1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
|
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com>,
* Stephen Fung <stephen.fung@sun.com>, and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* $Id: mpmontg.c,v 1.17.2.3 2006/08/29 02:46:20 nelson%bolyard.com Exp $ */
/* This file implements moduluar exponentiation using Montgomery's
* method for modular reduction. This file implements the method
* described as "Improvement 1" in the paper "A Cryptogrpahic Library for
* the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
* published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
* "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
* published by Springer Verlag.
*/
#define MP_USING_CACHE_SAFE_MOD_EXP 1
#include <string.h>
#include "mpi-priv.h"
#include "mplogic.h"
#include "mpprime.h"
#ifdef MP_USING_MONT_MULF
#include "montmulf.h"
#endif
#include <stddef.h> /* ptrdiff_t */
/* if MP_CHAR_STORE_SLOW is defined, we */
/* need to know endianness of this platform. */
#ifdef MP_CHAR_STORE_SLOW
#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
" if you define MP_CHAR_STORE_SLOW."
#endif
#endif
#define STATIC
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
#if defined(_WIN32_WCE)
#define ABORT res = MP_UNDEF; goto CLEANUP
#else
#define ABORT abort()
#endif
/* computes T = REDC(T), 2^b == R */
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
{
mp_err res;
mp_size i;
i = MP_USED(T) + MP_USED(&mmm->N) + 2;
MP_CHECKOK( s_mp_pad(T, i) );
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
/* T += N * m_i * (MP_RADIX ** i); */
MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
}
s_mp_clamp(T);
/* T /= R */
s_mp_div_2d(T, mmm->b);
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
/* T = T - N */
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
#ifdef DEBUG
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
res = MP_UNDEF;
goto CLEANUP;
}
#endif
}
res = MP_OKAY;
CLEANUP:
return res;
}
#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm)
{
mp_digit *pb;
mp_digit m_i;
mp_err res;
mp_size ib;
mp_size useda, usedb;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
if((res = s_mp_pad(c, ib)) != MP_OKAY)
goto CLEANUP;
useda = MP_USED(a);
pb = MP_DIGITS(b);
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
/* Outer loop: Digits of b */
usedb = MP_USED(b);
for (ib = 1; ib < usedb; ib++) {
mp_digit b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
if (usedb < MP_USED(&mmm->N)) {
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
}
s_mp_clamp(c);
s_mp_div_2d(c, mmm->b);
if (s_mp_cmp(c, &mmm->N) >= 0) {
MP_CHECKOK( s_mp_sub(c, &mmm->N) );
}
res = MP_OKAY;
CLEANUP:
return res;
}
#endif
STATIC
mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
{
mp_err res;
/* xMont = x * R mod N where N is modulus */
MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) ); /* xMont = x << b */
MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
CLEANUP:
return res;
}
#ifdef MP_USING_MONT_MULF
/* the floating point multiply is already cache safe,
* don't turn on cache safe unless we specifically
* force it */
#ifndef MP_FORCE_CACHE_SAFE
#undef MP_USING_CACHE_SAFE_MOD_EXP
#endif
unsigned int mp_using_mont_mulf = 1;
/* computes montgomery square of the integer in mResult */
#define SQR \
conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
mont_mulf_noconv(mResult, dm1, d16Tmp, \
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
/* computes montgomery product of x and the integer in mResult */
#define MUL(x) \
conv_i32_to_d32(dm1, mResult, nLen); \
mont_mulf_noconv(mResult, dm1, oddPowers[x], \
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
/* Do modular exponentiation using floating point multiply code. */
mp_err mp_exptmod_f(const mp_int * montBase,
const mp_int * exponent,
const mp_int * modulus,
mp_int * result,
mp_mont_modulus *mmm,
int nLen,
mp_size bits_in_exponent,
mp_size window_bits,
mp_size odd_ints)
{
mp_digit *mResult;
double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
double dn0;
mp_size i;
mp_err res;
int expOff;
int dSize = 0, oddPowSize, dTmpSize;
mp_int accum1;
double *oddPowers[MAX_ODD_INTS];
/* function for computing n0prime only works if n0 is odd */
MP_DIGITS(&accum1) = 0;
for (i = 0; i < MAX_ODD_INTS; ++i)
oddPowers[i] = 0;
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
mp_set(&accum1, 1);
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
MP_CHECKOK( s_mp_pad(&accum1, nLen) );
oddPowSize = 2 * nLen + 1;
dTmpSize = 2 * oddPowSize;
dSize = sizeof(double) * (nLen * 4 + 1 +
((odd_ints + 1) * oddPowSize) + dTmpSize);
dBuf = (double *)malloc(dSize);
dm1 = dBuf; /* array of d32 */
dn = dBuf + nLen; /* array of d32 */
