1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
|
// © 2024 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#if !UCONFIG_NO_FORMATTING
#if !UCONFIG_NO_MF2
#include "unicode/uniset.h"
#include "messageformat2_errors.h"
#include "messageformat2_macros.h"
#include "messageformat2_parser.h"
#include "ucln_in.h"
#include "umutex.h"
#include "uvector.h" // U_ASSERT
U_NAMESPACE_BEGIN
namespace message2 {
using namespace pluralimpl;
using namespace data_model;
/*
The `ERROR()` macro sets a syntax error in the context
and sets the offset in `parseError` to `index`. It does not alter control flow.
*/
#define ERROR(errorCode) \
if (!errors.hasSyntaxError()) { \
setParseError(parseError, index); \
errors.addSyntaxError(errorCode); \
}
#define ERROR_AT(errorCode, i) \
if (!errors.hasSyntaxError()) { \
setParseError(parseError, i); \
errors.addSyntaxError(errorCode); \
}
// Increments the line number and updates the "characters seen before
// current line" count in `parseError`, iff `peek()` is a newline
void Parser::maybeAdvanceLine() {
if (peek() == LF) {
parseError.line++;
// add 1 to index to get the number of characters seen so far
// (including the newline)
parseError.lengthBeforeCurrentLine = index + 1;
}
}
/*
Signals an error and returns either if `parseError` already denotes an
error, or `index` is out of bounds for the string `source`
*/
#define CHECK_BOUNDS(errorCode) \
if (!inBounds()) { \
ERROR(errorCode); \
return; \
}
#define CHECK_BOUNDS_1(errorCode) \
if (!inBounds(1)) { \
ERROR_AT(errorCode, index + 1); \
return; \
}
// -------------------------------------
// Helper functions
static void copyContext(const UChar in[U_PARSE_CONTEXT_LEN], UChar out[U_PARSE_CONTEXT_LEN]) {
for (int32_t i = 0; i < U_PARSE_CONTEXT_LEN; i++) {
out[i] = in[i];
if (in[i] == '\0') {
break;
}
}
}
/* static */ void Parser::translateParseError(const MessageParseError &messageParseError, UParseError &parseError) {
parseError.line = messageParseError.line;
parseError.offset = messageParseError.offset;
copyContext(messageParseError.preContext, parseError.preContext);
copyContext(messageParseError.postContext, parseError.postContext);
}
/* static */ void Parser::setParseError(MessageParseError &parseError, uint32_t index) {
// Translate absolute to relative offset
parseError.offset = index // Start with total number of characters seen
- parseError.lengthBeforeCurrentLine; // Subtract all characters before the current line
// TODO: Fill this in with actual pre and post-context
parseError.preContext[0] = 0;
parseError.postContext[0] = 0;
}
// -------------------------------------
// Initialization of UnicodeSets
namespace unisets {
UnicodeSet* gUnicodeSets[unisets::UNISETS_KEY_COUNT] = {};
inline UnicodeSet* getImpl(Key key) {
return gUnicodeSets[key];
}
icu::UInitOnce gMF2ParseUniSetsInitOnce {};
}
UnicodeSet* initContentChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet(0x0001, 0x0008); // Omit NULL, HTAB and LF
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
result->add(0x000B, 0x000C); // Omit CR
result->add(0x000E, 0x001F); // Omit SP
result->add(0x0021, 0x002D); // Omit '.'
result->add(0x002F, 0x003F); // Omit '@'
result->add(0x0041, 0x005B); // Omit '\'
result->add(0x005D, 0x007A); // Omit { | }
result->add(0x007E, 0x2FFF); // Omit IDEOGRAPHIC_SPACE
result->add(0x3001, 0x10FFFF); // Allowing surrogates is intentional
result->freeze();
return result;
}
UnicodeSet* initWhitespace(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
result->add(SPACE);
result->add(HTAB);
result->add(CR);
result->add(LF);
result->add(IDEOGRAPHIC_SPACE);
result->freeze();
return result;
}
UnicodeSet* initBidiControls(UErrorCode& status) {
UnicodeSet* result = new UnicodeSet(UnicodeString("[\\u061C]"), status);
if (U_FAILURE(status)) {
return nullptr;
}
result->add(0x200E, 0x200F);
result->add(0x2066, 0x2069);
result->freeze();
return result;
}
UnicodeSet* initAlpha(UErrorCode& status) {
UnicodeSet* result = new UnicodeSet(UnicodeString("[:letter:]"), status);
if (U_FAILURE(status)) {
return nullptr;
}
result->freeze();
return result;
}
UnicodeSet* initDigits(UErrorCode& status) {
UnicodeSet* result = new UnicodeSet(UnicodeString("[:number:]"), status);
if (U_FAILURE(status)) {
return nullptr;
}
result->freeze();
return result;
}
UnicodeSet* initNameStartChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* isAlpha = unisets::gUnicodeSets[unisets::ALPHA] = initAlpha(status);
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
};
result->addAll(*isAlpha);
result->add(0x002B);
result->add(0x005F);
result->add(0x00A1, 0x061B);
result->add(0x061D, 0x167F);
result->add(0x1681, 0x1FFF);
result->add(0x200B, 0x200D);
result->add(0x2010, 0x2027);
result->add(0x2030, 0x205E);
result->add(0x2060, 0x2065);
result->add(0x206A, 0x2FFF);
result->add(0x3001, 0xD7FF);
result->add(0xE000, 0xFDCF);
result->add(0xFDF0, 0xFFFD);
result->add(0x10000, 0x1FFFD);
result->add(0x20000, 0x2FFFD);
result->add(0x30000, 0x3FFFD);
result->add(0x40000, 0x4FFFD);
result->add(0x50000, 0x5FFFD);
result->add(0x60000, 0x6FFFD);
result->add(0x70000, 0x7FFFD);
result->add(0x80000, 0x8FFFD);
result->add(0x90000, 0x9FFFD);
result->add(0xA0000, 0xAFFFD);
result->add(0xB0000, 0xBFFFD);
result->add(0xC0000, 0xCFFFD);
result->add(0xD0000, 0xDFFFD);
result->add(0xE0000, 0xEFFFD);
result->add(0xF0000, 0xFFFFD);
result->add(0x100000, 0x10FFFD);
result->freeze();
return result;
}
UnicodeSet* initNameChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* nameStart = unisets::gUnicodeSets[unisets::NAME_START] = initNameStartChars(status);
UnicodeSet* digit = unisets::gUnicodeSets[unisets::DIGIT] = initDigits(status);
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
};
result->addAll(*nameStart);
result->addAll(*digit);
result->add(HYPHEN);
result->add(PERIOD);
result->freeze();
return result;
}
UnicodeSet* initTextChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* content = unisets::gUnicodeSets[unisets::CONTENT] = initContentChars(status);
UnicodeSet* whitespace = unisets::gUnicodeSets[unisets::WHITESPACE] = initWhitespace(status);
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
};
result->addAll(*content);
result->addAll(*whitespace);
result->add(PERIOD);
result->add(AT);
result->add(PIPE);
result->freeze();
return result;
}
UnicodeSet* initQuotedChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
unisets::gUnicodeSets[unisets::TEXT] = initTextChars(status);
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
};
// content and whitespace were initialized by `initTextChars()`
UnicodeSet* content = unisets::getImpl(unisets::CONTENT);
if (content == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
result->addAll(*content);
UnicodeSet* whitespace = unisets::getImpl(unisets::WHITESPACE);
if (whitespace == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
result->addAll(*whitespace);
result->add(PERIOD);
result->add(AT);
result->add(LEFT_CURLY_BRACE);
result->add(RIGHT_CURLY_BRACE);
result->freeze();
return result;
}
UnicodeSet* initEscapableChars(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = new UnicodeSet();
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
result->add(PIPE);
result->add(BACKSLASH);
result->add(LEFT_CURLY_BRACE);
result->add(RIGHT_CURLY_BRACE);
result->freeze();
return result;
}
namespace unisets {
UBool U_CALLCONV cleanupMF2ParseUniSets() {
for (int32_t i = 0; i < UNISETS_KEY_COUNT; i++) {
delete gUnicodeSets[i];
gUnicodeSets[i] = nullptr;
}
gMF2ParseUniSetsInitOnce.reset();
return true;
}
void U_CALLCONV initMF2ParseUniSets(UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_MF2_UNISETS, cleanupMF2ParseUniSets);
/*
Each of the init functions initializes the UnicodeSets
that it depends on.
