1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "double-conversion-string-to-double.h"
#include "measunit_impl.h"
#include "putilimp.h"
#include "uassert.h"
#include "unicode/errorcode.h"
#include "unicode/localpointer.h"
#include "unicode/stringpiece.h"
#include "units_converter.h"
#include <algorithm>
#include <cmath>
#include <stdlib.h>
#include <utility>
U_NAMESPACE_BEGIN
namespace units {
void Factor::multiplyBy(const Factor& rhs) {
factorNum *= rhs.factorNum;
factorDen *= rhs.factorDen;
for (int i = 0; i < CONSTANTS_COUNT; i++) {
constantExponents[i] += rhs.constantExponents[i];
}
// NOTE
// We need the offset when the source and the target are simple units. e.g. the source is
// celsius and the target is Fahrenheit. Therefore, we just keep the value using `std::max`.
offset = std::max(rhs.offset, offset);
}
void Factor::divideBy(const Factor& rhs) {
factorNum *= rhs.factorDen;
factorDen *= rhs.factorNum;
for (int i = 0; i < CONSTANTS_COUNT; i++) {
constantExponents[i] -= rhs.constantExponents[i];
}
// NOTE
// We need the offset when the source and the target are simple units. e.g. the source is
// celsius and the target is Fahrenheit. Therefore, we just keep the value using `std::max`.
offset = std::max(rhs.offset, offset);
}
void Factor::divideBy(const uint64_t constant) { factorDen *= constant; }
void Factor::power(int32_t power) {
// multiply all the constant by the power.
for (int i = 0; i < CONSTANTS_COUNT; i++) {
constantExponents[i] *= power;
}
bool shouldFlip = power < 0; // This means that after applying the absolute power, we should flip
// the Numerator and Denominator.
factorNum = std::pow(factorNum, std::abs(power));
factorDen = std::pow(factorDen, std::abs(power));
if (shouldFlip) {
// Flip Numerator and Denominator.
std::swap(factorNum, factorDen);
}
}
void Factor::applyPrefix(UMeasurePrefix unitPrefix) {
if (unitPrefix == UMeasurePrefix::UMEASURE_PREFIX_ONE) {
// No need to do anything
return;
}
int32_t prefixPower = umeas_getPrefixPower(unitPrefix);
double prefixFactor = std::pow(static_cast<double>(umeas_getPrefixBase(unitPrefix)),
static_cast<double>(std::abs(prefixPower)));
if (prefixPower >= 0) {
factorNum *= prefixFactor;
} else {
factorDen *= prefixFactor;
}
}
void Factor::substituteConstants() {
for (int i = 0; i < CONSTANTS_COUNT; i++) {
if (this->constantExponents[i] == 0) {
continue;
}
auto absPower = std::abs(this->constantExponents[i]);
Signum powerSig = this->constantExponents[i] < 0 ? Signum::NEGATIVE : Signum::POSITIVE;
double absConstantValue = std::pow(constantsValues[i], absPower);
if (powerSig == Signum::NEGATIVE) {
this->factorDen *= absConstantValue;
} else {
this->factorNum *= absConstantValue;
}
this->constantExponents[i] = 0;
}
}
namespace {
/* Helpers */
using icu::double_conversion::StringToDoubleConverter;
// TODO: Make this a shared-utility function.
// Returns `double` from a scientific number(i.e. "1", "2.01" or "3.09E+4")
double strToDouble(StringPiece strNum, UErrorCode &status) {
// We are processing well-formed input, so we don't need any special options to
// StringToDoubleConverter.
