;
				}
				case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
				{
					memcpy (m_StandardIdentity.signingKey, signingKey, 128);
					excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128
					excessBuf = new uint8_t[excessLen];
					memcpy (excessBuf, signingKey + 128, excessLen);
					break;
				}
				case SIGNING_KEY_TYPE_RSA_SHA256_2048:
				case SIGNING_KEY_TYPE_RSA_SHA384_3072:
				case SIGNING_KEY_TYPE_RSA_SHA512_4096:
					LogPrint (eLogError, "Identity: RSA signing key type ", (int)type, " is not supported");
				break;
				case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
				case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
				{
					size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32
					for (int i = 0; i < 3; i++) // 96 bytes
						memcpy (m_StandardIdentity.signingKey + 32*i, randomPaddingBlock, 32);
					memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH);
					break;
				}
				case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
				{
					// 256
					size_t padding = 128 - i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH; // 64 = 128 - 64
					RAND_bytes (m_StandardIdentity.signingKey, padding);
					memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH);
					break;
				}
				case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
				{
					// 512
					// no padding, key length is 128
					memcpy (m_StandardIdentity.signingKey, signingKey, i2p::crypto::GOSTR3410_512_PUBLIC_KEY_LENGTH);
					break;
				}
#if OPENSSL_PQ
				case SIGNING_KEY_TYPE_MLDSA44:
				{
					memcpy (m_StandardIdentity, signingKey, 384);
					excessLen = i2p::crypto::MLDSA44_PUBLIC_KEY_LENGTH - 384;
					excessBuf = new uint8_t[excessLen];
					memcpy (excessBuf, signingKey + 384, excessLen);
					cryptoType = 0xFF; // crypto key is not used
					break;
				}	
#endif					
				default:
					LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported");
			}
			m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length
			// fill certificate
			m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY;
			htobe16buf (m_StandardIdentity.certificate + 1, m_ExtendedLen);
			// fill extended buffer
			htobe16buf (m_ExtendedBuffer, type);
			htobe16buf (m_ExtendedBuffer + 2, cryptoType);
			if (excessLen && excessBuf)
			{
				if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE)
				{
					auto newBuf = new uint8_t[m_ExtendedLen];
					memcpy (newBuf, m_ExtendedBuffer, 4);
					memcpy (newBuf + 4, excessBuf, excessLen);
					m_ExtendedBufferPtr = newBuf;
				}
				else
					memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen);
				delete[] excessBuf;
			}
			// calculate ident hash
			RecalculateIdentHash();
		}
		else // DSA-SHA1
		{
			memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey));
			memset (m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate));
			m_IdentHash = m_StandardIdentity.Hash ();
			m_ExtendedLen = 0;
		}
		CreateVerifier ();
	}

	void IdentityEx::RecalculateIdentHash(uint8_t * buf)
	{
		bool dofree = buf == nullptr;
		size_t sz = GetFullLen();
		if(!buf)
			buf = new uint8_t[sz];
		ToBuffer (buf, sz);
		SHA256(buf, sz, m_IdentHash);
		if(dofree)
			delete[] buf;
	}

	IdentityEx::IdentityEx (const uint8_t * buf, size_t len):
		m_ExtendedLen (0)
	{
		FromBuffer (buf, len);
	}

	IdentityEx::IdentityEx (const IdentityEx& other):
		m_ExtendedLen (0)
	{
		*this = other;
	}

	IdentityEx::IdentityEx (const Identity& standard):
		m_ExtendedLen (0)
	{
		*this = standard;
	}

	IdentityEx::~IdentityEx ()
	{
		if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE)
			delete[] m_ExtendedBufferPtr;
	}