initBidiControls (no dependencies)
initEscapableChars (no dependencies)
initNameChars depends on
initDigits
initNameStartChars depends on
initAlpha
initQuotedChars depends on
initTextChars depends on
initContentChars
initWhitespace
*/
gUnicodeSets[unisets::BIDI] = initBidiControls(status);
gUnicodeSets[unisets::NAME_CHAR] = initNameChars(status);
gUnicodeSets[unisets::QUOTED] = initQuotedChars(status);
gUnicodeSets[unisets::ESCAPABLE] = initEscapableChars(status);
if (U_FAILURE(status)) {
cleanupMF2ParseUniSets();
}
}
const UnicodeSet* get(Key key, UErrorCode& status) {
umtx_initOnce(gMF2ParseUniSetsInitOnce, &initMF2ParseUniSets, status);
if (U_FAILURE(status)) {
return nullptr;
}
UnicodeSet* result = getImpl(key);
if (result == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return result;
}
}
// -------------------------------------
// Predicates
/*
The following helper predicates should exactly match nonterminals in the MessageFormat 2 grammar:
`isContentChar()` : `content-char`
`isTextChar()` : `text-char`
`isAlpha()` : `ALPHA`
`isDigit()` : `DIGIT`
`isNameStart()` : `name-start`
`isNameChar()` : `name-char`
`isUnquotedStart()` : `unquoted-start`
`isQuotedChar()` : `quoted-char`
`isWhitespace()` : `s`
*/
bool Parser::isContentChar(UChar32 c) const {
return contentChars->contains(c);
}
// See `bidi` in the MF2 grammar
bool Parser::isBidiControl(UChar32 c) const {
return bidiControlChars->contains(c);
}
// See `ws` in the MessageFormat 2 grammar
bool Parser::isWhitespace(UChar32 c) const {
return whitespaceChars->contains(c);
}
bool Parser::isTextChar(UChar32 c) const {
return textChars->contains(c);
}
bool Parser::isAlpha(UChar32 c) const {
return alphaChars->contains(c);
}
bool Parser::isDigit(UChar32 c) const {
return digitChars->contains(c);
}
bool Parser::isNameStart(UChar32 c) const {
return nameStartChars->contains(c);
}
bool Parser::isNameChar(UChar32 c) const {
return nameChars->contains(c);
}
bool Parser::isUnquotedStart(UChar32 c) const {
return isNameChar(c);
}
bool Parser::isQuotedChar(UChar32 c) const {
return quotedChars->contains(c);
}
bool Parser::isEscapableChar(UChar32 c) const {
return escapableChars->contains(c);
}
// Returns true iff `c` can begin a `function` nonterminal
static bool isFunctionStart(UChar32 c) {
switch (c) {
case COLON: {
return true;
}
default: {
return false;
}
}
}
// Returns true iff `c` can begin an `annotation` nonterminal
static bool isAnnotationStart(UChar32 c) {
return isFunctionStart(c);
}
// Returns true iff `c` can begin a `literal` nonterminal
bool Parser::isLiteralStart(UChar32 c) const {
return (c == PIPE || isNameStart(c) || c == HYPHEN || isDigit(c));
}
// Returns true iff `c` can begin a `key` nonterminal
bool Parser::isKeyStart(UChar32 c) const {
return (c == ASTERISK || isLiteralStart(c));
}
bool Parser::isDeclarationStart() {
return (peek() == ID_LOCAL[0]
&& inBounds(1)
&& peek(1) == ID_LOCAL[1])
|| (peek() == ID_INPUT[0]
&& inBounds(1)
&& peek(1) == ID_INPUT[1]);
}
// -------------------------------------
// Parsing functions
/*
TODO: Since handling the whitespace ambiguities needs to be repeated
in several different places and is hard to factor out,
it probably would be better to replace the parser with a lexer + parser
to separate tokenizing from parsing, which would simplify the code significantly.
This has the disadvantage that there is no token grammar for MessageFormat,
so one would have to be invented that isn't a component of the spec.
*/
/*
This is a recursive-descent scannerless parser that,
with a few exceptions, uses 1 character of lookahead.
This may not be an exhaustive list, as the additions of attributes and reserved
statements introduced several new ambiguities.
All but three of the exceptions involve ambiguities about the meaning of whitespace.
One ambiguity not involving whitespace is:
identifier -> namespace ":" name
vs.
identifier -> name
`namespace` and `name` can't be distinguished without arbitrary lookahead.
(For how this is handled, see parseIdentifier())
The second ambiguity not involving whitespace is:
complex-message -> *(declaration[s]) complex-body
-> declaration *(declaration[s]) complex-body
-> declaration complex-body
-> reserved-statement complex-body
-> .foo {$x} .match // ...
When processing the '.', arbitrary lookahead is required to distinguish the
arbitrary-length unsupported keyword from `.match`.
(For how this is handled, see parseDeclarations()).
The third ambiguity not involving whitespace is:
complex-message -> *(declaration [s]) complex-body
-> reserved-statement *(declaration [s]) complex-body
-> reserved-statement complex-body
-> reserved-statement quotedPattern
-> reserved-keyword [s reserved-body] 1*([s] expression) quoted-pattern
-> reserved-keyword expression quoted-pattern
Example: .foo {1} {{1}}
Without lookahead, the opening '{' of the quoted pattern can't be distinguished
from the opening '{' of another expression in the unsupported statement.
(Though this only requires 1 character of lookahead.)
Otherwise:
There are at least seven ambiguities in the grammar that can't be resolved with finite
lookahead (since whitespace sequences can be arbitrarily long). They are resolved
with a form of backtracking (early exit). No state needs to be saved/restored
since whitespace doesn't affect the shape of the resulting parse tree, so it's
not true backtracking.
In addition, the grammar has been refactored
in a semantics-preserving way in some cases to make the code easier to structure.
First: variant = when 1*(s key) [s] pattern
Example: when k {a}
When reading the first space after 'k', it's ambiguous whether it's the
required space before another key, or the optional space before `pattern`.