StringToDoubleConverter converter(0, 0, 0, "", "");
int32_t count;
double result = converter.StringToDouble(strNum.data(), strNum.length(), &count);
if (count != strNum.length()) {
status = U_INVALID_FORMAT_ERROR;
}
return result;
}
// Returns `double` from a scientific number that could has a division sign (i.e. "1", "2.01", "3.09E+4"
// or "2E+2/3")
double strHasDivideSignToDouble(StringPiece strWithDivide, UErrorCode &status) {
int divisionSignInd = -1;
for (int i = 0, n = strWithDivide.length(); i < n; ++i) {
if (strWithDivide.data()[i] == '/') {
divisionSignInd = i;
break;
}
}
if (divisionSignInd >= 0) {
return strToDouble(strWithDivide.substr(0, divisionSignInd), status) /
strToDouble(strWithDivide.substr(divisionSignInd + 1), status);
}
return strToDouble(strWithDivide, status);
}
/*
Adds single factor to a `Factor` object. Single factor means "23^2", "23.3333", "ft2m^3" ...etc.
However, complex factor are not included, such as "ft2m^3*200/3"
*/
void addFactorElement(Factor &factor, StringPiece elementStr, Signum signum, UErrorCode &status) {
StringPiece baseStr;
StringPiece powerStr;
int32_t power =
1; // In case the power is not written, then, the power is equal 1 ==> `ft2m^1` == `ft2m`
// Search for the power part
int32_t powerInd = -1;
for (int32_t i = 0, n = elementStr.length(); i < n; ++i) {
if (elementStr.data()[i] == '^') {
powerInd = i;
break;
}
}
if (powerInd > -1) {
// There is power
baseStr = elementStr.substr(0, powerInd);
powerStr = elementStr.substr(powerInd + 1);
power = static_cast<int32_t>(strToDouble(powerStr, status));
} else {
baseStr = elementStr;
}
addSingleFactorConstant(baseStr, power, signum, factor, status);
}
/*
* Extracts `Factor` from a complete string factor. e.g. "ft2m^3*1007/cup2m3*3"
*/
Factor extractFactorConversions(StringPiece stringFactor, UErrorCode &status) {
Factor result;
Signum signum = Signum::POSITIVE;
const auto* factorData = stringFactor.data();
for (int32_t i = 0, start = 0, n = stringFactor.length(); i < n; i++) {
if (factorData[i] == '*' || factorData[i] == '/') {
StringPiece factorElement = stringFactor.substr(start, i - start);
addFactorElement(result, factorElement, signum, status);
start = i + 1; // Set `start` to point to the start of the new element.
} else if (i == n - 1) {
// Last element
addFactorElement(result, stringFactor.substr(start, i + 1), signum, status);
}
if (factorData[i] == '/') {
signum = Signum::NEGATIVE; // Change the signum because we reached the Denominator.
}
}
return result;
}
// Load factor for a single source
Factor loadSingleFactor(StringPiece source, const ConversionRates &ratesInfo, UErrorCode &status) {
const auto* const conversionUnit = ratesInfo.extractConversionInfo(source, status);
if (U_FAILURE(status)) return {};
if (conversionUnit == nullptr) {
status = U_INTERNAL_PROGRAM_ERROR;
return {};
}
Factor result = extractFactorConversions(conversionUnit->factor.data(), status);
result.offset = strHasDivideSignToDouble(conversionUnit->offset.data(), status);
return result;
}
// Load Factor of a compound source unit.
// In ICU4J, this is a pair of ConversionRates.getFactorToBase() functions.
Factor loadCompoundFactor(const MeasureUnitImpl &source, const ConversionRates &ratesInfo,
UErrorCode &status) {
Factor result;
for (int32_t i = 0, n = source.singleUnits.length(); i < n; i++) {
SingleUnitImpl singleUnit = *source.singleUnits[i];
Factor singleFactor = loadSingleFactor(singleUnit.getSimpleUnitID(), ratesInfo, status);
if (U_FAILURE(status)) return result;
// Prefix before power, because:
// - square-kilometer to square-meter: (1000)^2
// - square-kilometer to square-foot (approximate): (3.28*1000)^2
singleFactor.applyPrefix(singleUnit.unitPrefix);
// Apply the power of the `dimensionality`
singleFactor.power(singleUnit.dimensionality);
result.multiplyBy(singleFactor);
}
// If the source has a constant denominator, then we need to divide the
// factor by the constant denominator.
if (source.constantDenominator != 0) {
result.divideBy(source.constantDenominator);
}
return result;
}
/**
* Checks if the source unit and the target unit are simple. For example celsius or fahrenheit. But not
* square-celsius or square-fahrenheit.