dSqr = dn + nLen; /* array of d32 */
d16Tmp = dSqr + nLen; /* array of d16 */
dTmp = d16Tmp + oddPowSize;
for (i = 0; i < odd_ints; ++i) {
oddPowers[i] = dTmp;
dTmp += oddPowSize;
}
mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
/* Make dn and dn0 */
conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
dn0 = (double)(mmm->n0prime & 0xffff);
/* Make dSqr */
conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
mont_mulf_noconv(mResult, dm1, oddPowers[0],
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
conv_i32_to_d32(dSqr, mResult, nLen);
for (i = 1; i < odd_ints; ++i) {
mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
conv_i32_to_d16(oddPowers[i], mResult, nLen);
}
s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
mp_size smallExp;
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
smallExp = (mp_size)res;
if (window_bits == 1) {
if (!smallExp) {
SQR;
} else if (smallExp & 1) {
SQR; MUL(0);
} else {
ABORT;
}
} else if (window_bits == 4) {
if (!smallExp) {
SQR; SQR; SQR; SQR;
} else if (smallExp & 1) {
SQR; SQR; SQR; SQR; MUL(smallExp/2);
} else if (smallExp & 2) {
SQR; SQR; SQR; MUL(smallExp/4); SQR;
} else if (smallExp & 4) {
SQR; SQR; MUL(smallExp/8); SQR; SQR;
} else if (smallExp & 8) {
SQR; MUL(smallExp/16); SQR; SQR; SQR;
} else {
ABORT;
}
} else if (window_bits == 5) {
if (!smallExp) {
SQR; SQR; SQR; SQR; SQR;
} else if (smallExp & 1) {
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
} else if (smallExp & 2) {
SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
} else if (smallExp & 4) {
SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
} else if (smallExp & 8) {
SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
} else if (smallExp & 0x10) {
SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
} else {
ABORT;
}
} else if (window_bits == 6) {
if (!smallExp) {
SQR; SQR; SQR; SQR; SQR; SQR;
} else if (smallExp & 1) {
SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
} else if (smallExp & 2) {
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
} else if (smallExp & 4) {
SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
} else if (smallExp & 8) {
SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
} else if (smallExp & 0x10) {
SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
} else if (smallExp & 0x20) {
SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
} else {
ABORT;
}
} else {
ABORT;
}
}
s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
res = s_mp_redc(&accum1, mmm);
mp_exch(&accum1, result);
CLEANUP:
mp_clear(&accum1);
if (dBuf) {
if (dSize)
memset(dBuf, 0, dSize);
free(dBuf);
}
return res;
}
#undef SQR
#undef MUL
#endif
#define SQR(a,b) \
MP_CHECKOK( mp_sqr(a, b) );\
MP_CHECKOK( s_mp_redc(b, mmm) )
#if defined(MP_MONT_USE_MP_MUL)
#define MUL(x,a,b) \
MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
MP_CHECKOK( s_mp_redc(b, mmm) )
#else
#define MUL(x,a,b) \
MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
#endif
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
/* Do modular exponentiation using integer multiply code. */
mp_err mp_exptmod_i(const mp_int * montBase,
const mp_int * exponent,
const mp_int * modulus,
mp_int * result,
mp_mont_modulus *mmm,
int nLen,
mp_size bits_in_exponent,
mp_size window_bits,
mp_size odd_ints)
{
mp_int *pa1, *pa2, *ptmp;
mp_size i;
mp_err res;
int expOff;
mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
/* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
/* oddPowers[i] = base ** (2*i + 1); */
MP_DIGITS(&accum1) = 0;
MP_DIGITS(&accum2) = 0;
MP_DIGITS(&power2) = 0;
for (i = 0; i < MAX_ODD_INTS; ++i) {
MP_DIGITS(oddPowers + i) = 0;
}
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
MP_CHECKOK( s_mp_redc(&power2, mmm) );
for (i = 1; i < odd_ints; ++i) {
mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
}
/* set accumulator to montgomery residue of 1 */
mp_set(&accum1, 1);
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
pa1 = &accum1;
pa2 = &accum2;
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
mp_size smallExp;
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
smallExp = (mp_size)res;
if (window_bits == 1) {
if (!smallExp) {
SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 1) {
SQR(pa1,pa2); MUL(0,pa2,pa1);
} else {
ABORT;
}
} else if (window_bits == 4) {
if (!smallExp) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
} else if (smallExp & 1) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
MUL(smallExp/2, pa1,pa2); SWAPPA;
} else if (smallExp & 2) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 4) {
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 8) {
SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else {
