File: stl_util-inl.h

package info (click to toggle)
icedove 1%3A52.3.0-4~deb8u2
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 1,705,608 kB
  • sloc: cpp: 5,079,451; ansic: 2,051,639; python: 458,782; java: 241,615; xml: 192,378; asm: 178,649; sh: 81,867; makefile: 24,692; perl: 16,874; objc: 4,389; yacc: 1,816; ada: 1,697; lex: 1,257; pascal: 1,251; cs: 879; exp: 499; php: 436; lisp: 258; awk: 152; sed: 51; ruby: 47; csh: 27
file content (452 lines) | stat: -rw-r--r-- 14,934 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// STL utility functions.  Usually, these replace built-in, but slow(!),
// STL functions with more efficient versions.

#ifndef BASE_STL_UTIL_INL_H_
#define BASE_STL_UTIL_INL_H_

#include <string.h>  // for memcpy
#include <functional>
#include <set>
#include <string>
#include <vector>
#include <cassert>

// Clear internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template<class T> void STLClearObject(T* obj) {
  T tmp;
  tmp.swap(*obj);
  obj->reserve(0);  // this is because sometimes "T tmp" allocates objects with
                    // memory (arena implementation?).  use reserve()
                    // to clear() even if it doesn't always work
}

// Reduce memory usage on behalf of object if it is using more than
// "bytes" bytes of space.  By default, we clear objects over 1MB.
template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
  if (obj->capacity() >= limit) {
    STLClearObject(obj);
  } else {
    obj->clear();
  }
}

// Reserve space for STL object.
// STL's reserve() will always copy.
// This function avoid the copy if we already have capacity
template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
  if (obj->capacity() < new_size)   // increase capacity
    obj->reserve(new_size);
  else if (obj->size() > new_size)  // reduce size
    obj->resize(new_size);
}

// STLDeleteContainerPointers()
//  For a range within a container of pointers, calls delete
//  (non-array version) on these pointers.
// NOTE: for these three functions, we could just implement a DeleteObject
// functor and then call for_each() on the range and functor, but this
// requires us to pull in all of algorithm.h, which seems expensive.
// For hash_[multi]set, it is important that this deletes behind the iterator
// because the hash_set may call the hash function on the iterator when it is
// advanced, which could result in the hash function trying to deference a
// stale pointer.
template <class ForwardIterator>
void STLDeleteContainerPointers(ForwardIterator begin,
                                ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete *temp;
  }
}

// STLDeleteContainerPairPointers()
//  For a range within a container of pairs, calls delete
//  (non-array version) on BOTH items in the pairs.
// NOTE: Like STLDeleteContainerPointers, it is important that this deletes
// behind the iterator because if both the key and value are deleted, the
// container may call the hash function on the iterator when it is advanced,
// which could result in the hash function trying to dereference a stale
// pointer.
template <class ForwardIterator>
void STLDeleteContainerPairPointers(ForwardIterator begin,
                                    ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete temp->first;
    delete temp->second;
  }
}

// STLDeleteContainerPairFirstPointers()
//  For a range within a container of pairs, calls delete (non-array version)
//  on the FIRST item in the pairs.
// NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
template <class ForwardIterator>
void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
                                         ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete temp->first;
  }
}

// STLDeleteContainerPairSecondPointers()
//  For a range within a container of pairs, calls delete
//  (non-array version) on the SECOND item in the pairs.
template <class ForwardIterator>
void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
                                          ForwardIterator end) {
  while (begin != end) {
    delete begin->second;
    ++begin;
  }
}

template<typename T>
inline void STLAssignToVector(std::vector<T>* vec,
                              const T* ptr,
                              size_t n) {
  vec->resize(n);
  memcpy(&vec->front(), ptr, n*sizeof(T));
}

/***** Hack to allow faster assignment to a vector *****/

// This routine speeds up an assignment of 32 bytes to a vector from
// about 250 cycles per assignment to about 140 cycles.
//
// Usage:
//      STLAssignToVectorChar(&vec, ptr, size);
//      STLAssignToString(&str, ptr, size);

inline void STLAssignToVectorChar(std::vector<char>* vec,
                                  const char* ptr,
                                  size_t n) {
  STLAssignToVector(vec, ptr, n);
}

inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
  str->resize(n);
  memcpy(&*str->begin(), ptr, n);
}