*
* NOTE:
* Empty unit means simple unit.
*
* In ICU4J, this is ConversionRates.checkSimpleUnit().
*/
UBool checkSimpleUnit(const MeasureUnitImpl &unit, UErrorCode &status) {
if (U_FAILURE(status)) return false;
if (unit.complexity != UMEASURE_UNIT_SINGLE) {
return false;
}
if (unit.singleUnits.length() == 0) {
// Empty units means simple unit.
return true;
}
auto singleUnit = *(unit.singleUnits[0]);
if (singleUnit.dimensionality != 1 || singleUnit.unitPrefix != UMEASURE_PREFIX_ONE) {
return false;
}
return true;
}
// Map the MeasureUnitImpl for a simpleUnit to a SingleUnitImpl, then use that
// SingleUnitImpl's simpleUnitID to get the corresponding ConversionRateInfo;
// from that we get the specialMappingName (which may be empty if the simple unit
// converts to base using factor + offset instelad of a special mapping).
StringPiece getSpecialMappingName(const MeasureUnitImpl& simpleUnit, const ConversionRates& ratesInfo,
UErrorCode& status) {
if (!checkSimpleUnit(simpleUnit, status)) {
return {};
}
SingleUnitImpl singleUnit = *simpleUnit.singleUnits[0];
const auto* const conversionUnit =
ratesInfo.extractConversionInfo(singleUnit.getSimpleUnitID(), status);
if (U_FAILURE(status)) {
return {};
}
if (conversionUnit == nullptr) {
status = U_INTERNAL_PROGRAM_ERROR;
return {};
}
return conversionUnit->specialMappingName.data();
}
/**
* Extract conversion rate from `source` to `target`
*/
// In ICU4J, this function is partially inlined in the UnitsConverter constructor.
// TODO ICU-22683: Consider splitting handling of special mappings into separate class
void loadConversionRate(ConversionRate &conversionRate, const MeasureUnitImpl &source,
const MeasureUnitImpl &target, Convertibility unitsState,
const ConversionRates &ratesInfo, UErrorCode &status) {
StringPiece specialSource = getSpecialMappingName(source, ratesInfo, status);
StringPiece specialTarget = getSpecialMappingName(target, ratesInfo, status);
conversionRate.specialSource = specialSource;
conversionRate.specialTarget = specialTarget;
if (conversionRate.specialSource.isEmpty() != specialSource.empty() ||
conversionRate.specialTarget.isEmpty() != specialTarget.empty()) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (conversionRate.specialSource.isEmpty() && conversionRate.specialTarget.isEmpty()) {
// Represents the conversion factor from the source to the target.
Factor finalFactor;
// Represents the conversion factor from the source to the base unit that specified in the conversion
// data which is considered as the root of the source and the target.
Factor sourceToBase = loadCompoundFactor(source, ratesInfo, status);
Factor targetToBase = loadCompoundFactor(target, ratesInfo, status);
// Merger Factors
finalFactor.multiplyBy(sourceToBase);
if (unitsState == Convertibility::CONVERTIBLE) {
finalFactor.divideBy(targetToBase);
} else if (unitsState == Convertibility::RECIPROCAL) {
finalFactor.multiplyBy(targetToBase);
} else {
status = UErrorCode::U_ARGUMENT_TYPE_MISMATCH;
return;
}
finalFactor.substituteConstants();
conversionRate.factorNum = finalFactor.factorNum;
conversionRate.factorDen = finalFactor.factorDen;
// This code corresponds to ICU4J's ConversionRates.getOffset().
