File: messageformat2.cpp

package info (click to toggle)
icu 78.2-1
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 123,992 kB
  • sloc: cpp: 527,891; ansic: 112,789; sh: 4,983; makefile: 4,657; perl: 3,199; python: 2,933; xml: 749; sed: 36; lisp: 12
file content (793 lines) | stat: -rw-r--r-- 33,768 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
// © 2024 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html

#include "unicode/utypes.h"

#if !UCONFIG_NO_NORMALIZATION

#if !UCONFIG_NO_FORMATTING

#if !UCONFIG_NO_MF2

#include "unicode/messageformat2_arguments.h"
#include "unicode/messageformat2_data_model.h"
#include "unicode/messageformat2_formattable.h"
#include "unicode/messageformat2.h"
#include "unicode/normalizer2.h"
#include "unicode/unistr.h"
#include "messageformat2_allocation.h"
#include "messageformat2_checker.h"
#include "messageformat2_evaluation.h"
#include "messageformat2_function_registry_internal.h"
#include "messageformat2_macros.h"


U_NAMESPACE_BEGIN

namespace message2 {

using namespace data_model;

// ------------------------------------------------------
// Formatting

// The result of formatting a literal is just itself.
static Formattable evalLiteral(const Literal& lit) {
    return Formattable(lit.unquoted());
}

// Assumes that `var` is a message argument; returns the argument's value.
[[nodiscard]] FormattedPlaceholder MessageFormatter::evalArgument(const UnicodeString& fallback,
                                                                  const VariableName& var,
                                                                  MessageContext& context,
                                                                  UErrorCode& errorCode) const {
    if (U_SUCCESS(errorCode)) {
        const Formattable* val = context.getGlobal(var, errorCode);
        if (U_SUCCESS(errorCode)) {
            // Note: the fallback string has to be passed in because in a declaration like:
            // .local $foo = {$bar :number}
            // the fallback for $bar is "$foo".
            UnicodeString fallbackToUse = fallback;
            if (fallbackToUse.isEmpty()) {
                fallbackToUse += DOLLAR;
                fallbackToUse += var;
            }
            return (FormattedPlaceholder(*val, fallbackToUse));
        }
    }
    return {};
}

// Helper function to re-escape any escaped-char characters
static UnicodeString reserialize(const UnicodeString& s) {
    UnicodeString result(PIPE);
    for (int32_t i = 0; i < s.length(); i++) {
        switch(s[i]) {
        case BACKSLASH:
        case PIPE:
        case LEFT_CURLY_BRACE:
        case RIGHT_CURLY_BRACE: {
            result += BACKSLASH;
            break;
        }
        default:
            break;
        }
        result += s[i];
    }
    result += PIPE;
    return result;
}

// Returns the contents of the literal
[[nodiscard]] FormattedPlaceholder MessageFormatter::formatLiteral(const UnicodeString& fallback,
                                                                   const Literal& lit) const {
    // The fallback for a literal is itself, unless another fallback is passed in
    // (same reasoning as evalArgument())
    UnicodeString fallbackToUse = fallback.isEmpty() ? reserialize(lit.unquoted()) : fallback;
    return FormattedPlaceholder(evalLiteral(lit), fallbackToUse);
}

[[nodiscard]] InternalValue* MessageFormatter::formatOperand(const UnicodeString& fallback,
                                                             const Environment& env,
                                                             const Operand& rand,
                                                             MessageContext& context,
                                                             UErrorCode &status) const {
    if (U_FAILURE(status)) {
        return {};
    }

    if (rand.isNull()) {
        return create<InternalValue>(InternalValue(FormattedPlaceholder()), status);
    }
    if (rand.isVariable()) {
        // Check if it's local or global
        // Note: there is no name shadowing; this is enforced by the parser
        const VariableName& var = rand.asVariable();
        // TODO: Currently, this code implements lazy evaluation of locals.
        // That is, the environment binds names to a closure, not a resolved value.
        // Eager vs. lazy evaluation is an open issue:
        // see https://github.com/unicode-org/message-format-wg/issues/299

