1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
# iceperf
## Introduction
!!! note
Since not all IPC mechanisms are supported on all platforms the IPC benchmark
only runs fully on QNX and Linux.
The iceoryx C or C++ API related benchmark is supported on all platforms.
This example measures the latency of IPC transmissions between two applications.
We compare the latency of iceoryx with message queues and unix domain sockets.
The measurement is carried out with several payload sizes. Round trips are performed
for each payload size, using either the default setting or the provided command line parameter
for the number of round trips to do.
The time measurement only considers the time to allocate/release memory and the time to send the data.
The construction and initialization of the payload is not part of the measurement.
At the end of the benchmark, the average latency for each payload size is printed.
## Run iceperf
Create three terminals and run one command in each of them.
In this setup the leader is doing the ping pong measurements with the follower.
You can set the number of measurement iterations (number of round trips) with a command line parameter
of iceperf-bench-leader (e.g. `./iceperf-bench-leader -n 100000`).
There are further options which can be printed by calling `./iceperf-bench-leader -h`.
```sh
# If installed and available in PATH environment variable
iox-roudi
# If build from scratch with script in tools
$ICEORYX_ROOT/build/install/prefix/bin/iox-roudi
build/iceoryx_examples/iceperf/iceperf-bench-follower
build/iceoryx_examples/iceperf/iceperf-bench-leader
```
If you would like to test only the C++ API or the C API you can start `iceperf-bench-leader`
with the parameter `-t iceoryx-cpp-api` or `-t iceoryx-c-api`.
```sh
build/iceoryx_examples/iceperf/iceperf-bench-follower
build/iceoryx_examples/iceperf/iceperf-bench-leader -n 100000 -t iceoryx-cpp-api
```
## Expected Output
The measured transmission modes depend on the operating system (e.g. no message queue on MacOS).
The measurements depend on the benchmark parameters and the hardware.
The following shows an example output with Ubuntu 18.04 on Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz.
### iceperf-bench-leader Application
****** MESSAGE QUEUE ********
Waiting for: subscription, subscriber [ success ]
Measurement for: 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB,
512 kB, 1024 kB, 2048 kB, 4096 kB
Waiting for: unsubscribe [ finished ]
#### Measurement Result ####
100000 round trips for each payload.
| Payload Size [kB] | Average Latency [µs] |
|------------------:|---------------------:|
| 1 | 3.1 |
| 2 | 3.2 |
| 4 | 3.8 |
| 8 | 5.2 |
| 16 | 7.7 |
| 32 | 13 |
| 64 | 23 |
| 128 | 43 |
| 256 | 81 |
| 512 | 1.6e+02 |
| 1024 | 3e+02 |
| 2048 | 5.9e+02 |
| 4096 | 1.2e+03 |
Finished!
****** UNIX DOMAIN SOCKET ********
Waiting for: subscription, subscriber [ success ]
Measurement for: 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB,
512 kB, 1024 kB, 2048 kB, 4096 kB
Waiting for: unsubscribe [ finished ]
#### Measurement Result ####
100000 round trips for each payload.
| Payload Size [kB] | Average Latency [µs] |
|------------------:|---------------------:|
| 1 | 4.3 |
| 2 | 4.3 |
| 4 | 4.6 |
| 8 | 6 |
| 16 | 8.7 |
| 32 | 14 |
| 64 | 27 |
| 128 | 53 |
| 256 | 1.1e+02 |
| 512 | 2.1e+02 |
| 1024 | 4.2e+02 |
| 2048 | 8.4e+02 |
| 4096 | 1.7e+03 |
Finished!
****** ICEORYX ********
Waiting for: subscription, subscriber [ success ]
Measurement for: 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB,
512 kB, 1024 kB, 2048 kB, 4096 kB
Waiting for: unsubscribe [ finished ]
#### Measurement Result ####
100000 round trips for each payload.
| Payload Size [kB] | Average Latency [µs] |
|------------------:|---------------------:|
| 1 | 0.73 |
| 2 | 0.58 |
| 4 | 0.61 |
| 8 | 0.61 |
| 16 | 0.59 |
| 32 | 0.62 |
| 64 | 0.6 |
| 128 | 0.58 |
| 256 | 0.61 |
| 512 | 0.61 |
| 1024 | 0.58 |
| 2048 | 0.61 |
| 4096 | 0.61 |
Finished!