// In case of simple units (such as: celsius or fahrenheit), offsets are considered.
if (checkSimpleUnit(source, status) && checkSimpleUnit(target, status)) {
conversionRate.sourceOffset =
sourceToBase.offset * sourceToBase.factorDen / sourceToBase.factorNum;
conversionRate.targetOffset =
targetToBase.offset * targetToBase.factorDen / targetToBase.factorNum;
}
// TODO(icu-units#127): should we consider failure if there's an offset for
// a not-simple-unit? What about kilokelvin / kilocelsius?
conversionRate.reciprocal = unitsState == Convertibility::RECIPROCAL;
} else if (conversionRate.specialSource.isEmpty() || conversionRate.specialTarget.isEmpty()) {
// Still need to set factorNum/factorDen for either source to base or base to target
if (unitsState != Convertibility::CONVERTIBLE) {
status = UErrorCode::U_ARGUMENT_TYPE_MISMATCH;
return;
}
Factor finalFactor;
if (conversionRate.specialSource.isEmpty()) {
// factorNum/factorDen is for source to base only
finalFactor = loadCompoundFactor(source, ratesInfo, status);
} else {
// factorNum/factorDen is for base to target only
finalFactor = loadCompoundFactor(target, ratesInfo, status);
}
finalFactor.substituteConstants();
conversionRate.factorNum = finalFactor.factorNum;
conversionRate.factorDen = finalFactor.factorDen;
}
}
struct UnitIndexAndDimension : UMemory {
int32_t index = 0;
int32_t dimensionality = 0;
UnitIndexAndDimension(const SingleUnitImpl &singleUnit, int32_t multiplier) {
index = singleUnit.index;
dimensionality = singleUnit.dimensionality * multiplier;
}
};
void mergeSingleUnitWithDimension(MaybeStackVector<UnitIndexAndDimension> &unitIndicesWithDimension,
const SingleUnitImpl &shouldBeMerged, int32_t multiplier) {
for (int32_t i = 0; i < unitIndicesWithDimension.length(); i++) {
auto &unitWithIndex = *unitIndicesWithDimension[i];
if (unitWithIndex.index == shouldBeMerged.index) {
unitWithIndex.dimensionality += shouldBeMerged.dimensionality * multiplier;
return;
}
}
unitIndicesWithDimension.emplaceBack(shouldBeMerged, multiplier);
}
void mergeUnitsAndDimensions(MaybeStackVector<UnitIndexAndDimension> &unitIndicesWithDimension,
const MeasureUnitImpl &shouldBeMerged, int32_t multiplier) {
for (int32_t unit_i = 0; unit_i < shouldBeMerged.singleUnits.length(); unit_i++) {
auto singleUnit = *shouldBeMerged.singleUnits[unit_i];
mergeSingleUnitWithDimension(unitIndicesWithDimension, singleUnit, multiplier);
}
}
UBool checkAllDimensionsAreZeros(const MaybeStackVector<UnitIndexAndDimension> &dimensionVector) {
for (int32_t i = 0; i < dimensionVector.length(); i++) {
if (dimensionVector[i]->dimensionality != 0) {
return false;
}
}
return true;
}
} // namespace
// Conceptually, this modifies factor: factor *= baseStr^(signum*power).
//
// baseStr must be a known constant or a value that strToDouble() is able to
// parse.