        // NFC-normalize the variable name. See
        // https://github.com/unicode-org/message-format-wg/blob/main/spec/syntax.md#names-and-identifiers
        const VariableName normalized = StandardFunctions::normalizeNFC(var);

        // Look up the variable in the environment
        if (env.has(normalized)) {
          // `var` is a local -- look it up
          const Closure& rhs = env.lookup(normalized);
          // Format the expression using the environment from the closure
          // The name of this local variable is the fallback for its RHS.
          UnicodeString newFallback(DOLLAR);
          newFallback += var;
          return formatExpression(newFallback, rhs.getEnv(), rhs.getExpr(), context, status);
        }
        // Variable wasn't found in locals -- check if it's global
        FormattedPlaceholder result = evalArgument(fallback, normalized, context, status);
        if (status == U_ILLEGAL_ARGUMENT_ERROR) {
            status = U_ZERO_ERROR;
            // Unbound variable -- set a resolution error
            context.getErrors().setUnresolvedVariable(var, status);
            // Use fallback per
            // https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#fallback-resolution
            UnicodeString str(DOLLAR);
            str += var;
            return create<InternalValue>(InternalValue(FormattedPlaceholder(str)), status);
        }
        return create<InternalValue>(InternalValue(std::move(result)), status);
    } else {
        U_ASSERT(rand.isLiteral());
        return create<InternalValue>(InternalValue(formatLiteral(fallback, rand.asLiteral())), status);
    }
}

// Resolves a function's options
FunctionOptions MessageFormatter::resolveOptions(const Environment& env, const OptionMap& options, MessageContext& context, UErrorCode& status) const {
    LocalPointer<UVector> optionsVector(createUVector(status));
    if (U_FAILURE(status)) {
        return {};
    }
    LocalPointer<ResolvedFunctionOption> resolvedOpt;
    for (int i = 0; i < options.size(); i++) {
        const Option& opt = options.getOption(i, status);
        if (U_FAILURE(status)) {
            return {};
        }
        const UnicodeString& k = opt.getName();
        const Operand& v = opt.getValue();

        // Options are fully evaluated before calling the function
        // Format the operand
        LocalPointer<InternalValue> rhsVal(formatOperand({}, env, v, context, status));
        if (U_FAILURE(status)) {
            return {};
        }
        // Note: this means option values are "eagerly" evaluated.
        // Currently, options don't have options. This will be addressed by the
        // full FormattedPlaceholder redesign.
        FormattedPlaceholder optValue = rhsVal->forceFormatting(context.getErrors(), status);
        resolvedOpt.adoptInstead(create<ResolvedFunctionOption>
                                 (ResolvedFunctionOption(k,
                                                         optValue.asFormattable(),
                                                         v.isLiteral()),
                                  status));
        if (U_FAILURE(status)) {
            return {};
        }
        optionsVector->adoptElement(resolvedOpt.orphan(), status);
    }
    return FunctionOptions(std::move(*optionsVector), status);
}

// Overload that dispatches on argument type. Syntax doesn't provide for options in this case.
[[nodiscard]] InternalValue* MessageFormatter::evalFunctionCall(FormattedPlaceholder&& argument,
                                                                MessageContext& context,
                                                                UErrorCode& status) const {
    if (U_FAILURE(status)) {
        return nullptr;
    }