	IdentityEx& IdentityEx::operator=(const IdentityEx& other)
	{
		memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
		m_IdentHash = other.m_IdentHash;

		size_t oldLen = m_ExtendedLen;
		m_ExtendedLen = other.m_ExtendedLen;
		if (m_ExtendedLen > 0)
		{
			if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) 
			{
				if (oldLen > MAX_EXTENDED_BUFFER_SIZE) 
				{
					if (m_ExtendedLen > oldLen)
					{	
						delete[] m_ExtendedBufferPtr;
						m_ExtendedBufferPtr = new uint8_t[m_ExtendedLen];
					}	
				}
				else
					m_ExtendedBufferPtr = new uint8_t[m_ExtendedLen];
				memcpy (m_ExtendedBufferPtr, other.m_ExtendedBufferPtr, m_ExtendedLen);	
			}	
			else
			{
				if (oldLen > MAX_EXTENDED_BUFFER_SIZE) delete[] m_ExtendedBufferPtr;
				memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen);
			}	
		}
		m_Verifier = nullptr;
		CreateVerifier ();

		return *this;
	}

	IdentityEx& IdentityEx::operator=(const Identity& standard)
	{
		m_StandardIdentity = standard;
		m_IdentHash = m_StandardIdentity.Hash ();
		m_ExtendedLen = 0;

		m_Verifier = nullptr;
		CreateVerifier ();

		return *this;
	}

	size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len)
	{
		if (len < DEFAULT_IDENTITY_SIZE)
		{
			LogPrint (eLogError, "Identity: Buffer length ", len, " is too small");
			return 0;
		}
		memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE);

		size_t oldLen = m_ExtendedLen;
		m_ExtendedLen = bufbe16toh (m_StandardIdentity.certificate + 1);
		if (m_ExtendedLen)
		{
			if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len)
			{
				if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE)
				{
					if (oldLen > MAX_EXTENDED_BUFFER_SIZE) 
					{
						if (m_ExtendedLen > oldLen)
						{	
							delete[] m_ExtendedBufferPtr;
							m_ExtendedBufferPtr = new uint8_t[m_ExtendedLen];
						}	
					}
					else
						m_ExtendedBufferPtr = new uint8_t[m_ExtendedLen];
					memcpy (m_ExtendedBufferPtr, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
				}	
				else	
					memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
			}
			else
			{
				LogPrint (eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE);
				m_ExtendedLen = 0;
				return 0;
			}
		}
		else
			m_ExtendedLen = 0;
		SHA256(buf, GetFullLen (), m_IdentHash);

		m_Verifier = nullptr;
		CreateVerifier ();

		return GetFullLen ();
	}

	size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const
	{
		const size_t fullLen = GetFullLen();
		if (fullLen > len) return 0; // buffer is too small and may overflow somewhere else
		memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
		if (m_ExtendedLen > 0)
		{	
			if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE)
				memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBufferPtr, m_ExtendedLen);
			else	
				memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen);
		}	
		return fullLen;
	}

	size_t IdentityEx::FromBase64(std::string_view s)
	{
		std::vector<uint8_t> buf(s.length ()); // binary data can't exceed base64
		auto len = Base64ToByteStream (s, buf.data(), buf.size ());
		return FromBuffer (buf.data(), len);
	}

	std::string IdentityEx::ToBase64 () const
	{
		const size_t bufLen = GetFullLen();
		std::vector<uint8_t> buf(bufLen);
		size_t l = ToBuffer (buf.data(), bufLen);
		return i2p::data::ByteStreamToBase64 (buf.data(), l);
	}

	size_t IdentityEx::GetSigningPublicKeyLen () const
	{
		if (m_Verifier)
			return m_Verifier->GetPublicKeyLen ();
		return 128;
	}

	const uint8_t * IdentityEx::GetSigningPublicKeyBuffer () const
	{
		auto keyLen = GetSigningPublicKeyLen ();
		if (keyLen > 128) return nullptr; // P521 or PQ
		return m_StandardIdentity.signingKey + 128 - keyLen;
	}

	size_t IdentityEx::GetSigningPrivateKeyLen () const
	{
		if (m_Verifier)
			return m_Verifier->GetPrivateKeyLen ();
		return GetSignatureLen ()/2;
	}

	size_t IdentityEx::GetSignatureLen () const
	{
		if (m_Verifier)
			return m_Verifier->GetSignatureLen ();
		return i2p::crypto::DSA_SIGNATURE_LENGTH;
	}
	bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
	{
		if (m_Verifier)
			return m_Verifier->Verify (buf, len, signature);
		return false;
	}