ABORT;
}
} else if (window_bits == 5) {
if (!smallExp) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 1) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
} else if (smallExp & 2) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
} else if (smallExp & 4) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
} else if (smallExp & 8) {
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
} else if (smallExp & 0x10) {
SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
} else {
ABORT;
}
} else if (window_bits == 6) {
if (!smallExp) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); SQR(pa2,pa1);
} else if (smallExp & 1) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
} else if (smallExp & 2) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 4) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 8) {
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 0x10) {
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 0x20) {
SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
} else {
ABORT;
}
} else {
ABORT;
}
}
res = s_mp_redc(pa1, mmm);
mp_exch(pa1, result);
CLEANUP:
mp_clear(&accum1);
mp_clear(&accum2);
mp_clear(&power2);
for (i = 0; i < odd_ints; ++i) {
mp_clear(oddPowers + i);
}
return res;
}
#undef SQR
#undef MUL
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
unsigned int mp_using_cache_safe_exp = 1;
#endif
mp_err mp_set_safe_modexp(int value)
{
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
mp_using_cache_safe_exp = value;
return MP_OKAY;
#else
if (value == 0) {
return MP_OKAY;
}
return MP_BADARG;
#endif
}
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
#define WEAVE_WORD_SIZE 4
#ifndef MP_CHAR_STORE_SLOW
/*
* mpi_to_weave takes an array of bignums, a matrix in which each bignum
* occupies all the columns of a row, and transposes it into a matrix in
* which each bignum occupies a column of every row. The first row of the
* input matrix becomes the first column of the output matrix. The n'th
* row of input becomes the n'th column of output. The input data is said
* to be "interleaved" or "woven" into the output matrix.
*
* The array of bignums is left in this woven form. Each time a single
* bignum value is needed, it is recreated by fetching the n'th column,
* forming a single row which is the new bignum.
*
* The purpose of this interleaving is make it impossible to determine which
* of the bignums is being used in any one operation by examining the pattern
* of cache misses.
*
* The weaving function does not transpose the entire input matrix in one call.
* It transposes 4 rows of mp_ints into their respective columns of output.
*
* There are two different implementations of the weaving and unweaving code
* in this file. One uses byte loads and stores. The second uses loads and
* stores of mp_weave_word size values. The weaved forms of these two
* implementations differ. Consequently, each one has its own explanation.
*
* Here is the explanation for the byte-at-a-time implementation.
*
* This implementation treats each mp_int bignum as an array of bytes,
* rather than as an array of mp_digits. It stores those bytes as a
* column of bytes in the output matrix. It doesn't care if the machine
* uses big-endian or little-endian byte ordering within mp_digits.
* The first byte of the mp_digit array becomes the first byte in the output
* column, regardless of whether that byte is the MSB or LSB of the mp_digit.
*
* "bignums" is an array of mp_ints.
* It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
*
* "weaved" is the weaved output matrix.
* The first byte of bignums[0] is stored in weaved[0].
*
* "nBignums" is the total number of bignums in the array of which "bignums"
* is a part.
*
* "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.
* mp_ints that use less than nDigits digits are logically padded with zeros
* while being stored in the weaved array.
*/
mp_err mpi_to_weave(const mp_int *bignums,
unsigned char *weaved,
mp_size nDigits, /* in each mp_int of input */
mp_size nBignums) /* in the entire source array */
{
mp_size i;
unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
for (i=0; i < WEAVE_WORD_SIZE; i++) {
mp_size used = MP_USED(&bignums[i]);
unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]);
unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
unsigned char *pDest = weaved + i;
ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
ARGCHK(used <= nDigits, MP_BADARG);
for (; pSrc < endSrc; pSrc++) {
*pDest = *pSrc;
pDest += nBignums;
}
while (pDest < endDest) {
*pDest = 0;
pDest += nBignums;
}
}
return MP_OKAY;
}
/* Reverse the operation above for one mp_int.
* Reconstruct one mp_int from its column in the weaved array.