    // These cases should have been checked for already
    U_ASSERT(!argument.isFallback() && !argument.isNullOperand());

    const Formattable& toFormat = argument.asFormattable();
    switch (toFormat.getType()) {
    case UFMT_OBJECT: {
        const FormattableObject* obj = toFormat.getObject(status);
        U_ASSERT(U_SUCCESS(status));
        U_ASSERT(obj != nullptr);
        const UnicodeString& type = obj->tag();
        FunctionName functionName;
        if (!getDefaultFormatterNameByType(type, functionName)) {
            // No formatter for this type -- follow default behavior
            break;
        }
        return evalFunctionCall(functionName,
                                create<InternalValue>(std::move(argument), status),
                                FunctionOptions(),
                                context,
                                status);
    }
    default: {
        // TODO: The array case isn't handled yet; not sure whether it's desirable
        // to have a default list formatter
        break;
    }
    }
    // No formatter for this type, or it's a primitive type (which will be formatted later)
    // -- just return the argument itself
    return create<InternalValue>(std::move(argument), status);
}

// Overload that dispatches on function name
// Adopts `arg`
[[nodiscard]] InternalValue* MessageFormatter::evalFunctionCall(const FunctionName& functionName,
                                                                InternalValue* arg_,
                                                                FunctionOptions&& options,
                                                                MessageContext& context,
                                                                UErrorCode& status) const {
    if (U_FAILURE(status)) {
        return {};
    }

    LocalPointer<InternalValue> arg(arg_);

    // Look up the formatter or selector
    LocalPointer<Formatter> formatterImpl(nullptr);
    LocalPointer<Selector> selectorImpl(nullptr);
    if (isFormatter(functionName)) {
        formatterImpl.adoptInstead(getFormatter(functionName, status));
        U_ASSERT(U_SUCCESS(status));
    }
    if (isSelector(functionName)) {
        selectorImpl.adoptInstead(getSelector(context, functionName, status));
        U_ASSERT(U_SUCCESS(status));
    }
    if (formatterImpl == nullptr && selectorImpl == nullptr) {
        // Unknown function error
        context.getErrors().setUnknownFunction(functionName, status);

        if (arg->hasNullOperand()) {
            // Non-selector used as selector; an error would have been recorded earlier
            UnicodeString fallback(COLON);
            fallback += functionName;
            return new InternalValue(FormattedPlaceholder(fallback));
        } else {
            return new InternalValue(FormattedPlaceholder(arg->getFallback()));
        }
    }
    return new InternalValue(arg.orphan(),
                             std::move(options),
                             functionName,
                             formatterImpl.isValid() ? formatterImpl.orphan() : nullptr,
                             selectorImpl.isValid() ? selectorImpl.orphan() : nullptr);
}

// Formats an expression using `globalEnv` for the values of variables
[[nodiscard]] InternalValue* MessageFormatter::formatExpression(const UnicodeString& fallback,
                                                                const Environment& globalEnv,
                                                                const Expression& expr,
                                                                MessageContext& context,
                                                                UErrorCode &status) const {
    if (U_FAILURE(status)) {
        return {};
    }

    const Operand& rand = expr.getOperand();
    // Format the operand (formatOperand handles the case of a null operand)
    LocalPointer<InternalValue> randVal(formatOperand(fallback, globalEnv, rand, context, status));

    FormattedPlaceholder maybeRand = randVal->takeArgument(status);

    if (!expr.isFunctionCall() && U_SUCCESS(status)) {
        // Dispatch based on type of `randVal`
         if (maybeRand.isFallback()) {
            return randVal.orphan();
        }
        return evalFunctionCall(std::move(maybeRand), context, status);
    } else if (expr.isFunctionCall()) {
        status = U_ZERO_ERROR;
        const Operator* rator = expr.getOperator(status);
        U_ASSERT(U_SUCCESS(status));
        const FunctionName& functionName = rator->getFunctionName();
        const OptionMap& options = rator->getOptionsInternal();
        // Resolve the options
        FunctionOptions resolvedOptions = resolveOptions(globalEnv, options, context, status);

        // Call the formatter function
        return evalFunctionCall(functionName,
                                randVal.orphan(),
                                std::move(resolvedOptions),
                                context,
                                status);
    } else {
        status = U_ZERO_ERROR;
        return randVal.orphan();
    }
}