	SigningKeyType IdentityEx::GetSigningKeyType () const
	{
		if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 2)
			return bufbe16toh (m_ExtendedLen <= MAX_EXTENDED_BUFFER_SIZE ? m_ExtendedBuffer : m_ExtendedBufferPtr); // signing key
		return SIGNING_KEY_TYPE_DSA_SHA1;
	}

	bool IdentityEx::IsRSA () const
	{
		auto sigType = GetSigningKeyType ();
		return sigType <= SIGNING_KEY_TYPE_RSA_SHA512_4096 && sigType >= SIGNING_KEY_TYPE_RSA_SHA256_2048;
	}

	CryptoKeyType IdentityEx::GetCryptoKeyType () const
	{
		if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 4)
			return bufbe16toh (m_ExtendedLen <= MAX_EXTENDED_BUFFER_SIZE ? m_ExtendedBuffer + 2 : m_ExtendedBufferPtr + 2); // crypto key
		return CRYPTO_KEY_TYPE_ELGAMAL;
	}

	i2p::crypto::Verifier * IdentityEx::CreateVerifier (SigningKeyType keyType)
	{
		switch (keyType)
		{
			case SIGNING_KEY_TYPE_DSA_SHA1:
				return new i2p::crypto::DSAVerifier ();
			case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
				return new i2p::crypto::ECDSAP256Verifier ();
			case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
				return new i2p::crypto::ECDSAP384Verifier ();
			case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
				return new i2p::crypto::ECDSAP521Verifier ();
			case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
				return new i2p::crypto::EDDSA25519Verifier ();
			case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
				return new i2p::crypto::GOSTR3410_256_Verifier (i2p::crypto::eGOSTR3410CryptoProA);
			case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
				return new i2p::crypto::GOSTR3410_512_Verifier (i2p::crypto::eGOSTR3410TC26A512);
			case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
				return new i2p::crypto::RedDSA25519Verifier ();
#if OPENSSL_PQ
			case SIGNING_KEY_TYPE_MLDSA44:
				return new i2p::crypto::MLDSA44Verifier ();
#endif				
			case SIGNING_KEY_TYPE_RSA_SHA256_2048:
			case SIGNING_KEY_TYPE_RSA_SHA384_3072:
			case SIGNING_KEY_TYPE_RSA_SHA512_4096:
				LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported");
			break;
			default:
				LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported");
		}
		return nullptr;
	}

	void IdentityEx::CreateVerifier ()
	{
		if (!m_Verifier)
		{
			auto verifier = CreateVerifier (GetSigningKeyType ());
			if (verifier)
			{
				auto keyLen = verifier->GetPublicKeyLen ();
				if (keyLen <= 128)
					verifier->SetPublicKey (m_StandardIdentity.signingKey + 128 - keyLen);
#if OPENSSL_PQ
				else if (keyLen > 384)
				{
					// for post-quantum
					uint8_t * signingKey = new uint8_t[keyLen];
					memcpy (signingKey, m_StandardIdentity, 384);
					size_t excessLen = keyLen - 384;
					memcpy (signingKey + 384, m_ExtendedBufferPtr + 4, excessLen); // right after signing and crypto key types
					verifier->SetPublicKey (signingKey);
					delete[] signingKey;
				}	
#endif				
				else
				{
					// for P521
					uint8_t * signingKey = new uint8_t[keyLen];
					memcpy (signingKey, m_StandardIdentity.signingKey, 128);
					size_t excessLen = keyLen - 128;
					memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
					verifier->SetPublicKey (signingKey);
					delete[] signingKey;
				}
			}
			m_Verifier.reset (verifier);
		}
	}

	std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (CryptoKeyType keyType, const uint8_t * key)
	{
		switch (keyType)
		{
			case CRYPTO_KEY_TYPE_ELGAMAL:
				return std::make_shared<i2p::crypto::ElGamalEncryptor>(key);
			break;
			case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM512_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM768_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM1024_X25519_AEAD:	
				return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetEncryptor>(key);
			break;
			case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
				return std::make_shared<i2p::crypto::ECIESP256Encryptor>(key);
			break;
			default:
				LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)keyType);
		};
		return nullptr;
	}

	std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (const uint8_t * key) const
	{
		if (!key) key = GetEncryptionPublicKey (); // use publicKey
		return CreateEncryptor (GetCryptoKeyType (), key);
	}

	size_t GetIdentityBufferLen (const uint8_t * buf, size_t len)
	{
		if (len < DEFAULT_IDENTITY_SIZE) return 0;
		size_t l = DEFAULT_IDENTITY_SIZE + bufbe16toh (buf + DEFAULT_IDENTITY_SIZE - 2);
		if (l > len) return 0;
		return l;
	}	
		