****** ICEORYX C API ********
Waiting for: subscription, subscriber [ success ]
Measurement for: 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB,
512 kB, 1024 kB, 2048 kB, 4096 kB
Waiting for: unsubscribe [ finished ]
#### Measurement Result ####
100000 round trips for each payload.
| Payload Size [kB] | Average Latency [µs] |
|------------------:|---------------------:|
| 1 | 0.73 |
| 2 | 0.58 |
| 4 | 0.61 |
| 8 | 0.61 |
| 16 | 0.59 |
| 32 | 0.62 |
| 64 | 0.6 |
| 128 | 0.58 |
| 256 | 0.61 |
| 512 | 0.61 |
| 1024 | 0.58 |
| 2048 | 0.61 |
| 4096 | 0.61 |
Finished!
### iceperf-bench-follower Application
****** MESSAGE QUEUE ********
registering with the leader
****** UNIX DOMAIN SOCKET ********
registering with the leader
****** ICEORYX ********
Waiting for: subscription, subscriber [ success ]
Waiting for: unsubscribe [ finished ]
****** ICEORYX C API ********
Waiting for: subscription, subscriber [ success ]
Waiting for: unsubscribe [ finished ]
## Code Walkthrough
Here we briefly describe the setup for performing the measurements in `iceperf_bench_leader.hpp/cpp` and `iceperf_bench_follower.hpp/cpp`. Things like initialization, sending and receiving of data are technology specific and can be found in the respective files (e.g. uds.cpp for
unix domain socket). Our focus here is on the top-most abstraction layer which allows us to add new IPC technologies to extend and compare them.
### iceperf-bench-leader Application Code
Apart from headers for the different IPC technologies, the `topic_data.hpp` file is included which contains the `PerSettings` and `PerTopic` structs. These are used to transfer some information between the applications. The `PerTopic` struct is used as some kind of header in each transferred sample and is independent of the payload size.
<!-- [geoffrey] [iceoryx_examples/iceperf/topic_data.hpp] [topic data definitions] -->
```cpp
struct PerfSettings
{
Benchmark benchmark{Benchmark::ALL};
Technology technology{Technology::ALL};
uint64_t numberOfSamples{10000U};
};
struct PerfTopic
{
uint32_t payloadSize{0};
uint32_t subPackets{0};
RunFlag runFlag{RunFlag::RUN};
};
```
The `PerfSettings` struct is used to synchronize the settings between the leader and the follower application.
The `PerfTopic` struct is used to share some information during the measurement. It contains `payloadSize`
to specify the payload size used for the current measurement. If it is not possible to transmit the `payloadSize`
with a single data transfer (e.g. OS limit for the payload of a single socket send), the payload is divided
into several sub-packets. This is indicated with `subPackets`. The `runFlag` is used to shut down the
iceperf-bench follower at the end of the benchmark.
Let's use some constants to prevent magic values and set and names for the communication resources that are used.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_leader.cpp] [use constants instead of magic values] -->
```c++
constexpr const char APP_NAME[]{"iceperf-bench-leader"};
constexpr const char PUBLISHER[]{"Leader"};
constexpr const char SUBSCRIBER[]{"Follower"};
```
The `IcePerfLeader` c'tor does a cleanup of potentially outdated resources of technologies
which might have left some resources in the file system after an abnormal terminations.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_leader.cpp] [cleanup outdated resources] -->
```cpp
#ifndef __APPLE__
MQ::cleanupOutdatedResources(PUBLISHER, SUBSCRIBER);
#endif
UDS::cleanupOutdatedResources(PUBLISHER, SUBSCRIBER);
```
The `doMeasurement()` method executes a measurement for the provided IPC technology and number of round trips.