void U_I18N_API addSingleFactorConstant(StringPiece baseStr, int32_t power, Signum signum,
Factor &factor, UErrorCode &status) {
if (baseStr == "ft_to_m") {
factor.constantExponents[CONSTANT_FT2M] += power * signum;
} else if (baseStr == "ft2_to_m2") {
factor.constantExponents[CONSTANT_FT2M] += 2 * power * signum;
} else if (baseStr == "ft3_to_m3") {
factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;
} else if (baseStr == "in3_to_m3") {
factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;
factor.factorDen *= std::pow(12 * 12 * 12, power * signum);
} else if (baseStr == "gal_to_m3") {
factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;
factor.factorNum *= std::pow(231, power * signum);
factor.factorDen *= std::pow(12 * 12 * 12, power * signum);
} else if (baseStr == "gal_imp_to_m3") {
factor.constantExponents[CONSTANT_GAL_IMP2M3] += power * signum;
} else if (baseStr == "G") {
factor.constantExponents[CONSTANT_G] += power * signum;
} else if (baseStr == "gravity") {
factor.constantExponents[CONSTANT_GRAVITY] += power * signum;
} else if (baseStr == "lb_to_kg") {
factor.constantExponents[CONSTANT_LB2KG] += power * signum;
} else if (baseStr == "glucose_molar_mass") {
factor.constantExponents[CONSTANT_GLUCOSE_MOLAR_MASS] += power * signum;
} else if (baseStr == "item_per_mole") {
factor.constantExponents[CONSTANT_ITEM_PER_MOLE] += power * signum;
} else if (baseStr == "meters_per_AU") {
factor.constantExponents[CONSTANT_METERS_PER_AU] += power * signum;
} else if (baseStr == "PI") {
factor.constantExponents[CONSTANT_PI] += power * signum;
} else if (baseStr == "sec_per_julian_year") {
factor.constantExponents[CONSTANT_SEC_PER_JULIAN_YEAR] += power * signum;
} else if (baseStr == "speed_of_light_meters_per_second") {
factor.constantExponents[CONSTANT_SPEED_OF_LIGHT_METERS_PER_SECOND] += power * signum;
} else if (baseStr == "sho_to_m3") {
factor.constantExponents[CONSTANT_SHO_TO_M3] += power * signum;
} else if (baseStr == "tsubo_to_m2") {
factor.constantExponents[CONSTANT_TSUBO_TO_M2] += power * signum;
} else if (baseStr == "shaku_to_m") {
factor.constantExponents[CONSTANT_SHAKU_TO_M] += power * signum;
} else if (baseStr == "AMU") {
factor.constantExponents[CONSTANT_AMU] += power * signum;
} else {
if (signum == Signum::NEGATIVE) {
factor.factorDen *= std::pow(strToDouble(baseStr, status), power);
} else {
factor.factorNum *= std::pow(strToDouble(baseStr, status), power);
}
}
}
/**
* Extracts the compound base unit of a compound unit (`source`). For example, if the source unit is
* `square-mile-per-hour`, the compound base unit will be `square-meter-per-second`
*/
MeasureUnitImpl extractCompoundBaseUnit(const MeasureUnitImpl& source,
const ConversionRates& conversionRates,
UErrorCode& status) {
MeasureUnitImpl result;
if (U_FAILURE(status)) return result;
const auto &singleUnits = source.singleUnits;
for (int i = 0, count = singleUnits.length(); i < count; ++i) {
const auto &singleUnit = *singleUnits[i];
// Extract `ConversionRateInfo` using the absolute unit. For example: in case of `square-meter`,
// we will use `meter`
const auto* const rateInfo =
conversionRates.extractConversionInfo(singleUnit.getSimpleUnitID(), status);
if (U_FAILURE(status)) {
return result;
}
if (rateInfo == nullptr) {
status = U_INTERNAL_PROGRAM_ERROR;
return result;
}
// Multiply the power of the singleUnit by the power of the baseUnit. For example, square-hectare
// must be pow4-meter. (NOTE: hectare --> square-meter)
auto baseUnits =
MeasureUnitImpl::forIdentifier(rateInfo->baseUnit.data(), status).singleUnits;
for (int32_t i = 0, baseUnitsCount = baseUnits.length(); i < baseUnitsCount; i++) {
baseUnits[i]->dimensionality *= singleUnit.dimensionality;
// TODO: Deal with SI-prefix
result.appendSingleUnit(*baseUnits[i], status);
if (U_FAILURE(status)) {
return result;
}
}
}
return result;
}
/**
* Determine the convertibility between `source` and `target`.
* For example:
* `meter` and `foot` are `CONVERTIBLE`.
* `meter-per-second` and `second-per-meter` are `RECIPROCAL`.
* `meter` and `pound` are `UNCONVERTIBLE`.