	PrivateKeys& PrivateKeys::operator=(const Keys& keys)
	{
		m_Public = std::make_shared<IdentityEx>(Identity (keys));
		memcpy (m_PrivateKey, keys.privateKey, 256); // 256
		size_t keyLen = m_Public->GetSigningPrivateKeyLen ();
		m_SigningPrivateKey.resize (keyLen);
		memcpy (m_SigningPrivateKey.data (), keys.signingPrivateKey, keyLen);
		m_OfflineSignature.resize (0);
		m_TransientSignatureLen = 0;
		m_TransientSigningPrivateKeyLen = 0;
		m_Signer = nullptr;
		CreateSigner ();
		return *this;
	}

	PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other)
	{
		m_Public = std::make_shared<IdentityEx>(*other.m_Public);
		memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256
		m_OfflineSignature = other.m_OfflineSignature;
		m_TransientSignatureLen = other.m_TransientSignatureLen;
		m_TransientSigningPrivateKeyLen = other.m_TransientSigningPrivateKeyLen;
		m_SigningPrivateKey = other.m_SigningPrivateKey;
		m_Signer = nullptr;
		CreateSigner ();
		return *this;
	}

	size_t PrivateKeys::GetFullLen () const
	{
		size_t ret = m_Public->GetFullLen () + GetPrivateKeyLen () + m_Public->GetSigningPrivateKeyLen ();
		if (IsOfflineSignature ())
			ret += m_OfflineSignature.size () + m_TransientSigningPrivateKeyLen;
		return ret;
	}

	size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len)
	{
		m_Public = std::make_shared<IdentityEx>();
		size_t ret = m_Public->FromBuffer (buf, len);
		auto cryptoKeyLen = GetPrivateKeyLen ();
		if (!ret || ret + cryptoKeyLen > len) return 0; // overflow
		memcpy (m_PrivateKey, buf + ret, cryptoKeyLen);
		ret += cryptoKeyLen;
		size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen ();
		if (signingPrivateKeySize + ret > len) return 0; // overflow
		m_SigningPrivateKey.resize (signingPrivateKeySize);
		memcpy (m_SigningPrivateKey.data (), buf + ret, signingPrivateKeySize);
		ret += signingPrivateKeySize;
		m_Signer = nullptr;
		// check if signing private key is all zeros
		bool allzeros = true;
		for (size_t i = 0; i < signingPrivateKeySize; i++)
			if (m_SigningPrivateKey[i])
			{
				allzeros = false;
				break;
			}
		if (allzeros)
		{
			// offline information
			const uint8_t * offlineInfo = buf + ret;
			uint32_t expires = bufbe32toh (buf + ret); ret += 4; // expires timestamp
			if (expires < i2p::util::GetSecondsSinceEpoch ())
			{
				LogPrint (eLogError, "Identity: Offline signature expired");
				return 0;
			}	
			SigningKeyType keyType = bufbe16toh (buf + ret); ret += 2; // key type
			std::unique_ptr<i2p::crypto::Verifier> transientVerifier (IdentityEx::CreateVerifier (keyType));
			if (!transientVerifier) return 0;
			auto keyLen = transientVerifier->GetPublicKeyLen ();
			if (keyLen + ret > len) return 0;
			transientVerifier->SetPublicKey (buf + ret); ret += keyLen;
			if (m_Public->GetSignatureLen () + ret > len) return 0;
			if (!m_Public->Verify (offlineInfo, keyLen + 6, buf + ret))
			{
				LogPrint (eLogError, "Identity: Offline signature verification failed");
				return 0;
			}
			ret += m_Public->GetSignatureLen ();
			m_TransientSignatureLen = transientVerifier->GetSignatureLen ();
			// copy offline signature
			size_t offlineInfoLen = buf + ret - offlineInfo;
			m_OfflineSignature.resize (offlineInfoLen);
			memcpy (m_OfflineSignature.data (), offlineInfo, offlineInfoLen);
			// override signing private key
			m_TransientSigningPrivateKeyLen = transientVerifier->GetPrivateKeyLen ();
			if (m_TransientSigningPrivateKeyLen + ret > len) return 0;
			if (m_TransientSigningPrivateKeyLen > 128) m_SigningPrivateKey.resize (m_TransientSigningPrivateKeyLen);
			memcpy (m_SigningPrivateKey.data (), buf + ret, m_TransientSigningPrivateKeyLen);
			ret += m_TransientSigningPrivateKeyLen;
			CreateSigner (keyType);
		}
		else
			CreateSigner (m_Public->GetSigningKeyType ());
		return ret;
	}