// Formats each text and expression part of a pattern, appending the results to `result`
void MessageFormatter::formatPattern(MessageContext& context, const Environment& globalEnv, const Pattern& pat, UErrorCode &status, UnicodeString& result) const {
    CHECK_ERROR(status);

    for (int32_t i = 0; i < pat.numParts(); i++) {
        const PatternPart& part = pat.getPart(i);
        if (part.isText()) {
            result += part.asText();
        } else if (part.isMarkup()) {
            // Markup is ignored
        } else {
	      // Format the expression
              LocalPointer<InternalValue> partVal(
                  formatExpression({}, globalEnv, part.contents(), context, status));
              FormattedPlaceholder partResult = partVal->forceFormatting(context.getErrors(),
                                                                         status);
              // Force full evaluation, e.g. applying default formatters to
	      // unformatted input (or formatting numbers as strings)
              result += partResult.formatToString(locale, status);
              // Handle formatting errors. `formatToString()` can't take a context and thus can't
              // register an error directly
              if (status == U_MF_FORMATTING_ERROR) {
                  status = U_ZERO_ERROR;
                  // TODO: The name of the formatter that failed is unavailable.
                  // Not ideal, but it's hard for `formatToString()`
                  // to pass along more detailed diagnostics
                  context.getErrors().setFormattingError(status);
              }
        }
    }
}

// ------------------------------------------------------
// Selection

// See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#resolve-selectors
// `res` is a vector of ResolvedSelectors
void MessageFormatter::resolveSelectors(MessageContext& context, const Environment& env, UErrorCode &status, UVector& res) const {
    CHECK_ERROR(status);
    U_ASSERT(!dataModel.hasPattern());

    const VariableName* selectors = dataModel.getSelectorsInternal();
    // 1. Let res be a new empty list of resolved values that support selection.
    // (Implicit, since `res` is an out-parameter)
    // 2. For each expression exp of the message's selectors
    for (int32_t i = 0; i < dataModel.numSelectors(); i++) {
        // 2i. Let rv be the resolved value of exp.
        LocalPointer<InternalValue> rv(formatOperand({}, env, Operand(selectors[i]), context, status));
        if (rv->canSelect()) {
            // 2ii. If selection is supported for rv:
            // (True if this code has been reached)
        } else {
            // 2iii. Else:
            // Let nomatch be a resolved value for which selection always fails.
            // Append nomatch as the last element of the list res.
            // Emit a Selection Error.
            // (Note: in this case, rv, being a fallback, serves as `nomatch`)
            DynamicErrors& err = context.getErrors();
            err.setSelectorError(rv->getFunctionName(), status);
            rv.adoptInstead(new InternalValue(FormattedPlaceholder(rv->getFallback())));
            if (!rv.isValid()) {
                status = U_MEMORY_ALLOCATION_ERROR;
                return;
            }
        }
        // 2ii(a). Append rv as the last element of the list res.
        // (Also fulfills 2iii)
        res.adoptElement(rv.orphan(), status);
    }
}

// See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#resolve-preferences
// `keys` and `matches` are vectors of strings
void MessageFormatter::matchSelectorKeys(const UVector& keys,
                                         MessageContext& context,
					 InternalValue* rv, // Does not adopt `rv`
					 UVector& keysOut,
					 UErrorCode& status) const {
    CHECK_ERROR(status);

    if (U_FAILURE(status)) {
        // Return an empty list of matches
        status = U_ZERO_ERROR;
        return;
    }

    UErrorCode savedStatus = status;

    // Convert `keys` to an array
    int32_t keysLen = keys.size();
    UnicodeString* keysArr = new UnicodeString[keysLen];
    if (keysArr == nullptr) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    for (int32_t i = 0; i < keysLen; i++) {
        const UnicodeString* k = static_cast<UnicodeString*>(keys[i]);
        U_ASSERT(k != nullptr);
        keysArr[i] = *k;
    }
    LocalArray<UnicodeString> adoptedKeys(keysArr);