To be able to always perform the same steps and avoiding code duplications,
we use a base class with technology independent functionality and the technology has to implement the technology dependent part.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_leader.cpp] [do the measurement for a single technology] -->
```cpp
void IcePerfLeader::doMeasurement(IcePerfBase& ipcTechnology) noexcept
{
ipcTechnology.initLeader();
std::vector<std::tuple<uint32_t, iox::units::Duration>> latencyMeasurements;
const std::vector<uint32_t> payloadSizesInKB{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
std::cout << "Measurement for:";
const char* separator = " ";
for (const auto payloadSizeInKB : payloadSizesInKB)
{
std::cout << separator << payloadSizeInKB << " kB" << std::flush;
separator = ", ";
auto payloadSizeInBytes = payloadSizeInKB * IcePerfBase::ONE_KILOBYTE;
ipcTechnology.preLatencyPerfTestLeader(payloadSizeInBytes);
auto latency = ipcTechnology.latencyPerfTestLeader(m_settings.numberOfSamples);
latencyMeasurements.push_back(std::make_tuple(payloadSizeInKB, latency));
ipcTechnology.postLatencyPerfTestLeader();
}
std::cout << std::endl;
ipcTechnology.releaseFollower();
ipcTechnology.shutdown();
std::cout << std::endl;
std::cout << "#### Measurement Result ####" << std::endl;
std::cout << m_settings.numberOfSamples << " round trips for each payload." << std::endl;
std::cout << std::endl;
std::cout << "| Payload Size [kB] | Average Latency [µs] |" << std::endl;
std::cout << "|------------------:|---------------------:|" << std::endl;
for (const auto& latencyMeasuement : latencyMeasurements)
{
auto payloadSizeInKB = std::get<0>(latencyMeasuement);
auto latencyInMicroseconds = static_cast<double>(std::get<1>(latencyMeasuement).toNanoseconds()) / 1000.0;
std::cout << "| " << std::setw(17) << payloadSizeInKB << " | " << std::setw(20) << std::setprecision(2)
<< latencyInMicroseconds << " |" << std::endl;
}
std::cout << std::endl;
std::cout << "Finished!" << std::endl;
}
```
Initialization is different for each IPC technology. Here we have to create sockets, message queues or iceoryx publisher and subscriber.
With `ipcTechnology.initLeader()` we set up these resources on the leader side.
After the definition of the different payload sizes to use, we execute a single round trip measurement for each individual payload size.
The leader has to orchestrate the whole process and has a pre- and post-step for each round trip measurement.
`ipcTechnology.preLatencyPerfTestLeader(...)` sets the payload size for the upcoming measurement.
`ipcTechnology.latencyPerfTestLeader(m_settings.numberOfSamples)` performs the data exchange between leader and follower and returns
the time it took to transmit the number of samples in a round trip. After the measurements are taken for each payload size,
`ipcTechnology.releaseFollower()` releases the follower. This is required since the follower is not aware of the benchmark settings,
e.g. how many payload sizes are considered and hence we need to issue a shutdown.
We clean up the communication resources with `ipcTechnology.shutdown()` before we print the results.
In the `run()` method we create instances for the different IPC technologies we want to compare. Each technology is implemented in its own class and implements the pure virtual functions provided with the `IcePerfBase` class. Before this is done, we send the `PerfSettings` to the follower application.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_leader.cpp] [[run all technologies] [send setting to follower application]] -->
```cpp
int IcePerfLeader::run() noexcept
{
iox::runtime::PoshRuntime::initRuntime(APP_NAME);
iox::capro::ServiceDescription serviceDescription{"IcePerf", "Settings", "Generic"};
iox::popo::PublisherOptions options;
options.historyCapacity = 1U;
iox::popo::Publisher<PerfSettings> settingsPublisher{serviceDescription, options};
if (!settingsPublisher.publishCopyOf(m_settings))
{
std::cerr << "Could not send settings to follower!" << std::endl;
return EXIT_FAILURE;
}
// ...
