1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/***************************************************************************
*
* Copyright (C) 1998-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
************************************************************************/
#include "layout/LETypes.h"
#include "layout/LESwaps.h"
#include "sfnt.h"
#include "cmaps.h"
#include <stdio.h>
#define SWAPU16(code) ((LEUnicode16) SWAPW(code))
#define SWAPU32(code) ((LEUnicode32) SWAPL(code))
//
// Finds the high bit by binary searching
// through the bits in value.
//
le_int8 highBit(le_uint32 value)
{
le_uint8 bit = 0;
if (value >= 1 << 16) {
value >>= 16;
bit += 16;
}
if (value >= 1 << 8) {
value >>= 8;
bit += 8;
}
if (value >= 1 << 4) {
value >>= 4;
bit += 4;
}
if (value >= 1 << 2) {
value >>= 2;
bit += 2;
}
if (value >= 1 << 1) {
value >>= 1;
bit += 1;
}
return bit;
}
CMAPMapper *CMAPMapper::createUnicodeMapper(const CMAPTable *cmap)
{
le_uint16 i;
le_uint16 nSubtables = SWAPW(cmap->numberSubtables);
const CMAPEncodingSubtable *subtable = nullptr;
le_bool found = false;
le_uint16 foundPlatformID = 0xFFFF;
le_uint16 foundPlatformSpecificID = 0xFFFF;
le_uint32 foundOffset = 0;
le_uint16 foundTable = 0xFFFF;
// first pass, look for MS table. (preferred?)
for (i = 0; i < nSubtables && !found; i += 1) {
const CMAPEncodingSubtableHeader *esh = &cmap->encodingSubtableHeaders[i];
le_uint16 platformID = SWAPW(esh->platformID);
le_uint16 platformSpecificID = SWAPW(esh->platformSpecificID);
if (platformID == 3) { // microsoft
switch (platformSpecificID) {
case 1: // Unicode BMP (UCS-2)
case 10: // Unicode UCS-4
foundOffset = SWAPL(esh->encodingOffset);
foundPlatformID = platformID;
foundPlatformSpecificID = platformSpecificID;
found = true;
foundTable = i;
break;
//default:
// printf("%s:%d: microsoft (3) platform specific ID %d (wanted 1 or 10) for subtable %d/%d\n", __FILE__, __LINE__, (SWAPW(esh->platformSpecificID)), i, nSubtables);
}
} else {
//printf("%s:%d: platform ID %d (wanted 3, microsoft) for subtable %d/%d\n", __FILE__, __LINE__, (SWAPW(esh->platformID)), i, nSubtables);
}
}
// second pass, allow non MS table
// first pass, look for MS table. (preferred?)
for (i = 0; i < nSubtables && !found; i += 1) {
const CMAPEncodingSubtableHeader *esh = &cmap->encodingSubtableHeaders[i];
le_uint16 platformID = SWAPW(esh->platformID);
le_uint16 platformSpecificID = SWAPW(esh->platformSpecificID);
//printf("%s:%d: table %d/%d has platform:specific %d:%d\n", __FILE__, __LINE__, i, nSubtables, platformID, platformSpecificID);
switch(platformID) {
case 0: // Unicode platform
switch(platformSpecificID) {
case 0:
case 1:
case 2:
case 3:
foundOffset = SWAPL(esh->encodingOffset);
foundPlatformID = platformID;
foundPlatformSpecificID = platformSpecificID;
foundTable = i;
found = true;
break;
default: printf("Error: table %d (psid %d) is unknown. Skipping.\n", i, platformSpecificID); break;
}
break;
//default:
//printf("Skipping platform id %d\n", platformID);
}
}
if (found)
{
subtable = reinterpret_cast<const CMAPEncodingSubtable*>(reinterpret_cast<const char*>(cmap) + foundOffset);
//printf("%s:%d: using subtable #%d/%d type %d:%d\n", __FILE__, __LINE__, foundTable, nSubtables, foundPlatformID, foundPlatformSpecificID);
(void)foundPlatformID; // Suppress unused variable compiler warnings.