    // Create an array to hold the output
    UnicodeString* prefsArr = new UnicodeString[keysLen];
    if (prefsArr == nullptr) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    LocalArray<UnicodeString> adoptedPrefs(prefsArr);
    int32_t prefsLen = 0;

    // Call the selector
    FunctionName name = rv->getFunctionName();
    rv->forceSelection(context.getErrors(),
                       adoptedKeys.getAlias(), keysLen,
                       adoptedPrefs.getAlias(), prefsLen,
                       status);

    // Update errors
    if (savedStatus != status) {
        if (U_FAILURE(status)) {
            status = U_ZERO_ERROR;
            context.getErrors().setSelectorError(name, status);
        } else {
            // Ignore warnings
            status = savedStatus;
        }
    }

    CHECK_ERROR(status);

    // Copy the resulting keys (if there was no error)
    keysOut.removeAllElements();
    for (int32_t i = 0; i < prefsLen; i++) {
        UnicodeString* k = message2::create<UnicodeString>(std::move(prefsArr[i]), status);
        if (k == nullptr) {
            status = U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        keysOut.adoptElement(k, status);
        CHECK_ERROR(status);
    }
}

// See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#resolve-preferences
// `res` is a vector of FormattedPlaceholders;
// `pref` is a vector of vectors of strings
void MessageFormatter::resolvePreferences(MessageContext& context, UVector& res, UVector& pref, UErrorCode &status) const {
    CHECK_ERROR(status);

    // 1. Let pref be a new empty list of lists of strings.
    // (Implicit, since `pref` is an out-parameter)
    UnicodeString ks;
    LocalPointer<UnicodeString> ksP;
    int32_t numVariants = dataModel.numVariants();
    const Variant* variants = dataModel.getVariantsInternal();
    // 2. For each index i in res
    for (int32_t i = 0; i < res.size(); i++) {
        // 2i. Let keys be a new empty list of strings.
        LocalPointer<UVector> keys(createUVector(status));
        CHECK_ERROR(status);
        // 2ii. For each variant `var` of the message
        for (int32_t variantNum = 0; variantNum < numVariants; variantNum++) {
            const SelectorKeys& selectorKeys = variants[variantNum].getKeys();

            // Note: Here, `var` names the key list of `var`,
            // not a Variant itself
            const Key* var = selectorKeys.getKeysInternal();
            // 2ii(a). Let `key` be the `var` key at position i.
            U_ASSERT(i < selectorKeys.len); // established by semantic check in formatSelectors()
            const Key& key = var[i];
            // 2ii(b). If `key` is not the catch-all key '*'
            if (!key.isWildcard()) {
                // 2ii(b)(a) Assert that key is a literal.
                // (Not needed)
                // 2ii(b)(b) Let `ks` be the resolved value of `key` in Unicode Normalization Form C.
                ks = StandardFunctions::normalizeNFC(key.asLiteral().unquoted());
                // 2ii(b)(c) Append `ks` as the last element of the list `keys`.
                ksP.adoptInstead(create<UnicodeString>(std::move(ks), status));
                CHECK_ERROR(status);
                keys->adoptElement(ksP.orphan(), status);
            }
        }
        // 2iii. Let `rv` be the resolved value at index `i` of `res`.
        U_ASSERT(i < res.size());
        InternalValue* rv = static_cast<InternalValue*>(res[i]);
        // 2iv. Let matches be the result of calling the method MatchSelectorKeys(rv, keys)
        LocalPointer<UVector> matches(createUVector(status));
        matchSelectorKeys(*keys, context, std::move(rv), *matches, status);
        // 2v. Append `matches` as the last element of the list `pref`
        pref.adoptElement(matches.orphan(), status);
    }
}