*
* NOTE:
* Only works with SINGLE and COMPOUND units. If one of the units is a
* MIXED unit, an error will occur. For more information, see UMeasureUnitComplexity.
*/
Convertibility U_I18N_API extractConvertibility(const MeasureUnitImpl &source,
const MeasureUnitImpl &target,
const ConversionRates &conversionRates,
UErrorCode &status) {
if (source.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||
target.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
status = U_ARGUMENT_TYPE_MISMATCH;
return UNCONVERTIBLE;
}
MeasureUnitImpl sourceBaseUnit = extractCompoundBaseUnit(source, conversionRates, status);
MeasureUnitImpl targetBaseUnit = extractCompoundBaseUnit(target, conversionRates, status);
if (U_FAILURE(status)) return UNCONVERTIBLE;
MaybeStackVector<UnitIndexAndDimension> convertible;
MaybeStackVector<UnitIndexAndDimension> reciprocal;
mergeUnitsAndDimensions(convertible, sourceBaseUnit, 1);
mergeUnitsAndDimensions(reciprocal, sourceBaseUnit, 1);
mergeUnitsAndDimensions(convertible, targetBaseUnit, -1);
mergeUnitsAndDimensions(reciprocal, targetBaseUnit, 1);
if (checkAllDimensionsAreZeros(convertible)) {
return CONVERTIBLE;
}
if (checkAllDimensionsAreZeros(reciprocal)) {
return RECIPROCAL;
}
return UNCONVERTIBLE;
}
UnitsConverter::UnitsConverter(const MeasureUnitImpl &source, const MeasureUnitImpl &target,
const ConversionRates &ratesInfo, UErrorCode &status)
: conversionRate_(source.copy(status), target.copy(status)) {
this->init(ratesInfo, status);
}
UnitsConverter::UnitsConverter(StringPiece sourceIdentifier, StringPiece targetIdentifier,
UErrorCode &status)
: conversionRate_(MeasureUnitImpl::forIdentifier(sourceIdentifier, status),
MeasureUnitImpl::forIdentifier(targetIdentifier, status)) {
if (U_FAILURE(status)) {
return;
}
ConversionRates ratesInfo(status);
this->init(ratesInfo, status);
}
void UnitsConverter::init(const ConversionRates &ratesInfo, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (this->conversionRate_.source.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||
this->conversionRate_.target.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
status = U_ARGUMENT_TYPE_MISMATCH;
return;
}
Convertibility unitsState = extractConvertibility(this->conversionRate_.source,
this->conversionRate_.target, ratesInfo, status);
if (U_FAILURE(status)) return;
if (unitsState == Convertibility::UNCONVERTIBLE) {
status = U_ARGUMENT_TYPE_MISMATCH;
return;
}
loadConversionRate(conversionRate_, conversionRate_.source, conversionRate_.target, unitsState,
ratesInfo, status);
}
int32_t UnitsConverter::compareTwoUnits(const MeasureUnitImpl &firstUnit,
const MeasureUnitImpl &secondUnit,
const ConversionRates &ratesInfo, UErrorCode &status) {
if (U_FAILURE(status)) {
return 0;
}
if (firstUnit.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||
secondUnit.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
status = U_ARGUMENT_TYPE_MISMATCH;
return 0;
}
Convertibility unitsState = extractConvertibility(firstUnit, secondUnit, ratesInfo, status);
if (U_FAILURE(status)) {
return 0;
}
if (unitsState == Convertibility::UNCONVERTIBLE || unitsState == Convertibility::RECIPROCAL) {
status = U_ARGUMENT_TYPE_MISMATCH;
return 0;
}
StringPiece firstSpecial = getSpecialMappingName(firstUnit, ratesInfo, status);
StringPiece secondSpecial = getSpecialMappingName(secondUnit, ratesInfo, status);
if (!firstSpecial.empty() || !secondSpecial.empty()) {
if (firstSpecial.empty()) {
// non-specials come first
return -1;
}
if (secondSpecial.empty()) {
// non-specials come first
return 1;
}
// both are specials, compare lexicographically
return firstSpecial.compare(secondSpecial);
}
// Represents the conversion factor from the firstUnit to the base
// unit that specified in the conversion data which is considered as
// the root of the firstUnit and the secondUnit.