(void)foundTable;
(void)foundPlatformSpecificID;
} else {
printf("%s:%d: could not find subtable.\n", __FILE__, __LINE__);
return nullptr;
}
le_uint16 tableFormat = SWAPW(subtable->format);
//printf("%s:%d: table format %d\n", __FILE__, __LINE__, tableFormat);
switch (tableFormat) {
case 4:
return new CMAPFormat4Mapper(cmap, (const CMAPFormat4Encoding *) subtable);
case 12:
{
const CMAPFormat12Encoding* encoding = reinterpret_cast<const CMAPFormat12Encoding*>(subtable);
return new CMAPGroupMapper(cmap, encoding->groups, SWAPL(encoding->nGroups));
}
default:
break;
}
printf("%s:%d: Unknown format %x.\n", __FILE__, __LINE__, (SWAPW(subtable->format)));
return nullptr;
}
CMAPFormat4Mapper::CMAPFormat4Mapper(const CMAPTable *cmap, const CMAPFormat4Encoding *header)
: CMAPMapper(cmap)
{
le_uint16 segCount = SWAPW(header->segCountX2) / 2;
fEntrySelector = SWAPW(header->entrySelector);
fRangeShift = SWAPW(header->rangeShift) / 2;
fEndCodes = &header->endCodes[0];
fStartCodes = &header->endCodes[segCount + 1]; // + 1 for reservedPad...
fIdDelta = &fStartCodes[segCount];
fIdRangeOffset = &fIdDelta[segCount];
}
LEGlyphID CMAPFormat4Mapper::unicodeToGlyph(LEUnicode32 unicode32) const
{
if (unicode32 >= 0x10000) {
return 0;
}
LEUnicode16 unicode = static_cast<LEUnicode16>(unicode32);
le_uint16 index = 0;
le_uint16 probe = 1 << fEntrySelector;
TTGlyphID result = 0;
if (SWAPU16(fStartCodes[fRangeShift]) <= unicode) {
index = fRangeShift;
}
while (probe > (1 << 0)) {
probe >>= 1;
if (SWAPU16(fStartCodes[index + probe]) <= unicode) {
index += probe;
}
}
if (unicode >= SWAPU16(fStartCodes[index]) && unicode <= SWAPU16(fEndCodes[index])) {
if (fIdRangeOffset[index] == 0) {
result = static_cast<TTGlyphID>(unicode);
} else {
le_uint16 offset = unicode - SWAPU16(fStartCodes[index]);
le_uint16 rangeOffset = SWAPW(fIdRangeOffset[index]);
const le_uint16* glyphIndexTable = reinterpret_cast<const le_uint16*>(reinterpret_cast<const char*>(&fIdRangeOffset[index]) + rangeOffset);
result = SWAPW(glyphIndexTable[offset]);
}
result += SWAPW(fIdDelta[index]);
} else {
result = 0;
}
return LE_SET_GLYPH(0, result);
}
CMAPFormat4Mapper::~CMAPFormat4Mapper()
{
// parent destructor does it all
}
CMAPGroupMapper::CMAPGroupMapper(const CMAPTable *cmap, const CMAPGroup *groups, le_uint32 nGroups)
: CMAPMapper(cmap), fGroups(groups)
{
le_uint8 bit = highBit(nGroups);
fPower = 1 << bit;
fRangeOffset = nGroups - fPower;
}
LEGlyphID CMAPGroupMapper::unicodeToGlyph(LEUnicode32 unicode32) const
{
le_int32 probe = fPower;
le_int32 range = 0;
if (SWAPU32(fGroups[fRangeOffset].startCharCode) <= unicode32) {
range = fRangeOffset;
}
while (probe > (1 << 0)) {
probe >>= 1;
if (SWAPU32(fGroups[range + probe].startCharCode) <= unicode32) {
range += probe;
}
}
if (SWAPU32(fGroups[range].startCharCode) <= unicode32 && SWAPU32(fGroups[range].endCharCode) >= unicode32) {
return static_cast<LEGlyphID>(SWAPU32(fGroups[range].startGlyphCode) + unicode32 - SWAPU32(fGroups[range].startCharCode));
}
return 0;
}
CMAPGroupMapper::~CMAPGroupMapper()
{
// parent destructor does it all
}
|