	size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const
	{
		size_t ret = m_Public->ToBuffer (buf, len);
		auto cryptoKeyLen = GetPrivateKeyLen ();
		memcpy (buf + ret, m_PrivateKey, cryptoKeyLen);
		ret += cryptoKeyLen;
		size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen ();
		if(ret + signingPrivateKeySize > len) return 0; // overflow
		if (IsOfflineSignature ())
			memset (buf + ret, 0, signingPrivateKeySize);
		else
			memcpy (buf + ret, m_SigningPrivateKey.data (), signingPrivateKeySize);
		ret += signingPrivateKeySize;
		if (IsOfflineSignature ())
		{
			// offline signature
			auto offlineSignatureLen = m_OfflineSignature.size ();
			if (ret + offlineSignatureLen > len) return 0;
			memcpy (buf + ret, m_OfflineSignature.data (), offlineSignatureLen);
			ret += offlineSignatureLen;
			// transient private key
			if (ret + m_TransientSigningPrivateKeyLen > len) return 0;
			memcpy (buf + ret, m_SigningPrivateKey.data (), m_TransientSigningPrivateKeyLen);
			ret += m_TransientSigningPrivateKeyLen;
		}
		return ret;
	}

	size_t PrivateKeys::FromBase64(std::string_view s)
	{
		std::vector<uint8_t> buf(s.length ());
		size_t l = i2p::data::Base64ToByteStream (s, buf.data (), buf.size ());
		return FromBuffer (buf.data (), l);
	}

	std::string PrivateKeys::ToBase64 () const
	{
		std::vector<uint8_t> buf(GetFullLen ());
		size_t l = ToBuffer (buf.data (), buf.size ());
		return i2p::data::ByteStreamToBase64 (buf.data (), l);
	}

	void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const
	{
		if (!m_Signer)
			CreateSigner();
		m_Signer->Sign (buf, len, signature);
	}

	void PrivateKeys::CreateSigner () const
	{
		if (IsOfflineSignature ())
			CreateSigner (bufbe16toh (m_OfflineSignature.data () + 4)); // key type
		else
			CreateSigner (m_Public->GetSigningKeyType ());
	}

	void PrivateKeys::CreateSigner (SigningKeyType keyType) const
	{
		if (m_Signer) return;
		if (keyType == SIGNING_KEY_TYPE_DSA_SHA1)
			m_Signer.reset (new i2p::crypto::DSASigner (m_SigningPrivateKey.data (), m_Public->GetStandardIdentity ().signingKey));
		else if (keyType == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 && !IsOfflineSignature ())
			m_Signer.reset (new i2p::crypto::EDDSA25519Signer (m_SigningPrivateKey.data (), m_Public->GetStandardIdentity ().signingKey + (sizeof(Identity::signingKey) - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH))); // TODO: remove public key check
		else
		{
			// public key is not required
			auto signer = CreateSigner (keyType, m_SigningPrivateKey.data ());
			if (signer) m_Signer.reset (signer);
		}
	}