// `v` is assumed to be a vector of strings
static int32_t vectorFind(const UVector& v, const UnicodeString& k) {
    for (int32_t i = 0; i < v.size(); i++) {
        if (*static_cast<UnicodeString*>(v[i]) == k) {
            return i;
        }
    }
    return -1;
}

static UBool vectorContains(const UVector& v, const UnicodeString& k) {
    return (vectorFind(v, k) != -1);
}

// See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#filter-variants
// `pref` is a vector of vectors of strings. `vars` is a vector of PrioritizedVariants
void MessageFormatter::filterVariants(const UVector& pref, UVector& vars, UErrorCode& status) const {
    const Variant* variants = dataModel.getVariantsInternal();

    // 1. Let `vars` be a new empty list of variants.
    // (Not needed since `vars` is an out-parameter)
    // 2. For each variant `var` of the message:
    for (int32_t j = 0; j < dataModel.numVariants(); j++) {
        const SelectorKeys& selectorKeys = variants[j].getKeys();
        const Pattern& p = variants[j].getPattern();

        // Note: Here, `var` names the key list of `var`,
        // not a Variant itself
        const Key* var = selectorKeys.getKeysInternal();
        // 2i. For each index `i` in `pref`:
        bool noMatch = false;
        for (int32_t i = 0; i < pref.size(); i++) {
            // 2i(a). Let `key` be the `var` key at position `i`.
            U_ASSERT(i < selectorKeys.len);
            const Key& key = var[i];
            // 2i(b). If key is the catch-all key '*':
            if (key.isWildcard()) {
                // 2i(b)(a). Continue the inner loop on pref.
                continue;
            }
            // 2i(c). Assert that `key` is a literal.
            // (Not needed)
            // 2i(d). Let `ks` be the resolved value of `key`.
            UnicodeString ks = StandardFunctions::normalizeNFC(key.asLiteral().unquoted());
            // 2i(e). Let `matches` be the list of strings at index `i` of `pref`.
            const UVector& matches = *(static_cast<UVector*>(pref[i])); // `matches` is a vector of strings
            // 2i(f). If `matches` includes `ks`
            if (vectorContains(matches, ks)) {
                // 2i(f)(a). Continue the inner loop on `pref`.
                continue;
            }
            // 2i(g). Else:
            // 2i(g)(a). Continue the outer loop on message variants.
            noMatch = true;
            break;
        }
        if (!noMatch) {
            // Append `var` as the last element of the list `vars`.
	    PrioritizedVariant* tuple = create<PrioritizedVariant>(PrioritizedVariant(-1, selectorKeys, p), status);
            CHECK_ERROR(status);
            vars.adoptElement(tuple, status);
        }
    }
}

// See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#sort-variants
// Leaves the preferred variant as element 0 in `sortable`
// Note: this sorts in-place, so `sortable` is just `vars`
// `pref` is a vector of vectors of strings; `vars` is a vector of PrioritizedVariants
void MessageFormatter::sortVariants(const UVector& pref, UVector& vars, UErrorCode& status) const {
    CHECK_ERROR(status);

// Note: steps 1 and 2 are omitted since we use `vars` as `sortable` (we sort in-place)
    // 1. Let `sortable` be a new empty list of (integer, variant) tuples.
    // (Not needed since `sortable` is an out-parameter)
    // 2. For each variant `var` of `vars`
    // 2i. Let tuple be a new tuple (-1, var).
    // 2ii. Append `tuple` as the last element of the list `sortable`.