(See comments in parseNonEmptyKeys())
Second: expression = "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
annotation = (function *(s option)) / reserved
Example: {:f }
When reading the first space after 'f', it's ambiguous whether it's the
required space before an option, or the optional trailing space after an options list
(in this case, the options list is empty).
(See comments in parseOptions() -- handling this case also meant it was easier to base
the code on a slightly refactored grammar, which should be semantically equivalent.)
Third: expression = "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
annotation = (function *(s option)) / reserved
Example: {@a }
Similar to the previous case; see comments in parseReserved()
Fourth: expression = "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
Example: {|foo| }
When reading the first space after the '|', it's ambiguous whether it's the required
space before an annotation, or the optional trailing space before the '}'.
(See comments in parseLiteralOrVariableWithAnnotation(); handling this case relies on
the same grammar refactoring as the second exception.)
Most functions match a non-terminal in the grammar, except as explained
in comments.
Fifth: matcher = match-statement 1*([s] variant)
-> match 1 *([s] selector) 1*([s] variant)
Example: match {42} * {{_}}
When reading the space after the first '}', it's unclear whether
it's the optional space before another selector, or the optional space
before a variant.
Sixth: annotation-expression = "{" [s] annotation *(s attribute) [s] "}"
-> "{" [s] function *(s attribute) [s] "}"
-> "{" [s] ":" identifier *(s option) *(s attribute) [s] "}"
-> "{" [s] ":" identifier s attribute *(s attribute) [s] "}"
Example: {:func @foo}
(Note: the same ambiguity is present with variable-expression and literal-expression)
Seventh:
When parsing the space, it's unclear whether it's the optional space before an
option, or the optional space before an attribute.
Unless otherwise noted in a comment, all helper functions that take
a `source` string, an `index` unsigned int, and an `errorCode` `UErrorCode`
have the precondition:
`index` < `len()`
and the postcondition:
`U_FAILURE(errorCode)` || `index < `len()`
*/
/*
No pre, no post.
A message may end with whitespace, so `index` may equal `len()` on exit.
*/
void Parser::parseRequiredWS(UErrorCode& errorCode) {
bool sawWhitespace = false;
// The loop exits either when we consume all the input,
// or when we see a non-whitespace character.
while (true) {
// Check if all input has been consumed
if (!inBounds()) {
// If whitespace isn't required -- or if we saw it already --
// then the caller is responsible for checking this case and
// setting an error if necessary.
if (sawWhitespace) {
// Not an error.
return;
}
// Otherwise, whitespace is required; the end of the input has
// been reached without whitespace. This is an error.
ERROR(errorCode);
return;
}
// Input remains; process the next character if it's whitespace,
// exit the loop otherwise
if (isWhitespace(peek())) {
sawWhitespace = true;
// Increment line number in parse error if we consume a newline
maybeAdvanceLine();
next();
} else {
break;
}
}
if (!sawWhitespace) {
ERROR(errorCode);
}
}
void Parser::parseOptionalBidi() {
while (true) {
if (!inBounds()) {
return;
}
if (isBidiControl(peek())) {
next();
} else {
break;
}
}
}
/*
No pre, no post, because a message may end with whitespace
Matches `s` in the MF2 grammar
*/
void Parser::parseRequiredWhitespace(UErrorCode& errorCode) {
parseOptionalBidi();
parseRequiredWS(errorCode);
parseOptionalWhitespace();
normalizedInput += SPACE;
}
/*
No pre, no post, for the same reason as `parseWhitespaceMaybeRequired()`.
*/
void Parser::parseOptionalWhitespace() {
while (true) {
if (!inBounds()) {
return;
}
auto cp = peek();
if (isWhitespace(cp) || isBidiControl(cp)) {
maybeAdvanceLine();
next();
} else {
break;
}
}
}
// Consumes a single character, signaling an error if `peek()` != `c`
// No postcondition -- a message can end with a '}' token
void Parser::parseToken(UChar32 c, UErrorCode& errorCode) {
CHECK_BOUNDS(errorCode);
if (peek() == c) {
next();
normalizedInput += c;
return;
}
// Next character didn't match -- error out
ERROR(errorCode);
}
/*
Consumes a fixed-length token, signaling an error if the token isn't a prefix of
the string beginning at `peek()`
No postcondition -- a message can end with a '}' token
*/
void Parser::parseToken(const std::u16string_view& token, UErrorCode& errorCode) {
U_ASSERT(inBounds());
int32_t tokenPos = 0;
while (tokenPos < static_cast<int32_t>(token.length())) {
if (peek() != token[tokenPos]) {
ERROR(errorCode);
return;
}
normalizedInput += token[tokenPos];
next();
tokenPos++;
}
}
/*
Consumes optional whitespace, possibly advancing `index` to `index'`,
then consumes a fixed-length token (signaling an error if the token isn't a prefix of
the string beginning at `source[index']`),
then consumes optional whitespace again
*/
void Parser::parseTokenWithWhitespace(const std::u16string_view& token, UErrorCode& errorCode) {
// No need for error check or bounds check before parseOptionalWhitespace
parseOptionalWhitespace();
// Establish precondition
CHECK_BOUNDS(errorCode);
parseToken(token, errorCode);
parseOptionalWhitespace();
// Guarantee postcondition
CHECK_BOUNDS(errorCode);
}
/*
Consumes optional whitespace, possibly advancing `index` to `index'`,
then consumes a single character (signaling an error if it doesn't match
`source[index']`),
then consumes optional whitespace again
*/
void Parser::parseTokenWithWhitespace(UChar32 c, UErrorCode& errorCode) {
// No need for error check or bounds check before parseOptionalWhitespace()
parseOptionalWhitespace();
// Establish precondition
CHECK_BOUNDS(errorCode);
parseToken(c, errorCode);
parseOptionalWhitespace();
// Guarantee postcondition
CHECK_BOUNDS(errorCode);
}
/*
Consumes a possibly-empty sequence of name-chars. Appends to `str`
and returns `str`.
*/
UnicodeString Parser::parseNameChars(UnicodeString& str, UErrorCode& errorCode) {
if (U_FAILURE(errorCode)) {
return {};
}
while (isNameChar(peek())) {
UChar32 c = peek();
str += c;
normalizedInput += c;
next();
if (!inBounds()) {
ERROR(errorCode);
break;
}
}
return str;
}
/*
Consumes a non-empty sequence of `name-char`s, the first of which is
also a `name-start`.
that begins with a character `start` such that `isNameStart(start)`.
Returns this sequence.
(Matches the `name` nonterminal in the grammar.)
*/
UnicodeString Parser::parseName(UErrorCode& errorCode) {
UnicodeString name;
U_ASSERT(inBounds());
if (!(isNameStart(peek()) || isBidiControl(peek()))) {
ERROR(errorCode);
return name;
}
// name = [bidi] name-start *name-char [bidi]
// [bidi]
parseOptionalBidi();
// name-start *name-char
parseNameChars(name, errorCode);
// [bidi]
parseOptionalBidi();
return name;
}
/*
Consumes a '$' followed by a `name`, returning a VariableName
with `name` as its name
(Matches the `variable` nonterminal in the grammar.)