Factor firstUnitToBase = loadCompoundFactor(firstUnit, ratesInfo, status);
Factor secondUnitToBase = loadCompoundFactor(secondUnit, ratesInfo, status);
firstUnitToBase.substituteConstants();
secondUnitToBase.substituteConstants();
double firstUnitToBaseConversionRate = firstUnitToBase.factorNum / firstUnitToBase.factorDen;
double secondUnitToBaseConversionRate = secondUnitToBase.factorNum / secondUnitToBase.factorDen;
double diff = firstUnitToBaseConversionRate - secondUnitToBaseConversionRate;
if (diff > 0) {
return 1;
}
if (diff < 0) {
return -1;
}
return 0;
}
// TODO per CLDR-17421 and ICU-22683: consider getting the data below from CLDR
static double minMetersPerSecForBeaufort[] = {
// Minimum m/s (base) values for each Bft value, plus an extra artificial value;
// when converting from Bft to m/s, the middle of the range will be used
// (Values from table in Wikipedia, except for artificial value).
// Since this is 0 based, max Beaufort value is thus array dimension minus 2.
0.0, // 0 Bft
0.3, // 1
1.6, // 2
3.4, // 3
5.5, // 4
8.0, // 5
10.8, // 6
13.9, // 7
17.2, // 8
20.8, // 9
24.5, // 10
28.5, // 11
32.7, // 12
36.9, // 13
41.4, // 14
46.1, // 15
51.1, // 16
55.8, // 17
61.4, // artificial end of range 17 to give reasonable midpoint
};
static int maxBeaufort = UPRV_LENGTHOF(minMetersPerSecForBeaufort) - 2;
// Convert from what should be discrete scale values for a particular unit like beaufort
// to a corresponding value in the base unit (which can have any decimal value, like meters/sec).
// First we round the scale value to the nearest integer (in case it is specified with a fractional value),
// then we map that to a value in middle of the range of corresponding base values.
// This can handle different scales, specified by minBaseForScaleValues[].
double UnitsConverter::scaleToBase(double scaleValue, double minBaseForScaleValues[], int scaleMax) const {
if (scaleValue < 0) {
scaleValue = -scaleValue;
}
scaleValue += 0.5; // adjust up for later truncation
if (scaleValue > static_cast<double>(scaleMax)) {
scaleValue = static_cast<double>(scaleMax);
}
int scaleInt = static_cast<int>(scaleValue);
return (minBaseForScaleValues[scaleInt] + minBaseForScaleValues[scaleInt+1])/2.0;
}
// Binary search to find the range that includes key;
// if key (non-negative) is in the range rangeStarts[i] to just under rangeStarts[i+1],
// then we return i; if key is >= rangeStarts[max] then we return max.
// Note that max is the maximum scale value, not the number of elements in the array
// (which should be larger than max).
// The ranges for index 0 start at 0.0.
static int bsearchRanges(double rangeStarts[], int max, double key) {
if (key >= rangeStarts[max]) {
return max;
}
int beg = 0, mid = 0, end = max + 1;
while (beg < end) {
mid = (beg + end) / 2;
if (key < rangeStarts[mid]) {
end = mid;
} else if (key > rangeStarts[mid+1]) {
beg = mid+1;
} else {
break;
}
}
return mid;
}
// Convert from a value in the base unit (which can have any decimal value, like meters/sec) to a corresponding
// discrete value in a scale (like beaufort), where each scale value represents a range of base values.
// We binary-search the ranges to find the one that contains the specified base value, and return its index.