	i2p::crypto::Signer * PrivateKeys::CreateSigner (SigningKeyType keyType, const uint8_t * priv)
	{
		switch (keyType)
		{
			case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
				return new i2p::crypto::ECDSAP256Signer (priv);
			break;
			case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
				return new i2p::crypto::ECDSAP384Signer (priv);
			break;
			case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
				return new i2p::crypto::ECDSAP521Signer (priv);
			break;
			case SIGNING_KEY_TYPE_RSA_SHA256_2048:
			case SIGNING_KEY_TYPE_RSA_SHA384_3072:
			case SIGNING_KEY_TYPE_RSA_SHA512_4096:
				LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported");
			break;
			case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
				return new i2p::crypto::EDDSA25519Signer (priv, nullptr);
			break;
			case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
				return new i2p::crypto::GOSTR3410_256_Signer (i2p::crypto::eGOSTR3410CryptoProA, priv);
			break;
			case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
				return new i2p::crypto::GOSTR3410_512_Signer (i2p::crypto::eGOSTR3410TC26A512, priv);
			break;
			case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
				return new i2p::crypto::RedDSA25519Signer (priv);
			break;
#if OPENSSL_PQ
			case SIGNING_KEY_TYPE_MLDSA44:
				return new i2p::crypto::MLDSA44Signer (priv);
			break;	
#endif				
			default:
				LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported");
		}
		return nullptr;
	}

	size_t PrivateKeys::GetSignatureLen () const
	{
		return IsOfflineSignature () ? m_TransientSignatureLen : m_Public->GetSignatureLen ();
	}

	size_t PrivateKeys::GetPrivateKeyLen () const
	{
		return i2p::crypto::GetCryptoPrivateKeyLen (m_Public->GetCryptoKeyType ());
	}

	uint8_t * PrivateKeys::GetPadding()
	{
		if(m_Public->GetSigningKeyType () == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
			return m_Public->GetEncryptionPublicKeyBuffer() + 256;
		else
			return nullptr; // TODO: implement me
	}

	std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (const uint8_t * key) const
	{
		if (!key) key = m_PrivateKey; // use privateKey
		return CreateDecryptor (m_Public->GetCryptoKeyType (), key);
	}

	std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (CryptoKeyType cryptoType, const uint8_t * key)
	{
		if (!key) return nullptr;
		switch (cryptoType)
		{
			case CRYPTO_KEY_TYPE_ELGAMAL:
				return std::make_shared<i2p::crypto::ElGamalDecryptor>(key);
			break;
			case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM512_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM768_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM1024_X25519_AEAD:	
				return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetDecryptor>(key);
			break;
			case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
				return std::make_shared<i2p::crypto::ECIESP256Decryptor>(key);
			break;
			default:
				LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)cryptoType);
		};
		return nullptr;
	}

	PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type, CryptoKeyType cryptoType, bool isDestination)
	{
		if (type != SIGNING_KEY_TYPE_DSA_SHA1)
		{
			PrivateKeys keys;
			// signature
			std::unique_ptr<i2p::crypto::Verifier> verifier (IdentityEx::CreateVerifier (type));
			std::vector<uint8_t> signingPublicKey(verifier->GetPublicKeyLen ()); 
			keys.m_SigningPrivateKey.resize (verifier->GetPrivateKeyLen ());
			GenerateSigningKeyPair (type, keys.m_SigningPrivateKey.data (), signingPublicKey.data ());
			// encryption
			uint8_t publicKey[256];
			if (isDestination)
				RAND_bytes (keys.m_PrivateKey, 256);
			else
				GenerateCryptoKeyPair (cryptoType, keys.m_PrivateKey, publicKey);
			// identity
			keys.m_Public = std::make_shared<IdentityEx> (isDestination ? nullptr : publicKey, signingPublicKey.data (), type, cryptoType);

			keys.CreateSigner ();
			return keys;
		}
		return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1
	}