*/
VariableName Parser::parseVariableName(UErrorCode& errorCode) {
VariableName result;
U_ASSERT(inBounds());
parseToken(DOLLAR, errorCode);
if (!inBounds()) {
ERROR(errorCode);
return result;
}
return VariableName(parseName(errorCode));
}
/*
Corresponds to the `identifier` nonterminal in the grammar
*/
UnicodeString Parser::parseIdentifier(UErrorCode& errorCode) {
U_ASSERT(inBounds());
UnicodeString result;
// The following is a hack to get around ambiguity in the grammar:
// identifier -> namespace ":" name
// vs.
// identifier -> name
// can't be distinguished without arbitrary lookahead.
// Instead, we treat the production as:
// identifier -> namespace *(":"name)
// and then check for multiple colons.
// Parse namespace
result += parseName(errorCode);
int32_t firstColon = -1;
while (inBounds() && peek() == COLON) {
// Parse ':' separator
if (firstColon == -1) {
firstColon = index;
}
parseToken(COLON, errorCode);
result += COLON;
// Check for message ending with something like "foo:"
if (!inBounds()) {
ERROR(errorCode);
} else {
// Parse name part
result += parseName(errorCode);
}
}
// If there's at least one ':', scan from the first ':'
// to the end of the name to check for multiple ':'s
if (firstColon != -1) {
for (int32_t i = firstColon + 1; i < result.length(); i++) {
if (result[i] == COLON) {
ERROR_AT(errorCode, i);
return {};
}
}
}
return result;
}
/*
Consumes a reference to a function, matching the ": identifier"
in the `function` nonterminal in the grammar.
Returns the function name.
*/
FunctionName Parser::parseFunction(UErrorCode& errorCode) {
U_ASSERT(inBounds());
if (!isFunctionStart(peek())) {
ERROR(errorCode);
return FunctionName();
}
normalizedInput += peek();
next(); // Consume the function start character
if (!inBounds()) {
ERROR(errorCode);
return FunctionName();
}
return parseIdentifier(errorCode);
}
/*
Precondition: peek() == BACKSLASH
Consume an escaped character.
Corresponds to `escaped-char` in the grammar.
No postcondition (a message can end with an escaped char)
*/
UnicodeString Parser::parseEscapeSequence(UErrorCode& errorCode) {
U_ASSERT(inBounds());
U_ASSERT(peek() == BACKSLASH);
normalizedInput += BACKSLASH;
next(); // Skip the initial backslash
UnicodeString str;
if (inBounds()) {
// Expect a '{', '|' or '}'
switch (peek()) {
case LEFT_CURLY_BRACE:
case RIGHT_CURLY_BRACE:
case PIPE:
case BACKSLASH: {
/* Append to the output string */
str += peek();
/* Update normalizedInput */
normalizedInput += peek();
/* Consume the character */
next();
return str;
}
default: {
// No other characters are allowed here
break;
}
}
}
// If control reaches here, there was an error
ERROR(errorCode);
return str;
}
/*
Consume and return a quoted literal, matching the `literal` nonterminal in the grammar.
*/
Literal Parser::parseQuotedLiteral(UErrorCode& errorCode) {
bool error = false;
UnicodeString contents;
if (U_SUCCESS(errorCode)) {
// Parse the opening '|'
parseToken(PIPE, errorCode);
if (!inBounds()) {
ERROR(errorCode);
error = true;
} else {
// Parse the contents
bool done = false;
while (!done) {
if (peek() == BACKSLASH) {
contents += parseEscapeSequence(errorCode);
} else if (isQuotedChar(peek())) {
contents += peek();
// Handle cases like:
// |}{| -- we want to escape everywhere that
// can be escaped, to make round-trip checking
// easier -- so this case normalizes to
// |\}\{|
if (isEscapableChar(peek())) {
normalizedInput += BACKSLASH;
}
normalizedInput += peek();
next(); // Consume this character
maybeAdvanceLine();
} else {
// Assume the sequence of literal characters ends here
done = true;
}
if (!inBounds()) {
ERROR(errorCode);
error = true;
break;
}
}
}
}
if (error) {
return {};
}
// Parse the closing '|'
parseToken(PIPE, errorCode);
return Literal(true, contents);
}
// Parse (1*DIGIT)
UnicodeString Parser::parseDigits(UErrorCode& errorCode) {
if (U_FAILURE(errorCode)) {
return {};
}
U_ASSERT(isDigit(peek()));
UnicodeString contents;
do {
contents += peek();
normalizedInput += peek();
next();
if (!inBounds()) {
ERROR(errorCode);
return {};
}
} while (isDigit(peek()));
return contents;
}
/*
Consume and return an unquoted literal, matching the `unquoted` nonterminal in the grammar.
*/
Literal Parser::parseUnquotedLiteral(UErrorCode& errorCode) {
if (U_FAILURE(errorCode)) {
return {};
}
// unquoted-literal = 1*name-char
if (!(isNameChar(peek()))) {
ERROR(errorCode);
return {};
}
UnicodeString contents;
parseNameChars(contents, errorCode);
return Literal(false, contents);
}
/*
Consume and return a literal, matching the `literal` nonterminal in the grammar.
*/
Literal Parser::parseLiteral(UErrorCode& errorCode) {
Literal result;
if (!inBounds()) {
ERROR(errorCode);
} else {
if (peek() == PIPE) {
result = parseQuotedLiteral(errorCode);
} else {
result = parseUnquotedLiteral(errorCode);
}
// Guarantee postcondition
if (!inBounds()) {
ERROR(errorCode);
}
}
return result;
}
/*
Consume a @name-value pair, matching the `attribute` nonterminal in the grammar.
Adds the option to `options`
*/
template<class T>
void Parser::parseAttribute(AttributeAdder<T>& attrAdder, UErrorCode& errorCode) {
U_ASSERT(inBounds());
U_ASSERT(peek() == AT);
// Consume the '@'
parseToken(AT, errorCode);
// Parse LHS
UnicodeString lhs = parseIdentifier(errorCode);
// Prepare to "backtrack" to resolve ambiguity
// about whether whitespace precedes another
// attribute, or the '=' sign
int32_t savedIndex = index;
parseOptionalWhitespace();
Operand rand;
if (peek() == EQUALS) {
// Parse '='
parseTokenWithWhitespace(EQUALS, errorCode);
UnicodeString rhsStr;
// Parse RHS, which must be a literal
// attribute = "@" identifier [o "=" o literal]
rand = Operand(parseLiteral(errorCode));
} else {
// attribute -> "@" identifier [[s] "=" [s]]
// Use null operand, which `rand` is already set to
// "Backtrack" by restoring the whitespace (if there was any)
index = savedIndex;
}
attrAdder.addAttribute(lhs, std::move(Operand(rand)), errorCode);
}
/*
Consume a name-value pair, matching the `option` nonterminal in the grammar.