* "pSrc" points to the offset into the weave array of the bignum we
* are going to reconstruct.
*/
mp_err weave_to_mpi(mp_int *a, /* output, result */
const unsigned char *pSrc, /* input, byte matrix */
mp_size nDigits, /* per mp_int output */
mp_size nBignums) /* bignums in weaved matrix */
{
unsigned char *pDest = (unsigned char *)MP_DIGITS(a);
unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
MP_SIGN(a) = MP_ZPOS;
MP_USED(a) = nDigits;
for (; pDest < endDest; pSrc += nBignums, pDest++) {
*pDest = *pSrc;
}
s_mp_clamp(a);
return MP_OKAY;
}
#else
/* Need a primitive that we know is 32 bits long... */
/* this is true on all modern processors we know of today*/
typedef unsigned int mp_weave_word;
/*
* on some platforms character stores into memory is very expensive since they
* generate a read/modify/write operation on the bus. On those platforms
* we need to do integer writes to the bus. Because of some unrolled code,
* in this current code the size of mp_weave_word must be four. The code that
* makes this assumption explicity is called out. (on some platforms a write
* of 4 bytes still requires a single read-modify-write operation.
*
* This function is takes the identical parameters as the function above,
* however it lays out the final array differently. Where the previous function
* treats the mpi_int as an byte array, this function treats it as an array of
* mp_digits where each digit is stored in big endian order.
*
* since we need to interleave on a byte by byte basis, we need to collect
* several mpi structures together into a single uint32 before we write. We
* also need to make sure the uint32 is arranged so that the first value of
* the first array winds up in b[0]. This means construction of that uint32
* is endian specific (even though the layout of the mp_digits in the array
* is always big endian).
*
* The final data is stored as follows :
*
* Our same logical array p array, m is sizeof(mp_digit),
* N is still count and n is now b_size. If we define p[i].digit[j]0 as the
* most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
* the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
* is the least significant byte.
* Our array would look like:
* p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
* p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
* . .
* p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
* p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
* . .
* . .
* p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
* p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
*
*/
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
mp_size b_size, mp_size count)
{
mp_size i;
mp_digit *digitsa0;
mp_digit *digitsa1;
mp_digit *digitsa2;
mp_digit *digitsa3;
mp_size useda0;
mp_size useda1;
mp_size useda2;
mp_size useda3;
mp_weave_word *weaved = (mp_weave_word *)b;
count = count/sizeof(mp_weave_word);
/* this code pretty much depends on this ! */
#if MP_ARGCHK == 2
assert(WEAVE_WORD_SIZE == 4);
assert(sizeof(mp_weave_word) == 4);
#endif
digitsa0 = MP_DIGITS(&a[0]);
digitsa1 = MP_DIGITS(&a[1]);
digitsa2 = MP_DIGITS(&a[2]);
digitsa3 = MP_DIGITS(&a[3]);
useda0 = MP_USED(&a[0]);
useda1 = MP_USED(&a[1]);
useda2 = MP_USED(&a[2]);
useda3 = MP_USED(&a[3]);
ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
ARGCHK(useda0 <= b_size, MP_BADARG);
ARGCHK(useda1 <= b_size, MP_BADARG);
ARGCHK(useda2 <= b_size, MP_BADARG);
ARGCHK(useda3 <= b_size, MP_BADARG);
#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
for (i=0; i < b_size; i++) {
mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
register mp_weave_word acc;
/*
* ONE_STEP takes the MSB of each of our current digits and places that
* byte in the appropriate position for writing to the weaved array.
* On little endian:
* b3 b2 b1 b0
* On big endian:
* b0 b1 b2 b3
* When the data is written it would always wind up:
* b[0] = b0
* b[1] = b1
* b[2] = b2
* b[3] = b3
*
* Once we've written the MSB, we shift the whole digit up left one
* byte, putting the Next Most Significant Byte in the MSB position,
* so we we repeat the next one step that byte will be written.
* NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
* is 4.
*/
#ifdef MP_IS_LITTLE_ENDIAN
#define MPI_WEAVE_ONE_STEP \
acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
*weaved = acc; weaved += count;
#else
#define MPI_WEAVE_ONE_STEP \
acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
*weaved = acc; weaved += count;
#endif
switch (sizeof(mp_digit)) {
case 32:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 16:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 8:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 4:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 2:
MPI_WEAVE_ONE_STEP
case 1:
MPI_WEAVE_ONE_STEP
break;
}
}
return MP_OKAY;
}
/* reverse the operation above for one entry.