// This can handle different scales, specified by minBaseForScaleValues[].
double UnitsConverter::baseToScale(double baseValue, double minBaseForScaleValues[], int scaleMax) const {
if (baseValue < 0) {
baseValue = -baseValue;
}
int scaleIndex = bsearchRanges(minBaseForScaleValues, scaleMax, baseValue);
return static_cast<double>(scaleIndex);
}
double UnitsConverter::convert(double inputValue) const {
double result = inputValue;
if (!conversionRate_.specialSource.isEmpty() || !conversionRate_.specialTarget.isEmpty()) {
double base = inputValue;
// convert input (=source) to base
if (!conversionRate_.specialSource.isEmpty()) {
// We have a special mapping from source to base (not using factor, offset).
// Currently the only supported mapping is a scale-based mapping for beaufort.
base = uprv_strcmp(conversionRate_.specialSource.data(), "beaufort") == 0 ?
scaleToBase(inputValue, minMetersPerSecForBeaufort, maxBeaufort): inputValue;
} else {
// Standard mapping (using factor) from source to base.
base = inputValue * conversionRate_.factorNum / conversionRate_.factorDen;
}
// convert base to result (=target)
if (!conversionRate_.specialTarget.isEmpty()) {
// We have a special mapping from base to target (not using factor, offset).
// Currently the only supported mapping is a scale-based mapping for beaufort.
result = uprv_strcmp(conversionRate_.specialTarget.data(), "beaufort") == 0 ?
baseToScale(base, minMetersPerSecForBeaufort, maxBeaufort): base;
} else {
// Standard mapping (using factor) from base to target.
result = base * conversionRate_.factorDen / conversionRate_.factorNum;
}
return result;
}
result =
inputValue + conversionRate_.sourceOffset; // Reset the input to the target zero index.
// Convert the quantity to from the source scale to the target scale.
result *= conversionRate_.factorNum / conversionRate_.factorDen;
result -= conversionRate_.targetOffset; // Set the result to its index.
if (conversionRate_.reciprocal) {
if (result == 0) {
return uprv_getInfinity();
}
result = 1.0 / result;
}
return result;
}
double UnitsConverter::convertInverse(double inputValue) const {
double result = inputValue;
if (!conversionRate_.specialSource.isEmpty() || !conversionRate_.specialTarget.isEmpty()) {
double base = inputValue;
// convert input (=target) to base
if (!conversionRate_.specialTarget.isEmpty()) {
// We have a special mapping from target to base (not using factor).
// Currently the only supported mapping is a scale-based mapping for beaufort.
base = uprv_strcmp(conversionRate_.specialTarget.data(), "beaufort") == 0 ?
scaleToBase(inputValue, minMetersPerSecForBeaufort, maxBeaufort): inputValue;
} else {
// Standard mapping (using factor) from target to base.
base = inputValue * conversionRate_.factorNum / conversionRate_.factorDen;
}
// convert base to result (=source)
if (!conversionRate_.specialSource.isEmpty()) {
// We have a special mapping from base to source (not using factor).
// Currently the only supported mapping is a scale-based mapping for beaufort.
result = uprv_strcmp(conversionRate_.specialSource.data(), "beaufort") == 0 ?
baseToScale(base, minMetersPerSecForBeaufort, maxBeaufort): base;
} else {
// Standard mapping (using factor) from base to source.
result = base * conversionRate_.factorDen / conversionRate_.factorNum;
}
return result;
}
if (conversionRate_.reciprocal) {
if (result == 0) {
return uprv_getInfinity();
}
result = 1.0 / result;
}
result += conversionRate_.targetOffset;
result *= conversionRate_.factorDen / conversionRate_.factorNum;
result -= conversionRate_.sourceOffset;
return result;
}
ConversionInfo UnitsConverter::getConversionInfo() const {
ConversionInfo result;
result.conversionRate = conversionRate_.factorNum / conversionRate_.factorDen;
result.offset =
(conversionRate_.sourceOffset * (conversionRate_.factorNum / conversionRate_.factorDen)) -
conversionRate_.targetOffset;
result.reciprocal = conversionRate_.reciprocal;
return result;
}
} // namespace units
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
|