return EXIT_SUCCESS;
}
```
Now we can create an object for each IPC technology that we want to evaluate and call the `doMeasurement()` method.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_leader.cpp] [[run all technologies] [create an run technologies]] -->
```cpp
int IcePerfLeader::run() noexcept
{
iox::runtime::PoshRuntime::initRuntime(APP_NAME);
// ...
if (m_settings.technology == Technology::ALL || m_settings.technology == Technology::POSIX_MESSAGE_QUEUE)
{
#ifndef __APPLE__
std::cout << std::endl << "****** MESSAGE QUEUE ********" << std::endl;
MQ mq(PUBLISHER, SUBSCRIBER);
doMeasurement(mq);
#else
if (m_settings.technology == Technology::POSIX_MESSAGE_QUEUE)
{
std::cout << "The message queue is not supported on macOS and will be skipped!" << std::endl;
}
#endif
}
if (m_settings.technology == Technology::ALL || m_settings.technology == Technology::UNIX_DOMAIN_SOCKET)
{
std::cout << std::endl << "****** UNIX DOMAIN SOCKET ********" << std::endl;
UDS uds(PUBLISHER, SUBSCRIBER);
doMeasurement(uds);
}
if (m_settings.technology == Technology::ALL || m_settings.technology == Technology::ICEORYX_CPP_API)
{
std::cout << std::endl << "****** ICEORYX ********" << std::endl;
Iceoryx iceoryx(PUBLISHER, SUBSCRIBER);
doMeasurement(iceoryx);
}
if (m_settings.technology == Technology::ALL || m_settings.technology == Technology::ICEORYX_C_API)
{
std::cout << std::endl << "****** ICEORYX C API ********" << std::endl;
IceoryxC iceoryxc(PUBLISHER, SUBSCRIBER);
doMeasurement(iceoryxc);
}
return EXIT_SUCCESS;
}
```
### iceperf_bench_follower Application
The `iceperf-bench-follower` application is similar to `iceperf-bench-leader`. The first change is that the `SUBSCRIBER` and `PUBLISHER` switch their names.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_follower.cpp] [use constants instead of magic values] -->
```c++
constexpr const char APP_NAME[]{"iceperf-bench-follower"};
constexpr const char PUBLISHER[]{"Follower"};
constexpr const char SUBSCRIBER[]{"Leader"};
```
While the `run()` method of the leader publishes the `PerfSettings`, the follower is subscribed to those settings
and waits for them before the technologies are created, which is done similarly as for the leader.
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_follower.cpp] [[run all technologies] [get settings from leader]] -->
```cpp
int IcePerfFollower::run() noexcept
{
iox::runtime::PoshRuntime::initRuntime(APP_NAME);
iox::capro::ServiceDescription serviceDescription{"IcePerf", "Settings", "Generic"};
iox::popo::SubscriberOptions options;
options.historyRequest = 1U;
iox::popo::Subscriber<PerfSettings> settingsSubscriber{serviceDescription, options};
m_settings = getSettings(settingsSubscriber);
// ...
return EXIT_SUCCESS;
}
```
The `doMeasurement()` method is much simpler than the one from the leader, since it only has to react on incoming data.
Apart from `ipcTechnology.initFollower()` and `ipcTechnology.shutdown()` all the functionality to perform the round trip for different payload sizes is contained in `ipcTechnology.latencyPerfTestFollower()`
<!-- [geoffrey] [iceoryx_examples/iceperf/iceperf_follower.cpp] [do the measurement for a single technology] -->
```cpp
void IcePerfFollower::doMeasurement(IcePerfBase& ipcTechnology) noexcept
{
ipcTechnology.initFollower();
ipcTechnology.latencyPerfTestFollower();
ipcTechnology.shutdown();
}
```
<center>
[Check out iceperf on GitHub :fontawesome-brands-github:](https://github.com/eclipse-iceoryx/iceoryx/tree/v2.0.0/iceoryx_examples/iceperf){ .md-button }
</center>
|