    // 3. Let `len` be the integer count of items in `pref`.
    int32_t len = pref.size();
    // 4. Let `i` be `len` - 1.
    int32_t i = len - 1;
    // 5. While i >= 0:
    while (i >= 0) {
        // 5i. Let `matches` be the list of strings at index `i` of `pref`.
        U_ASSERT(pref[i] != nullptr);
	const UVector& matches = *(static_cast<UVector*>(pref[i])); // `matches` is a vector of strings
        // 5ii. Let `minpref` be the integer count of items in `matches`.
        int32_t minpref = matches.size();
        // 5iii. For each tuple `tuple` of `sortable`:
        for (int32_t j = 0; j < vars.size(); j++) {
            U_ASSERT(vars[j] != nullptr);
            PrioritizedVariant& tuple = *(static_cast<PrioritizedVariant*>(vars[j]));
            // 5iii(a). Let matchpref be an integer with the value minpref.
            int32_t matchpref = minpref;
            // 5iii(b). Let `key` be the tuple variant key at position `i`.
            const Key* tupleVariantKeys = tuple.keys.getKeysInternal();
            U_ASSERT(i < tuple.keys.len); // Given by earlier semantic checking
            const Key& key = tupleVariantKeys[i];
            // 5iii(c) If `key` is not the catch-all key '*':
            if (!key.isWildcard()) {
                // 5iii(c)(a). Assert that `key` is a literal.
                // (Not needed)
                // 5iii(c)(b). Let `ks` be the resolved value of `key`.
                UnicodeString ks = StandardFunctions::normalizeNFC(key.asLiteral().unquoted());
                // 5iii(c)(c) Let matchpref be the integer position of ks in `matches`.
                matchpref = vectorFind(matches, ks);
                U_ASSERT(matchpref >= 0);
            }
            // 5iii(d) Set the `tuple` integer value as matchpref.
            tuple.priority = matchpref;
        }
        // 5iv. Set `sortable` to be the result of calling the method SortVariants(`sortable`)
        vars.sort(comparePrioritizedVariants, status);
        CHECK_ERROR(status);
        // 5v. Set `i` to be `i` - 1.
        i--;
    }
    // The caller is responsible for steps 6 and 7
    // 6. Let `var` be the `variant` element of the first element of `sortable`.
    // 7. Select the pattern of `var`
}

void MessageFormatter::formatSelectors(MessageContext& context, const Environment& env, UErrorCode &status, UnicodeString& result) const {
    CHECK_ERROR(status);

    // See https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#pattern-selection

    // Resolve Selectors
    // res is a vector of InternalValues
    LocalPointer<UVector> res(createUVector(status));
    CHECK_ERROR(status);
    resolveSelectors(context, env, status, *res);

    // Resolve Preferences
    // pref is a vector of vectors of strings
    LocalPointer<UVector> pref(createUVector(status));
    CHECK_ERROR(status);
    resolvePreferences(context, *res, *pref, status);

    // Filter Variants
    // vars is a vector of PrioritizedVariants
    LocalPointer<UVector> vars(createUVector(status));
    CHECK_ERROR(status);
    filterVariants(*pref, *vars, status);

    // Sort Variants and select the final pattern
    // Note: `sortable` in the spec is just `vars` here,
    // which is sorted in-place
    sortVariants(*pref, *vars, status);

    CHECK_ERROR(status);

    // 6. Let `var` be the `variant` element of the first element of `sortable`.
    U_ASSERT(vars->size() > 0); // This should have been checked earlier (having 0 variants would be a data model error)
    const PrioritizedVariant& var = *(static_cast<PrioritizedVariant*>(vars->elementAt(0)));
    // 7. Select the pattern of `var`
    const Pattern& pat = var.pat;

    // Format the pattern
    formatPattern(context, env, pat, status, result);
}

// Note: this is non-const due to the function registry being non-const, which is in turn
// due to the values (`FormatterFactory` objects in the map) having mutable state.
// In other words, formatting a message can mutate the underlying `MessageFormatter` by changing
// state within the factory objects that represent custom formatters.
UnicodeString MessageFormatter::formatToString(const MessageArguments& arguments, UErrorCode &status) {
    EMPTY_ON_ERROR(status);