Adds the option to `optionList`
*/
template<class T>
void Parser::parseOption(OptionAdder<T>& addOption, UErrorCode& errorCode) {
U_ASSERT(inBounds());
// Parse LHS
UnicodeString lhs = parseIdentifier(errorCode);
// Parse '='
parseTokenWithWhitespace(EQUALS, errorCode);
UnicodeString rhsStr;
Operand rand;
// Parse RHS, which is either a literal or variable
switch (peek()) {
case DOLLAR: {
rand = Operand(parseVariableName(errorCode));
break;
}
default: {
// Must be a literal
rand = Operand(parseLiteral(errorCode));
break;
}
}
U_ASSERT(!rand.isNull());
// Finally, add the key=value mapping
// Use a local error code, check for duplicate option error and
// record it as with other errors
UErrorCode status = U_ZERO_ERROR;
addOption.addOption(lhs, std::move(rand), status);
if (U_FAILURE(status)) {
U_ASSERT(status == U_MF_DUPLICATE_OPTION_NAME_ERROR);
errors.setDuplicateOptionName(errorCode);
}
}
/*
Note: there are multiple overloads of parseOptions() for parsing
options within markup, vs. within an expression, vs. parsing
attributes. This should be refactored. TODO
*/
/*
Consume optional whitespace followed by a sequence of options
(possibly empty), separated by whitespace
*/
template <class T>
void Parser::parseOptions(OptionAdder<T>& addOption, UErrorCode& errorCode) {
// Early exit if out of bounds -- no more work is possible
CHECK_BOUNDS(errorCode);
/*
Arbitrary lookahead is required to parse option lists. To see why, consider
these rules from the grammar:
expression = "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
annotation = (function *(s option)) / reserved
And this example:
{:foo }
Derivation:
expression -> "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
-> "{" [s] annotation [s] "}"
-> "{" [s] ((function *(s option)) / reserved) [s] "}"
-> "{" [s] function *(s option) [s] "}"
In this example, knowing whether to expect a '}' or the start of another option
after the whitespace would require arbitrary lookahead -- in other words, which
rule should we apply?
*(s option) -> s option *(s option)
or
*(s option) ->
The same would apply to the example {:foo k=v } (note the trailing space after "v").
This is addressed using a form of backtracking and (to make the backtracking easier
to apply) a slight refactoring to the grammar.
This code is written as if the grammar is:
expression = "{" [s] (((literal / variable) ([s] / [s annotation])) / annotation) "}"
annotation = (function *(s option) [s]) / (reserved [s])
Parsing the `*(s option) [s]` sequence can be done within `parseOptions()`, meaning
that `parseExpression()` can safely require a '}' after `parseOptions()` finishes.
Note that when "backtracking" really just means early exit, since only whitespace
is involved and there's no state to save.
There is a separate but similar ambiguity as to whether the space precedes
an option or an attribute.
*/
while(true) {
// If the next character is not whitespace, that means we've already
// parsed the entire options list (which may have been empty) and there's
// no trailing whitespace. In that case, exit.
if (!isWhitespace(peek())) {
break;
}
int32_t firstWhitespace = index;
// In any case other than an empty options list, there must be at least
// one whitespace character.
parseRequiredWhitespace(errorCode);
// Restore precondition
CHECK_BOUNDS(errorCode);
// If a name character follows, then at least one more option remains
// in the list.
// Otherwise, we've consumed all the options and any trailing whitespace,
// and can exit.
// Note that exiting is sort of like backtracking: "(s option)" doesn't apply,
// so we back out to [s].
if (!isNameStart(peek())) {
// We've consumed all the options (meaning that either we consumed non-empty
// whitespace, or consumed at least one option.)
// Done.
// Remove the required whitespace from normalizedInput
normalizedInput.truncate(normalizedInput.length() - 1);
// "Backtrack" so as to leave the optional whitespace there
// when parsing attributes
index = firstWhitespace;
break;
}
parseOption(addOption, errorCode);
}
}
/*
Consume optional whitespace followed by a sequence of attributes
(possibly empty), separated by whitespace
*/
template<class T>
void Parser::parseAttributes(AttributeAdder<T>& attrAdder, UErrorCode& errorCode) {
// Early exit if out of bounds -- no more work is possible
if (!inBounds()) {
ERROR(errorCode);
return;
}
/*
Arbitrary lookahead is required to parse attribute lists, similarly to option lists.
(See comment in parseOptions()).
*/
while(true) {
// If the next character is not whitespace, that means we've already
// parsed the entire attributes list (which may have been empty) and there's
// no trailing whitespace. In that case, exit.
if (!isWhitespace(peek())) {
break;
}
// In any case other than an empty attributes list, there must be at least
// one whitespace character.
parseRequiredWhitespace(errorCode);
// Restore precondition
if (!inBounds()) {
ERROR(errorCode);
break;
}
// If an '@' follows, then at least one more attribute remains
// in the list.
// Otherwise, we've consumed all the attributes and any trailing whitespace,
// and can exit.
// Note that exiting is sort of like backtracking: "(s attributes)" doesn't apply,
// so we back out to [s].
if (peek() != AT) {
// We've consumed all the attributes (meaning that either we consumed non-empty
// whitespace, or consumed at least one attribute.)
// Done.
// Remove the whitespace from normalizedInput
normalizedInput.truncate(normalizedInput.length() - 1);
break;
}
parseAttribute(attrAdder, errorCode);
}
}
/*
Consume a function call, matching the `annotation`
nonterminal in the grammar
Returns an `Operator` representing this (a reserved is a parse error)
*/
Operator Parser::parseAnnotation(UErrorCode& status) {
U_ASSERT(inBounds());
Operator::Builder ratorBuilder(status);
if (U_FAILURE(status)) {
return {};
}
if (isFunctionStart(peek())) {
// Consume the function name
FunctionName func = parseFunction(status);
ratorBuilder.setFunctionName(std::move(func));
OptionAdder<Operator::Builder> addOptions(ratorBuilder);
// Consume the options (which may be empty)
parseOptions(addOptions, status);
} else {
ERROR(status);
}
return ratorBuilder.build(status);
}
/*
Consume a literal or variable (depending on `isVariable`),
followed by either required whitespace followed by an annotation,
or optional whitespace.
*/
void Parser::parseLiteralOrVariableWithAnnotation(bool isVariable,
Expression::Builder& builder,
UErrorCode& status) {
CHECK_ERROR(status);
U_ASSERT(inBounds());
Operand rand;
if (isVariable) {
rand = Operand(parseVariableName(status));
} else {
rand = Operand(parseLiteral(status));
}
builder.setOperand(std::move(rand));
/*
Parsing a literal or variable with an optional annotation requires arbitrary lookahead.
To see why, consider this rule from the grammar:
expression = "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
And this example:
{|foo| }
Derivation:
expression -> "{" [s] (((literal / variable) [s annotation]) / annotation) [s] "}"
-> "{" [s] ((literal / variable) [s annotation]) [s] "}"
-> "{" [s] (literal [s annotation]) [s] "}"
When reading the ' ' after the second '|', it's ambiguous whether that's the required
space before an annotation, or the optional space before the '}'.
To make this ambiguity easier to handle, this code is based on the same grammar
refactoring for the `expression` nonterminal that `parseOptions()` relies on. See
the comment in `parseOptions()` for details.