* b points to the offset into the weave array of the power we are
* calculating */
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
mp_size b_size, mp_size count)
{
mp_digit *pb = MP_DIGITS(a);
mp_digit *end = &pb[b_size];
MP_SIGN(a) = MP_ZPOS;
MP_USED(a) = b_size;
for (; pb < end; pb++) {
register mp_digit digit;
digit = *b << 8; b += count;
#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
switch (sizeof(mp_digit)) {
case 32:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 16:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 8:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 4:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 2:
break;
}
digit |= *b; b += count;
*pb = digit;
}
s_mp_clamp(a);
return MP_OKAY;
}
#endif
#define SQR(a,b) \
MP_CHECKOK( mp_sqr(a, b) );\
MP_CHECKOK( s_mp_redc(b, mmm) )
#if defined(MP_MONT_USE_MP_MUL)
#define MUL_NOWEAVE(x,a,b) \
MP_CHECKOK( mp_mul(a, x, b) ); \
MP_CHECKOK( s_mp_redc(b, mmm) )
#else
#define MUL_NOWEAVE(x,a,b) \
MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
#endif
#define MUL(x,a,b) \
MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
MUL_NOWEAVE(&tmp,a,b)
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
/* Do modular exponentiation using integer multiply code. */
mp_err mp_exptmod_safe_i(const mp_int * montBase,
const mp_int * exponent,
const mp_int * modulus,
mp_int * result,
mp_mont_modulus *mmm,
int nLen,
mp_size bits_in_exponent,
mp_size window_bits,
mp_size num_powers)
{
mp_int *pa1, *pa2, *ptmp;
mp_size i;
mp_size first_window;
mp_err res;
int expOff;
mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
mp_int tmp;
unsigned char *powersArray;
unsigned char *powers;
MP_DIGITS(&accum1) = 0;
MP_DIGITS(&accum2) = 0;
MP_DIGITS(&accum[0]) = 0;
MP_DIGITS(&accum[1]) = 0;
MP_DIGITS(&accum[2]) = 0;
MP_DIGITS(&accum[3]) = 0;
MP_DIGITS(&tmp) = 0;
powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
if (powersArray == NULL) {
res = MP_MEM;
goto CLEANUP;
}
/* powers[i] = base ** (i); */
powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
/* grab the first window value. This allows us to preload accumulator1
* and save a conversion, some squares and a multiple*/
MP_CHECKOK( mpl_get_bits(exponent,
bits_in_exponent-window_bits, window_bits) );
first_window = (mp_size)res;
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
/* build the first WEAVE_WORD powers inline */
/* if WEAVE_WORD_SIZE is not 4, this code will have to change */
if (num_powers > 2) {
MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
mp_set(&accum[0], 1);
MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
MP_CHECKOK( mp_copy(montBase, &accum[1]) );
SQR(montBase, &accum[2]);
MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
if (first_window < 4) {
MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
first_window = num_powers;
}
} else {
if (first_window == 0) {
mp_set(&accum1, 1);
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
} else {
/* assert first_window == 1? */
MP_CHECKOK( mp_copy(montBase, &accum1) );
}
}
/*
* calculate all the powers in the powers array.
* this adds 2**(k-1)-2 square operations over just calculating the
* odd powers where k is the window size in the two other mp_modexpt
* implementations in this file. We will get some of that
* back by not needing the first 'k' squares and one multiply for the
* first window */
for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
if ( i & 1 ) {
MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
/* we've filled the array do our 'per array' processing */
if (acc_index == (WEAVE_WORD_SIZE-1)) {
MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
nLen, num_powers) );
if (first_window <= i) {
MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
&accum1) );
first_window = num_powers;
}
}
} else {
/* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
* and target are the same so we need to copy.. After that, the
* value is overwritten, so we need to fetch it from the stored
* weave array */
if (i > 2* WEAVE_WORD_SIZE) {
MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
SQR(&accum2, &accum[acc_index]);
} else {
int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
if (half_power_index == acc_index) {
/* copy is cheaper than weave_to_mpi */
MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
SQR(&accum2,&accum[acc_index]);
} else {
SQR(&accum[half_power_index],&accum[acc_index]);
}
}
}
}
/* if the accum1 isn't set, Then there is something wrong with our logic
* above and is an internal programming error.
