1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/*
* HangulLayoutEngine.cpp: OpenType processing for Han fonts.
*
* (C) Copyright IBM Corp. 1998-2013 - All Rights Reserved.
*/
#include "LETypes.h"
#include "LEScripts.h"
#include "LELanguages.h"
#include "LayoutEngine.h"
#include "OpenTypeLayoutEngine.h"
#include "HangulLayoutEngine.h"
#include "ScriptAndLanguageTags.h"
#include "LEGlyphStorage.h"
#include "OpenTypeTables.h"
U_NAMESPACE_BEGIN
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HangulOpenTypeLayoutEngine)
#define FEATURE_MAP(name) {name ## FeatureTag, name ## FeatureMask}
#define LJMO_FIRST 0x1100
#define LJMO_LAST 0x1159
#define LJMO_FILL 0x115F
#define LJMO_COUNT 19
#define VJMO_FIRST 0x1161
#define VJMO_LAST 0x11A2
#define VJMO_FILL 0x1160
#define VJMO_COUNT 21
#define TJMO_FIRST 0x11A7
#define TJMO_LAST 0x11F9
#define TJMO_COUNT 28
#define HSYL_FIRST 0xAC00
#define HSYL_COUNT 11172
#define HSYL_LVCNT (VJMO_COUNT * TJMO_COUNT)
// Character classes
enum
{
CC_L = 0,
CC_V,
CC_T,
CC_LV,
CC_LVT,
CC_X,
CC_COUNT
};
// Action flags
#define AF_L 1
#define AF_V 2
#define AF_T 4
// Actions
#define a_N 0
#define a_L (AF_L)
#define a_V (AF_V)
#define a_T (AF_T)
#define a_VT (AF_V | AF_T)
#define a_LV (AF_L | AF_V)
#define a_LVT (AF_L | AF_V | AF_T)
typedef struct
{
int32_t newState;
int32_t actionFlags;
} StateTransition;
static const StateTransition stateTable[][CC_COUNT] =
{
// L V T LV LVT X
{ {1, a_L}, {2, a_LV}, {3, a_LVT}, {2, a_LV}, {3, a_LVT}, {4, a_T}}, // 0 - start
{ {1, a_L}, {2, a_V}, {3, a_VT}, {2, a_LV}, {3, a_LVT}, {-1, a_V}}, // 1 - L+
{{-1, a_N}, {2, a_V}, {3, a_T}, {-1, a_N}, {-1, a_N}, {-1, a_N}}, // 2 - L+V+
{{-1, a_N}, {-1, a_N}, {3, a_T}, {-1, a_N}, {-1, a_N}, {-1, a_N}}, // 3 - L+V+T*
{{-1, a_N}, {-1, a_N}, {-1, a_N}, {-1, a_N}, {-1, a_N}, {4, a_T}} // 4 - X+
};
#define ccmpFeatureTag LE_CCMP_FEATURE_TAG
#define ljmoFeatureTag LE_LJMO_FEATURE_TAG
#define vjmoFeatureTag LE_VJMO_FEATURE_TAG
#define tjmoFeatureTag LE_TJMO_FEATURE_TAG
#define ccmpFeatureMask 0x80000000UL
#define ljmoFeatureMask 0x40000000UL
#define vjmoFeatureMask 0x20000000UL
#define tjmoFeatureMask 0x10000000UL
static const FeatureMap featureMap[] =
{
{ccmpFeatureTag, ccmpFeatureMask},
{ljmoFeatureTag, ljmoFeatureMask},
{vjmoFeatureTag, vjmoFeatureMask},
{tjmoFeatureTag, tjmoFeatureMask}
};
static const le_int32 featureMapCount = LE_ARRAY_SIZE(featureMap);
#define nullFeatures 0
#define ljmoFeatures (ccmpFeatureMask | ljmoFeatureMask)
#define vjmoFeatures (ccmpFeatureMask | vjmoFeatureMask | ljmoFeatureMask | tjmoFeatureMask)
#define tjmoFeatures (ccmpFeatureMask | tjmoFeatureMask | ljmoFeatureMask | vjmoFeatureMask)
static le_int32 compose(LEUnicode lead, LEUnicode vowel, LEUnicode trail, LEUnicode &syllable)
{
le_int32 lIndex = lead - LJMO_FIRST;