*/
if (isWhitespace(peek())) {
int32_t firstWhitespace = index;
// If the next character is whitespace, either [s annotation] or [s] applies
// (the character is either the required space before an annotation, or optional
// trailing space after the literal or variable). It's still ambiguous which
// one does apply.
parseOptionalWhitespace();
// Restore precondition
CHECK_BOUNDS(status);
// This next check resolves the ambiguity between [s annotation] and [s]
bool isSAnnotation = isAnnotationStart(peek());
if (isSAnnotation) {
normalizedInput += SPACE;
}
if (isSAnnotation) {
// The previously consumed whitespace precedes an annotation
builder.setOperator(parseAnnotation(status));
} else {
// Either there's a right curly brace (will be consumed by the caller),
// or there's an error and the trailing whitespace should be
// handled by the caller. However, this is not an error
// here because we're just parsing `literal [s annotation]`.
index = firstWhitespace;
}
} else {
// Either there was never whitespace, or
// the previously consumed whitespace is the optional trailing whitespace;
// either the next character is '}' or the error will be handled by parseExpression.
// Do nothing, since the operand was already set
}
// At the end of this code, the next character should either be '}',
// whitespace followed by a '}',
// or end-of-input
}
/*
Consume an expression, matching the `expression` nonterminal in the grammar
*/
static void exprFallback(Expression::Builder& exprBuilder) {
// Construct a literal consisting just of The U+FFFD REPLACEMENT CHARACTER
// per https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#fallback-resolution
exprBuilder.setOperand(Operand(Literal(false, UnicodeString(REPLACEMENT))));
}
static Expression exprFallback(UErrorCode& status) {
Expression result;
if (U_SUCCESS(status)) {
Expression::Builder exprBuilder(status);
if (U_SUCCESS(status)) {
// Construct a literal consisting just of The U+FFFD REPLACEMENT CHARACTER
// per https://github.com/unicode-org/message-format-wg/blob/main/spec/formatting.md#fallback-resolution
exprBuilder.setOperand(Operand(Literal(false, UnicodeString(REPLACEMENT))));
UErrorCode status = U_ZERO_ERROR;
result = exprBuilder.build(status);
// An operand was set, so there can't be an error
U_ASSERT(U_SUCCESS(status));
}
}
return result;
}
Expression Parser::parseExpression(UErrorCode& status) {
if (U_FAILURE(status)) {
return {};
}
// Early return if out of input -- no more work is possible
U_ASSERT(inBounds());
// Parse opening brace
parseToken(LEFT_CURLY_BRACE, status);
// Optional whitespace after opening brace
parseOptionalWhitespace();
Expression::Builder exprBuilder(status);
// Restore precondition
if (!inBounds()) {
exprFallback(exprBuilder);
} else {
// literal '|', variable '$' or annotation
switch (peek()) {
case PIPE: {
// Quoted literal
parseLiteralOrVariableWithAnnotation(false, exprBuilder, status);
break;
}
case DOLLAR: {
// Variable
parseLiteralOrVariableWithAnnotation(true, exprBuilder, status);
break;
}
default: {
if (isAnnotationStart(peek())) {
Operator rator = parseAnnotation(status);
exprBuilder.setOperator(std::move(rator));
} else if (isUnquotedStart(peek())) {
// Unquoted literal
parseLiteralOrVariableWithAnnotation(false, exprBuilder, status);
} else {
// Not a literal, variable or annotation -- error out
ERROR(status);
exprFallback(exprBuilder);
break;
}
break;
}
}
}
// Parse attributes
AttributeAdder<Expression::Builder> attrAdder(exprBuilder);
parseAttributes(attrAdder, status);
// Parse optional space
// (the last [s] in e.g. "{" [s] literal [s annotation] *(s attribute) [s] "}")
parseOptionalWhitespace();
// Either an operand or operator (or both) must have been set already,
// so there can't be an error
UErrorCode localStatus = U_ZERO_ERROR;
Expression result = exprBuilder.build(localStatus);
U_ASSERT(U_SUCCESS(localStatus));
// Check for end-of-input and missing '}'
if (!inBounds()) {
ERROR(status);
} else {
// Otherwise, it's safe to check for the '}'
parseToken(RIGHT_CURLY_BRACE, status);
}
return result;
}
/*
Parse a .local declaration, matching the `local-declaration`
production in the grammar
*/
void Parser::parseLocalDeclaration(UErrorCode& status) {
// End-of-input here would be an error; even empty
// declarations must be followed by a body
CHECK_BOUNDS(status);
parseToken(ID_LOCAL, status);
parseRequiredWhitespace(status);
// Restore precondition
CHECK_BOUNDS(status);
VariableName lhs = parseVariableName(status);
parseTokenWithWhitespace(EQUALS, status);
// Restore precondition before calling parseExpression()
CHECK_BOUNDS(status);
Expression rhs = parseExpression(status);
// Add binding from lhs to rhs, unless there was an error
// (This ensures that if there was a correct lhs but a
// parse error in rhs, the fallback for uses of the
// lhs will be its own name rather than the rhs)
/* This affects the behavior of this test case, which the spec
is ambiguous about:
.local $bar {|foo|} {{{$bar}}}
Should `$bar` still be bound to a value although
its declaration is syntactically incorrect (missing the '=')?
This code says no, but it needs to change if
https://github.com/unicode-org/message-format-wg/issues/703
is resolved differently.
*/
CHECK_ERROR(status);
if (!errors.hasSyntaxError()) {
dataModel.addBinding(Binding(std::move(lhs), std::move(rhs)), status);
// Check if status is U_DUPLICATE_DECLARATION_ERROR
// and add that as an internal error if so
if (status == U_MF_DUPLICATE_DECLARATION_ERROR) {
status = U_ZERO_ERROR;
errors.addError(StaticErrorType::DuplicateDeclarationError, status);
}
}
}
/*
Parse an .input declaration, matching the `local-declaration`
production in the grammar
*/
void Parser::parseInputDeclaration(UErrorCode& status) {
// End-of-input here would be an error; even empty
// declarations must be followed by a body
CHECK_BOUNDS(status);
parseToken(ID_INPUT, status);
parseOptionalWhitespace();
// Restore precondition before calling parseExpression()
CHECK_BOUNDS(status);
// Save the index for error diagnostics
int32_t exprIndex = index;
Expression rhs = parseExpression(status);
// Here we have to check that the rhs is a variable-expression
if (!rhs.getOperand().isVariable()) {
// This case is a syntax error; report it at the beginning
// of the expression
ERROR_AT(status, exprIndex);
return;
}
VariableName lhs = rhs.getOperand().asVariable();
// Add binding from lhs to rhs
// This just adds a new local variable that shadows the message
// argument referred to, which is harmless.
// When evaluating the RHS, the new local is not in scope
// and the message argument will be correctly referred to.