*/
#if MP_ARGCHK == 2
assert(MP_USED(&accum1) != 0);
#endif
/* set accumulator to montgomery residue of 1 */
pa1 = &accum1;
pa2 = &accum2;
for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
mp_size smallExp;
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
smallExp = (mp_size)res;
/* handle unroll the loops */
switch (window_bits) {
case 1:
if (!smallExp) {
SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 1) {
SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
} else {
ABORT;
}
break;
case 6:
SQR(pa1,pa2); SQR(pa2,pa1);
/* fall through */
case 4:
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
MUL(smallExp, pa1,pa2); SWAPPA;
break;
case 5:
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
break;
default:
ABORT; /* could do a loop? */
}
}
res = s_mp_redc(pa1, mmm);
mp_exch(pa1, result);
CLEANUP:
mp_clear(&accum1);
mp_clear(&accum2);
mp_clear(&accum[0]);
mp_clear(&accum[1]);
mp_clear(&accum[2]);
mp_clear(&accum[3]);
mp_clear(&tmp);
/* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
free(powersArray);
return res;
}
#undef SQR
#undef MUL
#endif
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
const mp_int *modulus, mp_int *result)
{
const mp_int *base;
mp_size bits_in_exponent, i, window_bits, odd_ints;
mp_err res;
int nLen;
mp_int montBase, goodBase;
mp_mont_modulus mmm;
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
static unsigned int max_window_bits;
#endif
/* function for computing n0prime only works if n0 is odd */
if (!mp_isodd(modulus))
return s_mp_exptmod(inBase, exponent, modulus, result);
MP_DIGITS(&montBase) = 0;
MP_DIGITS(&goodBase) = 0;
if (mp_cmp(inBase, modulus) < 0) {
base = inBase;
} else {
MP_CHECKOK( mp_init(&goodBase) );
base = &goodBase;
MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
}
nLen = MP_USED(modulus);
MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
mmm.N = *modulus; /* a copy of the mp_int struct */
i = mpl_significant_bits(modulus);
i += MP_DIGIT_BIT - 1;
mmm.b = i - i % MP_DIGIT_BIT;
/* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
** where n0 = least significant mp_digit of N, the modulus.
*/
mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
bits_in_exponent = mpl_significant_bits(exponent);
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
if (mp_using_cache_safe_exp) {
if (bits_in_exponent > 780)
window_bits = 6;
else if (bits_in_exponent > 256)
window_bits = 5;
else if (bits_in_exponent > 20)
window_bits = 4;
/* RSA public key exponents are typically under 20 bits (common values
* are: 3, 17, 65537) and a 4-bit window is inefficient
*/
else
window_bits = 1;
} else
#endif
if (bits_in_exponent > 480)
window_bits = 6;
else if (bits_in_exponent > 160)
window_bits = 5;
else if (bits_in_exponent > 20)
window_bits = 4;
/* RSA public key exponents are typically under 20 bits (common values
* are: 3, 17, 65537) and a 4-bit window is inefficient
*/
else
window_bits = 1;
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
/*
* clamp the window size based on
* the cache line size.
*/
if (!max_window_bits) {
unsigned long cache_size = s_mpi_getProcessorLineSize();
/* processor has no cache, use 'fast' code always */
if (cache_size == 0) {
mp_using_cache_safe_exp = 0;
}
if ((cache_size == 0) || (cache_size >= 64)) {
max_window_bits = 6;
} else if (cache_size >= 32) {
max_window_bits = 5;
} else if (cache_size >= 16) {
max_window_bits = 4;
} else max_window_bits = 1; /* should this be an assert? */
}
/* clamp the window size down before we caclulate bits_in_exponent */
if (mp_using_cache_safe_exp) {
if (window_bits > max_window_bits) {
window_bits = max_window_bits;
}
}
#endif
odd_ints = 1 << (window_bits - 1);
i = bits_in_exponent % window_bits;
if (i != 0) {
bits_in_exponent += window_bits - i;
}
#ifdef MP_USING_MONT_MULF
if (mp_using_mont_mulf) {
MP_CHECKOK( s_mp_pad(&montBase, nLen) );
res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, odd_ints);
} else
#endif
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
if (mp_using_cache_safe_exp) {
res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, 1 << window_bits);
} else
#endif
res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, odd_ints);
CLEANUP:
mp_clear(&montBase);
mp_clear(&goodBase);
/* Don't mp_clear mmm.N because it is merely a copy of modulus.
** Just zap it.
*/
memset(&mmm, 0, sizeof mmm);
return res;
}
|