le_int32 vIndex = vowel - VJMO_FIRST;
le_int32 tIndex = trail - TJMO_FIRST;
le_int32 result = 3;
if ((lIndex < 0 || lIndex >= LJMO_COUNT ) || (vIndex < 0 || vIndex >= VJMO_COUNT)) {
return 0;
}
if (tIndex <= 0 || tIndex >= TJMO_COUNT) {
tIndex = 0;
result = 2;
}
syllable = (LEUnicode) ((lIndex * VJMO_COUNT + vIndex) * TJMO_COUNT + tIndex + HSYL_FIRST);
return result;
}
static le_int32 decompose(LEUnicode syllable, LEUnicode &lead, LEUnicode &vowel, LEUnicode &trail)
{
le_int32 sIndex = syllable - HSYL_FIRST;
if (sIndex < 0 || sIndex >= HSYL_COUNT) {
return 0;
}
lead = LJMO_FIRST + (sIndex / HSYL_LVCNT);
vowel = VJMO_FIRST + (sIndex % HSYL_LVCNT) / TJMO_COUNT;
trail = TJMO_FIRST + (sIndex % TJMO_COUNT);
if (trail == TJMO_FIRST) {
return 2;
}
return 3;
}
static le_int32 getCharClass(LEUnicode ch, LEUnicode &lead, LEUnicode &vowel, LEUnicode &trail)
{
lead = LJMO_FILL;
vowel = VJMO_FILL;
trail = TJMO_FIRST;
if (ch >= LJMO_FIRST && ch <= LJMO_LAST) {
lead = ch;
return CC_L;
}
if (ch >= VJMO_FIRST && ch <= VJMO_LAST) {
vowel = ch;
return CC_V;
}
if (ch > TJMO_FIRST && ch <= TJMO_LAST) {
trail = ch;
return CC_T;
}
le_int32 c = decompose(ch, lead, vowel, trail);
if (c == 2) {
return CC_LV;
}
if (c == 3) {
return CC_LVT;
}
trail = ch;
return CC_X;
}
HangulOpenTypeLayoutEngine::HangulOpenTypeLayoutEngine(const LEFontInstance *fontInstance, le_int32 scriptCode, le_int32 /*languageCode*/,
le_int32 typoFlags, const LEReferenceTo<GlyphSubstitutionTableHeader> &gsubTable, LEErrorCode &success)
: OpenTypeLayoutEngine(fontInstance, scriptCode, korLanguageCode, typoFlags, gsubTable, success)
{
fFeatureMap = featureMap;
fFeatureMapCount = featureMapCount;
fFeatureOrder = TRUE;
}
HangulOpenTypeLayoutEngine::HangulOpenTypeLayoutEngine(const LEFontInstance *fontInstance, le_int32 scriptCode, le_int32 /*languageCode*/,
le_int32 typoFlags, LEErrorCode &success)
: OpenTypeLayoutEngine(fontInstance, scriptCode, korLanguageCode, typoFlags, success)
{
fFeatureMap = featureMap;
fFeatureMapCount = featureMapCount;
fFeatureOrder = TRUE;
}
HangulOpenTypeLayoutEngine::~HangulOpenTypeLayoutEngine()
{
// nothing to do
}
le_int32 HangulOpenTypeLayoutEngine::characterProcessing(const LEUnicode chars[], le_int32 offset, le_int32 count, le_int32 max, le_bool rightToLeft,
LEUnicode *&outChars, LEGlyphStorage &glyphStorage, LEErrorCode &success)
{
if (LE_FAILURE(success)) {
return 0;
}
if (chars == NULL || offset < 0 || count < 0 || max < 0 || offset >= max || offset + count > max) {
success = LE_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
le_int32 worstCase = count * 3;
outChars = LE_NEW_ARRAY(LEUnicode, worstCase);
if (outChars == NULL) {
success = LE_MEMORY_ALLOCATION_ERROR;
return 0;
}
glyphStorage.allocateGlyphArray(worstCase, rightToLeft, success);
glyphStorage.allocateAuxData(success);