CHECK_ERROR(status);
if (!errors.hasSyntaxError()) {
dataModel.addBinding(Binding::input(std::move(lhs), std::move(rhs), status), status);
// Check if status is U_MF_DUPLICATE_DECLARATION_ERROR
// and add that as an internal error if so
if (status == U_MF_DUPLICATE_DECLARATION_ERROR) {
status = U_ZERO_ERROR;
errors.addError(StaticErrorType::DuplicateDeclarationError, status);
}
}
}
/*
Consume a possibly-empty sequence of declarations separated by whitespace;
each declaration matches the `declaration` nonterminal in the grammar
Builds up an environment representing those declarations
*/
void Parser::parseDeclarations(UErrorCode& status) {
// End-of-input here would be an error; even empty
// declarations must be followed by a body
CHECK_BOUNDS(status);
while (peek() == PERIOD) {
CHECK_BOUNDS_1(status);
if (peek(1) == ID_LOCAL[1]) {
parseLocalDeclaration(status);
} else if (peek(1) == ID_INPUT[1]) {
parseInputDeclaration(status);
} else {
// Done parsing declarations
break;
}
// Avoid looping infinitely
CHECK_ERROR(status);
parseOptionalWhitespace();
// Restore precondition
CHECK_BOUNDS(status);
}
}
/*
Consume a text character
matching the `text-char` nonterminal in the grammar
No postcondition (a message can end with a text-char)
*/
UnicodeString Parser::parseTextChar(UErrorCode& status) {
UnicodeString str;
if (!inBounds() || !(isTextChar(peek()))) {
// Error -- text-char is expected here
ERROR(status);
} else {
// See comment in parseQuotedLiteral()
if (isEscapableChar(peek())) {
normalizedInput += BACKSLASH;
}
normalizedInput += peek();
str += peek();
next();
maybeAdvanceLine();
}
return str;
}
/*
Consume an `nmtoken`, `literal`, or the string "*", matching
the `key` nonterminal in the grammar
*/
Key Parser::parseKey(UErrorCode& status) {
U_ASSERT(inBounds());
Key k; // wildcard by default
// Literal | '*'
switch (peek()) {
case ASTERISK: {
next();
normalizedInput += ASTERISK;
// Guarantee postcondition
if (!inBounds()) {
ERROR(status);
return k;
}
break;
}
default: {
// Literal
k = Key(parseLiteral(status));
break;
}
}
return k;
}
/*
Consume a non-empty sequence of `key`s separated by whitespace
Takes ownership of `keys`
*/
SelectorKeys Parser::parseNonEmptyKeys(UErrorCode& status) {
SelectorKeys result;
if (U_FAILURE(status)) {
return result;
}
U_ASSERT(inBounds());
/*
Arbitrary lookahead is required to parse key lists. To see why, consider
this rule from the grammar:
variant = key *(s key) [s] quoted-pattern
And this example:
when k1 k2 {a}
Derivation:
variant -> key *(s key) [s] quoted-pattern
-> key s key *(s key) quoted-pattern
After matching ' ' to `s` and 'k2' to `key`, it would require arbitrary lookahead
to know whether to expect the start of a pattern or the start of another key.
In other words: is the second whitespace sequence the required space in *(s key),
or the optional space in [s] quoted-pattern?
This is addressed using "backtracking" (similarly to `parseOptions()`).
*/
SelectorKeys::Builder keysBuilder(status);
if (U_FAILURE(status)) {
return result;
}
// Since the first key is required, it's simplest to parse it separately.
keysBuilder.add(parseKey(status), status);
// Restore precondition
if (!inBounds()) {
ERROR(status);
return result;
}
// We've seen at least one whitespace-key pair, so now we can parse
// *(s key) [s]
while (peek() != LEFT_CURLY_BRACE || isWhitespace(peek()) || isBidiControl(peek())) {
bool wasWhitespace = isWhitespace(peek()) || isBidiControl(peek());
parseRequiredWhitespace(status);
if (!wasWhitespace) {
// Avoid infinite loop when parsing something like:
// when * @{!...
next();
}
// Restore precondition
if (!inBounds()) {
ERROR(status);
return result;
}
// At this point, it's ambiguous whether we are inside (s key) or [s].
// This check resolves that ambiguity.
if (peek() == LEFT_CURLY_BRACE) {
// A pattern follows, so what we just parsed was the optional
// trailing whitespace. All the keys have been parsed.
// Unpush the whitespace from `normalizedInput`
normalizedInput.truncate(normalizedInput.length() - 1);
break;
}
keysBuilder.add(parseKey(status), status);
}
return keysBuilder.build(status);
}
Pattern Parser::parseQuotedPattern(UErrorCode& status) {
U_ASSERT(inBounds());
parseToken(LEFT_CURLY_BRACE, status);
parseToken(LEFT_CURLY_BRACE, status);
Pattern p = parseSimpleMessage(status);
parseToken(RIGHT_CURLY_BRACE, status);
parseToken(RIGHT_CURLY_BRACE, status);
return p;
}
/*
Consume a `placeholder`, matching the nonterminal in the grammar
No postcondition (a markup can end a message)
*/
Markup Parser::parseMarkup(UErrorCode& status) {
U_ASSERT(inBounds(1));
U_ASSERT(peek() == LEFT_CURLY_BRACE);
Markup::Builder builder(status);
if (U_FAILURE(status)) {
return {};
}
// Consume the '{'
next();
normalizedInput += LEFT_CURLY_BRACE;
parseOptionalWhitespace();
bool closing = false;
switch (peek()) {
case NUMBER_SIGN: {
// Open or standalone; consume the '#'
normalizedInput += peek();
next();
break;
}
case SLASH: {
// Closing
normalizedInput += peek();
closing = true;
next();
break;
}
default: {
ERROR(status);
return {};
}
}
// Parse the markup identifier
builder.setName(parseIdentifier(status));
// Parse the options, which must begin with a ' '
// if present
if (inBounds() && (isWhitespace(peek()) || isBidiControl(peek()))) {
OptionAdder<Markup::Builder> optionAdder(builder);
parseOptions(optionAdder, status);
}
// Parse the attributes, which also must begin
// with a ' '
if (inBounds() && (isWhitespace(peek()) || isBidiControl(peek()))) {
AttributeAdder<Markup::Builder> attrAdder(builder);
parseAttributes(attrAdder, status);
}
parseOptionalWhitespace();
bool standalone = false;
// Check if this is a standalone or not
if (!closing) {
if (inBounds() && peek() == SLASH) {
standalone = true;
normalizedInput += SLASH;
next();
}
}
parseToken(RIGHT_CURLY_BRACE, status);
if (standalone) {
builder.setStandalone();
} else if (closing) {
builder.setClose();
} else {
builder.setOpen();
}
return builder.build(status);
}
/*
Consume a `placeholder`, matching the nonterminal in the grammar
No postcondition (a placeholder can end a message)
*/
std::variant<Expression, Markup> Parser::parsePlaceholder(UErrorCode& status) {
U_ASSERT(peek() == LEFT_CURLY_BRACE);
if (!inBounds()) {
ERROR(status);
return exprFallback(status);
}
// Need to look ahead arbitrarily since whitespace
// can appear before the '{' and '#'
// in markup
int32_t tempIndex = 1;
bool isMarkup = false;
while (inBounds(1)) {
UChar32 c = peek(tempIndex);
if (c == NUMBER_SIGN || c == SLASH) {
isMarkup = true;
break;
}
if (!(isWhitespace(c) || isBidiControl(c))) {
break;
}
tempIndex++;
}
if (isMarkup) {
return parseMarkup(status);
}
return parseExpression(status);
}
/*
Consume a `simple-message`, matching the nonterminal in the grammar
Postcondition: `index == len()` or U_FAILURE(status);
for a syntactically correct message, this will consume the entire input
*/
Pattern Parser::parseSimpleMessage(UErrorCode& status) {
Pattern::Builder result(status);
if (U_SUCCESS(status)) {
Expression expression;
while (inBounds()) {
switch (peek()) {
case LEFT_CURLY_BRACE: {
// Must be placeholder
std::variant<Expression, Markup> piece = parsePlaceholder(status);
if (std::holds_alternative<Expression>(piece)) {
Expression expr = *std::get_if<Expression>(&piece);
result.add(std::move(expr), status);
} else {
Markup markup = *std::get_if<Markup>(&piece);
result.add(std::move(markup), status);
}
break;
}
case BACKSLASH: {
// Must be escaped-char
result.add(parseEscapeSequence(status), status);
break;
}
case RIGHT_CURLY_BRACE: {
// Distinguish unescaped '}' from end of quoted pattern
break;
}
default: {
// Must be text-char
result.add(parseTextChar(status), status);
break;
}
}
if (peek() == RIGHT_CURLY_BRACE) {
// End of quoted pattern
break;
}
// Don't loop infinitely
if (errors.hasSyntaxError() || U_FAILURE(status)) {
break;
}
}
}
return result.build(status);
}
void Parser::parseVariant(UErrorCode& status) {
CHECK_ERROR(status);
// At least one key is required
SelectorKeys keyList(parseNonEmptyKeys(status));
// parseNonEmptyKeys() consumes any trailing whitespace,
// so the pattern can be consumed next.