// To treat a possibly-empty vector as an array, use these functions.
// If you know the array will never be empty, you can use &*v.begin()
// directly, but that is allowed to dump core if v is empty.  This
// function is the most efficient code that will work, taking into
// account how our STL is actually implemented.  THIS IS NON-PORTABLE
// CODE, so call us instead of repeating the nonportable code
// everywhere.  If our STL implementation changes, we will need to
// change this as well.

template<typename T>
inline T* vector_as_array(std::vector<T>* v) {
# ifdef NDEBUG
  return &*v->begin();
# else
  return v->empty() ? NULL : &*v->begin();
# endif
}

template<typename T>
inline const T* vector_as_array(const std::vector<T>* v) {
# ifdef NDEBUG
  return &*v->begin();
# else
  return v->empty() ? NULL : &*v->begin();
# endif
}

// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
// proposes this as the method. According to Matt Austern, this should
// already work on all current implementations.
inline char* string_as_array(std::string* str) {
  // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
  return str->empty() ? NULL : &*str->begin();
}

// These are methods that test two hash maps/sets for equality.  These exist
// because the == operator in the STL can return false when the maps/sets
// contain identical elements.  This is because it compares the internal hash
// tables which may be different if the order of insertions and deletions
// differed.

template <class HashSet>
inline bool
HashSetEquality(const HashSet& set_a,
                const HashSet& set_b) {
  if (set_a.size() != set_b.size()) return false;
  for (typename HashSet::const_iterator i = set_a.begin();
       i != set_a.end();
       ++i) {
    if (set_b.find(*i) == set_b.end())
      return false;
  }
  return true;
}

template <class HashMap>
inline bool
HashMapEquality(const HashMap& map_a,
                const HashMap& map_b) {
  if (map_a.size() != map_b.size()) return false;
  for (typename HashMap::const_iterator i = map_a.begin();
       i != map_a.end(); ++i) {
    typename HashMap::const_iterator j = map_b.find(i->first);
    if (j == map_b.end()) return false;
    if (i->second != j->second) return false;
  }
  return true;
}

// The following functions are useful for cleaning up STL containers
// whose elements point to allocated memory.

// STLDeleteElements() deletes all the elements in an STL container and clears
// the container.  This function is suitable for use with a vector, set,
// hash_set, or any other STL container which defines sensible begin(), end(),
// and clear() methods.
//
// If container is NULL, this function is a no-op.
//
// As an alternative to calling STLDeleteElements() directly, consider
// STLElementDeleter (defined below), which ensures that your container's
// elements are deleted when the STLElementDeleter goes out of scope.
template <class T>
void STLDeleteElements(T *container) {
  if (!container) return;
  STLDeleteContainerPointers(container->begin(), container->end());
  container->clear();
}

// Given an STL container consisting of (key, value) pairs, STLDeleteValues
// deletes all the "value" components and clears the container.  Does nothing
// in the case it's given a NULL pointer.

template <class T>
void STLDeleteValues(T *v) {
  if (!v) return;
  for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
    delete i->second;
  }
  v->clear();
}


// The following classes provide a convenient way to delete all elements or
// values from STL containers when they goes out of scope.  This greatly
// simplifies code that creates temporary objects and has multiple return
// statements.  Example:
//
// vector<MyProto *> tmp_proto;
// STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
// if (...) return false;
// ...
// return success;

// Given a pointer to an STL container this class will delete all the element
// pointers when it goes out of scope.

template<class STLContainer> class STLElementDeleter {
 public:
  explicit STLElementDeleter(STLContainer *ptr) : container_ptr_(ptr) {}
  ~STLElementDeleter() { STLDeleteElements(container_ptr_); }
 private:
  STLContainer *container_ptr_;
};

// Given a pointer to an STL container this class will delete all the value
// pointers when it goes out of scope.