	void PrivateKeys::GenerateSigningKeyPair (SigningKeyType type, uint8_t * priv, uint8_t * pub)
	{
		switch (type)
		{
			case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
				i2p::crypto::CreateECDSAP256RandomKeys (priv, pub);
			break;
			case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
				i2p::crypto::CreateECDSAP384RandomKeys (priv, pub);
			break;
			case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
				i2p::crypto::CreateECDSAP521RandomKeys (priv, pub);
			break;
			case SIGNING_KEY_TYPE_RSA_SHA256_2048:
			case SIGNING_KEY_TYPE_RSA_SHA384_3072:
			case SIGNING_KEY_TYPE_RSA_SHA512_4096:
				LogPrint (eLogWarning, "Identity: RSA signature type is not supported. Creating EdDSA");
				[[fallthrough]];
				// no break here
			case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
				i2p::crypto::CreateEDDSA25519RandomKeys (priv, pub);
			break;
			case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
				i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410CryptoProA, priv, pub);
			break;
			case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
				i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410TC26A512, priv, pub);
			break;
			case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
				i2p::crypto::CreateRedDSA25519RandomKeys (priv, pub);
			break;
#if OPENSSL_PQ				
			case SIGNING_KEY_TYPE_MLDSA44:
				i2p::crypto::CreateMLDSA44RandomKeys (priv, pub);
			break;	
#endif				
			default:
				LogPrint (eLogWarning, "Identity: Signing key type ", (int)type, " is not supported. Create DSA-SHA1");
				i2p::crypto::CreateDSARandomKeys (priv, pub); // DSA-SHA1
		}
	}

	void PrivateKeys::GenerateCryptoKeyPair (CryptoKeyType type, uint8_t * priv, uint8_t * pub)
	{
		switch (type)
		{
			case CRYPTO_KEY_TYPE_ELGAMAL:
				i2p::crypto::GenerateElGamalKeyPair(priv, pub);
			break;
			case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
				i2p::crypto::CreateECIESP256RandomKeys (priv, pub);
			break;
			case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM512_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM768_X25519_AEAD:
			case CRYPTO_KEY_TYPE_ECIES_MLKEM1024_X25519_AEAD:	
				i2p::crypto::CreateECIESX25519AEADRatchetRandomKeys (priv, pub);
			break;
			default:
				LogPrint (eLogError, "Identity: Crypto key type ", (int)type, " is not supported");
		}
	}

	PrivateKeys PrivateKeys::CreateOfflineKeys (SigningKeyType type, uint32_t expires) const
	{
		PrivateKeys keys (*this);
		std::unique_ptr<i2p::crypto::Verifier> verifier (IdentityEx::CreateVerifier (type));
		if (verifier)
		{
			size_t pubKeyLen = verifier->GetPublicKeyLen ();
			keys.m_TransientSigningPrivateKeyLen = verifier->GetPrivateKeyLen ();
			keys.m_TransientSignatureLen = verifier->GetSignatureLen ();
			keys.m_OfflineSignature.resize (pubKeyLen + m_Public->GetSignatureLen () + 6);
			keys.m_SigningPrivateKey.resize (verifier->GetPrivateKeyLen ());
			htobe32buf (keys.m_OfflineSignature.data (), expires); // expires
			htobe16buf (keys.m_OfflineSignature.data () + 4, type); // type
			GenerateSigningKeyPair (type, keys.m_SigningPrivateKey.data (), keys.m_OfflineSignature.data () + 6); // public key
			Sign (keys.m_OfflineSignature.data (), pubKeyLen + 6, keys.m_OfflineSignature.data () + 6 + pubKeyLen); // signature
			// recreate signer
			keys.m_Signer = nullptr;
			keys.CreateSigner (type);
		}
		return keys;
	}

	Keys CreateRandomKeys ()
	{
		Keys keys;
		// encryption
		i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey);
		// signing
		i2p::crypto::CreateDSARandomKeys (keys.signingPrivateKey, keys.signingKey);
		return keys;
	}

	IdentHash CreateRoutingKey (const IdentHash& ident, bool nextDay)
	{
		uint8_t buf[41]; // ident + yyyymmdd
		memcpy (buf, (const uint8_t *)ident, 32);
		if (nextDay)
			i2p::util::GetNextDayDate ((char *)(buf + 32));
		else	
			i2p::util::GetCurrentDate ((char *)(buf + 32));
		IdentHash key;
		SHA256(buf, 40, key);
		return key;
	}

	XORMetric operator^(const IdentHash& key1, const IdentHash& key2)
	{
		XORMetric m;

		const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL ();
		m.metric_ll[0] = hash1[0] ^ hash2[0];
		m.metric_ll[1] = hash1[1] ^ hash2[1];
		m.metric_ll[2] = hash1[2] ^ hash2[2];
		m.metric_ll[3] = hash1[3] ^ hash2[3];

		return m;
	}
}
}