// Restore precondition before calling parsePattern()
// (which must return a non-null value)
CHECK_BOUNDS(status);
Pattern rhs = parseQuotedPattern(status);
dataModel.addVariant(std::move(keyList), std::move(rhs), status);
}
/*
Consume a `selectors` (matching the nonterminal in the grammar),
followed by a non-empty sequence of `variant`s (matching the nonterminal
in the grammar) preceded by whitespace
No postcondition (on return, `index` might equal `len()` with no syntax error
because a message can end with a variant)
*/
void Parser::parseSelectors(UErrorCode& status) {
CHECK_ERROR(status);
U_ASSERT(inBounds());
parseToken(ID_MATCH, status);
bool empty = true;
// Parse selectors
// "Backtracking" is required here. It's not clear if whitespace is
// (`[s]` selector) or (`[s]` variant)
while (isWhitespace(peek()) || peek() == DOLLAR) {
int32_t whitespaceStart = index;
parseRequiredWhitespace(status);
// Restore precondition
CHECK_BOUNDS(status);
if (peek() != DOLLAR) {
// This is not necessarily an error, but rather,
// means the whitespace we parsed was the optional
// whitespace preceding the first variant, not the
// required whitespace preceding a subsequent variable.
// In that case, "push back" the whitespace.
normalizedInput.truncate(normalizedInput.length() - 1);
index = whitespaceStart;
break;
}
VariableName var = parseVariableName(status);
empty = false;
dataModel.addSelector(std::move(var), status);
CHECK_ERROR(status);
}
// At least one selector is required
if (empty) {
ERROR(status);
return;
}
#define CHECK_END_OF_INPUT \
if (!inBounds()) { \
break; \
} \
// Parse variants
// matcher = match-statement s variant *(o variant)
// Parse first variant
parseRequiredWhitespace(status);
if (!inBounds()) {
ERROR(status);
return;
}
parseVariant(status);
if (!inBounds()) {
// Not an error; there might be only one variant
return;
}
while (isWhitespace(peek()) || isBidiControl(peek()) || isKeyStart(peek())) {
parseOptionalWhitespace();
// Restore the precondition.
// Trailing whitespace is allowed.
if (!inBounds()) {
return;
}
parseVariant(status);
// Restore the precondition, *without* erroring out if we've
// reached the end of input. That's because it's valid for the
// message to end with a variant that has no trailing whitespace.
// Why do we need to check this condition twice inside the loop?
// Because if we don't check it here, the `isWhitespace()` call in
// the loop head will read off the end of the input string.
CHECK_END_OF_INPUT
if (errors.hasSyntaxError() || U_FAILURE(status)) {
break;
}
}
}
/*
Consume a `body` (matching the nonterminal in the grammar),
No postcondition (on return, `index` might equal `len()` with no syntax error,
because a message can end with a body (trailing whitespace is optional)
*/
void Parser::errorPattern(UErrorCode& status) {
errors.addSyntaxError(status);
// Set to empty pattern
Pattern::Builder result = Pattern::Builder(status);
CHECK_ERROR(status);
// If still in bounds, then add the remaining input as a single text part
// to the pattern
/*
TODO: this behavior isn't documented in the spec, but it comes from
https://github.com/messageformat/messageformat/blob/e0087bff312d759b67a9129eac135d318a1f0ce7/packages/mf2-messageformat/src/__fixtures/test-messages.json#L236
and a pending pull request https://github.com/unicode-org/message-format-wg/pull/462 will clarify
whether this is the intent behind the spec
*/
UnicodeString partStr(LEFT_CURLY_BRACE);
while (inBounds()) {
partStr += peek();
next();
}
// Add curly braces around the entire output (same comment as above)
partStr += RIGHT_CURLY_BRACE;
result.add(std::move(partStr), status);
dataModel.setPattern(result.build(status));
}
void Parser::parseBody(UErrorCode& status) {
CHECK_ERROR(status);
// Out-of-input is a syntax warning
if (!inBounds()) {
errorPattern(status);
return;
}
// Body must be either a pattern or selectors
switch (peek()) {
case LEFT_CURLY_BRACE: {
// Pattern
dataModel.setPattern(parseQuotedPattern(status));
break;
}
case ID_MATCH[0]: {
// Selectors
parseSelectors(status);
return;
}
default: {
ERROR(status);
errorPattern(status);
return;
}
}
}
// -------------------------------------
// Parses the source pattern.
void Parser::parse(UParseError &parseErrorResult, UErrorCode& status) {
CHECK_ERROR(status);
bool complex = false;
// First, "look ahead" to determine if this is a simple or complex
// message. To do that, check the first non-whitespace character.
while (inBounds(index) && (isWhitespace(peek()) || isBidiControl(peek()))) {
next();
}
// Message can be empty, so we need to only look ahead
// if we know it's non-empty
if (inBounds()) {
if (peek() == PERIOD
|| (inBounds(1)
&& peek() == LEFT_CURLY_BRACE
&& peek(1) == LEFT_CURLY_BRACE)) {
complex = true;
}
}
// Reset index
index = 0;
// Message can be empty, so we need to only look ahead
// if we know it's non-empty
if (complex) {
parseOptionalWhitespace();
parseDeclarations(status);
parseBody(status);
parseOptionalWhitespace();
} else {
// Simple message
// For normalization, quote the pattern
normalizedInput += LEFT_CURLY_BRACE;
normalizedInput += LEFT_CURLY_BRACE;
dataModel.setPattern(parseSimpleMessage(status));
normalizedInput += RIGHT_CURLY_BRACE;
normalizedInput += RIGHT_CURLY_BRACE;
}
CHECK_ERROR(status);
// There are no errors; finally, check that the entire input was consumed
if (!allConsumed()) {
ERROR(status);
}
// Finally, copy the relevant fields of the internal `MessageParseError`
// into the `UParseError` argument
translateParseError(parseError, parseErrorResult);
}
Parser::~Parser() {}
} // namespace message2
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_MF2 */
#endif /* #if !UCONFIG_NO_FORMATTING */
#endif /* #if !UCONFIG_NO_NORMALIZATION */
|