template<class STLContainer> class STLValueDeleter {
 public:
  explicit STLValueDeleter(STLContainer *ptr) : container_ptr_(ptr) {}
  ~STLValueDeleter() { STLDeleteValues(container_ptr_); }
 private:
  STLContainer *container_ptr_;
};


// Forward declare some callback classes in callback.h for STLBinaryFunction
template <class R, class T1, class T2>
class ResultCallback2;

// STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
// It provides an operator () method instead of a Run method, so it may be
// passed to STL functions in <algorithm>.
//
// The client should create callback with NewPermanentCallback, and should
// delete callback after it is done using the STLBinaryFunction.

template <class Result, class Arg1, class Arg2>
class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
 public:
  typedef ResultCallback2<Result, Arg1, Arg2> Callback;

  explicit STLBinaryFunction(Callback* callback)
    : callback_(callback) {
    assert(callback_);
  }

  Result operator() (Arg1 arg1, Arg2 arg2) {
    return callback_->Run(arg1, arg2);
  }

 private:
  Callback* callback_;
};

// STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
// return type is bool and both arguments have type Arg.  It can be used
// wherever STL requires a StrictWeakOrdering, such as in sort() or
// lower_bound().
//
// templated typedefs are not supported, so instead we use inheritance.

template <class Arg>
class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
 public:
  typedef typename STLBinaryPredicate<Arg>::Callback Callback;
  explicit STLBinaryPredicate(Callback* callback)
    : STLBinaryFunction<bool, Arg, Arg>(callback) {
  }
};

// Functors that compose arbitrary unary and binary functions with a
// function that "projects" one of the members of a pair.
// Specifically, if p1 and p2, respectively, are the functions that
// map a pair to its first and second, respectively, members, the
// table below summarizes the functions that can be constructed:
//
// * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
// * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
// * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
// * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
//
// A typical usage for these functions would be when iterating over
// the contents of an STL map. For other sample usage, see the unittest.

template<typename Pair, typename UnaryOp>
class UnaryOperateOnFirst
    : public std::unary_function<Pair, typename UnaryOp::result_type> {
 public:
  UnaryOperateOnFirst() {
  }

  explicit UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
  }

  typename UnaryOp::result_type operator()(const Pair& p) const {
    return f_(p.first);
  }

 private:
  UnaryOp f_;
};

template<typename Pair, typename UnaryOp>
UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
  return UnaryOperateOnFirst<Pair, UnaryOp>(f);
}

template<typename Pair, typename UnaryOp>
class UnaryOperateOnSecond
    : public std::unary_function<Pair, typename UnaryOp::result_type> {
 public:
  UnaryOperateOnSecond() {
  }

  explicit UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
  }

  typename UnaryOp::result_type operator()(const Pair& p) const {
    return f_(p.second);
  }

 private:
  UnaryOp f_;
};

template<typename Pair, typename UnaryOp>
UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
  return UnaryOperateOnSecond<Pair, UnaryOp>(f);
}

template<typename Pair, typename BinaryOp>
class BinaryOperateOnFirst
    : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
 public:
  BinaryOperateOnFirst() {
  }

  explicit BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
  }

  typename BinaryOp::result_type operator()(const Pair& p1,
                                            const Pair& p2) const {
    return f_(p1.first, p2.first);
  }

 private:
  BinaryOp f_;
};

template<typename Pair, typename BinaryOp>
BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
  return BinaryOperateOnFirst<Pair, BinaryOp>(f);
}

template<typename Pair, typename BinaryOp>
class BinaryOperateOnSecond
    : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
 public:
  BinaryOperateOnSecond() {
  }

  explicit BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
  }

  typename BinaryOp::result_type operator()(const Pair& p1,
                                            const Pair& p2) const {
    return f_(p1.second, p2.second);
  }

 private:
  BinaryOp f_;
};

template<typename Pair, typename BinaryOp>
BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
  return BinaryOperateOnSecond<Pair, BinaryOp>(f);
}

// Translates a set into a vector.
template<typename T>
std::vector<T> SetToVector(const std::set<T>& values) {
  std::vector<T> result;
  result.reserve(values.size());
  result.insert(result.begin(), values.begin(), values.end());
  return result;
}

#endif  // BASE_STL_UTIL_INL_H_