    // Create a new context with the given arguments and the `errors` structure
    MessageContext context(arguments, *errors, status);
    UnicodeString result;

    if (!(errors->hasSyntaxError() || errors->hasDataModelError())) {
        // Create a new environment that will store closures for all local variables
        // Check for unresolved variable errors
        // checkDeclarations needs a reference to the pointer to the environment
        // since it uses its `env` argument as an out-parameter. So it needs to be
        // temporarily not a LocalPointer...
        Environment* env(Environment::create(status));
        checkDeclarations(context, env, status);
        // ...and then it's adopted to avoid leaks
        LocalPointer<Environment> globalEnv(env);

        if (dataModel.hasPattern()) {
            formatPattern(context, *globalEnv, dataModel.getPattern(), status, result);
        } else {
            // Check for errors/warnings -- if so, then the result of pattern selection is the fallback value
            // See https://www.unicode.org/reports/tr35/tr35-messageFormat.html#pattern-selection
            const DynamicErrors& err = context.getErrors();
            if (err.hasSyntaxError() || err.hasDataModelError()) {
                result += REPLACEMENT;
            } else {
                formatSelectors(context, *globalEnv, status, result);
            }
        }
    }

    // Update status according to all errors seen while formatting
    if (signalErrors) {
        context.checkErrors(status);
    }
    if (U_FAILURE(status)) {
        result.remove();
    }
    return result;
}

// ----------------------------------------
// Checking for resolution errors

void MessageFormatter::check(MessageContext& context, const Environment& localEnv, const OptionMap& options, UErrorCode& status) const {
    // Check the RHS of each option
    for (int32_t i = 0; i < options.size(); i++) {
        const Option& opt = options.getOption(i, status);
        CHECK_ERROR(status);
        check(context, localEnv, opt.getValue(), status);
    }
}

void MessageFormatter::check(MessageContext& context, const Environment& localEnv, const Operand& rand, UErrorCode& status) const {
    // Nothing to check for literals
    if (rand.isLiteral() || rand.isNull()) {
        return;
    }

    // Check that variable is in scope
    const VariableName& var = rand.asVariable();
    UnicodeString normalized = StandardFunctions::normalizeNFC(var);

    // Check local scope
    if (localEnv.has(normalized)) {
        return;
    }
    // Check global scope
    context.getGlobal(normalized, status);
    if (status == U_ILLEGAL_ARGUMENT_ERROR) {
        status = U_ZERO_ERROR;
        context.getErrors().setUnresolvedVariable(var, status);
    }
    // Either `var` is a global, or some other error occurred.
    // Nothing more to do either way
    return;
}

void MessageFormatter::check(MessageContext& context, const Environment& localEnv, const Expression& expr, UErrorCode& status) const {
    // Check for unresolved variable errors
    if (expr.isFunctionCall()) {
        const Operator* rator = expr.getOperator(status);
        U_ASSERT(U_SUCCESS(status));
        const Operand& rand = expr.getOperand();
        check(context, localEnv, rand, status);
        check(context, localEnv, rator->getOptionsInternal(), status);
    }
}

// Check for resolution errors
void MessageFormatter::checkDeclarations(MessageContext& context, Environment*& env, UErrorCode &status) const {
    CHECK_ERROR(status);

    const Binding* decls = getDataModel().getLocalVariablesInternal();
    U_ASSERT(env != nullptr && (decls != nullptr || getDataModel().bindingsLen == 0));

    for (int32_t i = 0; i < getDataModel().bindingsLen; i++) {
        const Binding& decl = decls[i];
        const Expression& rhs = decl.getValue();
        check(context, *env, rhs, status);

        // Add a closure to the global environment,
        // memoizing the value of localEnv up to this point

        // Add the LHS to the environment for checking the next declaration
        env = Environment::create(StandardFunctions::normalizeNFC(decl.getVariable()),
                                  Closure(rhs, *env),
                                  env,
                                  status);
        CHECK_ERROR(status);
    }
}
} // namespace message2

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_MF2 */

#endif /* #if !UCONFIG_NO_FORMATTING */

#endif /* #if !UCONFIG_NO_NORMALIZATION */