if (LE_FAILURE(success)) {
LE_DELETE_ARRAY(outChars);
return 0;
}
le_int32 outCharCount = 0;
le_int32 limit = offset + count;
le_int32 i = offset;
while (i < limit) {
le_int32 state = 0;
le_int32 inStart = i;
le_int32 outStart = outCharCount;
while( i < limit) {
LEUnicode lead = 0;
LEUnicode vowel = 0;
LEUnicode trail = 0;
int32_t chClass = getCharClass(chars[i], lead, vowel, trail);
const StateTransition transition = stateTable[state][chClass];
if (chClass == CC_X) {
/* Any character of type X will be stored as a trail jamo */
if ((transition.actionFlags & AF_T) != 0) {
outChars[outCharCount] = trail;
glyphStorage.setCharIndex(outCharCount, i-offset, success);
glyphStorage.setAuxData(outCharCount++, nullFeatures, success);
}
} else {
/* Any Hangul will be fully decomposed. Output the decomposed characters. */
if ((transition.actionFlags & AF_L) != 0) {
outChars[outCharCount] = lead;
glyphStorage.setCharIndex(outCharCount, i-offset, success);
glyphStorage.setAuxData(outCharCount++, ljmoFeatures, success);
}
if ((transition.actionFlags & AF_V) != 0) {
outChars[outCharCount] = vowel;
glyphStorage.setCharIndex(outCharCount, i-offset, success);
glyphStorage.setAuxData(outCharCount++, vjmoFeatures, success);
}
if ((transition.actionFlags & AF_T) != 0) {
outChars[outCharCount] = trail;
glyphStorage.setCharIndex(outCharCount, i-offset, success);
glyphStorage.setAuxData(outCharCount++, tjmoFeatures, success);
}
}
state = transition.newState;
/* Negative next state means stop. */
if (state < 0) {
break;
}
i += 1;
}
le_int32 inLength = i - inStart;
le_int32 outLength = outCharCount - outStart;
/*
* See if the syllable can be composed into a single character. There are 5
* possible cases:
*
* Input Decomposed to Compose to
* LV L, V LV
* LVT L, V, T LVT
* L, V L, V LV, DEL
* LV, T L, V, T LVT, DEL
* L, V, T L, V, T LVT, DEL, DEL
*/
if ((inLength >= 1 && inLength <= 3) && (outLength == 2 || outLength == 3)) {
LEUnicode syllable = 0x0000;
LEUnicode lead = outChars[outStart];
LEUnicode vowel = outChars[outStart + 1];
LEUnicode trail = outLength == 3? outChars[outStart + 2] : TJMO_FIRST;
/*
* If the composition consumes the whole decomposed syllable,
* we can use it.
*/
if (compose(lead, vowel, trail, syllable) == outLength) {
outCharCount = outStart;
outChars[outCharCount] = syllable;
glyphStorage.setCharIndex(outCharCount, inStart-offset, success);
glyphStorage.setAuxData(outCharCount++, nullFeatures, success);
/*
* Replace the rest of the input characters with DEL.
*/
for(le_int32 d = inStart + 1; d < i; d += 1) {
outChars[outCharCount] = 0xFFFF;
glyphStorage.setCharIndex(outCharCount, d - offset, success);
glyphStorage.setAuxData(outCharCount++, nullFeatures, success);
}
}
}
}
glyphStorage.adoptGlyphCount(outCharCount);
return outCharCount;
}
U_NAMESPACE_END
|