1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
import json
import re
from collections import defaultdict
import numpy as np
from smart_open import open as smart_open
from idseq_bench.util import smart_glob, smart_ls
from idseq_bench.parsers import extract_accession_id, extract_fast_file_type_from_path
from .metrics import adjusted_aupr
STORE = 's3://'
HIT_SUMMARY_READ_ID = r"^(?P<read_id>.*?)\t"
BENCHMARK_LINEAGE_PATTERN = r"__benchmark_lineage_(?P<subspecies>\d+)_(?P<species>\d+)_(?P<genus>\d+)_(?P<family>\d+)__"
IDSEQ_LINEAGE_HIT_SUMMARY_PATTERN = r"\t(?P<species>-?\d+)\t(?P<genus>-?\d+)\t(?P<family>-?\d+)(?:\tfrom_assembly)?$"
RANKS = ['species', 'genus', 'family']
FAST_FILE_TYPE = r"\.(?:fast|f)(?P<type>q|a)(?:\.|$)"
class MalformedBenchmarkLineageException(Exception):
def __init__(self, line):
super().__init__(f"Missing or malformed benchmark_lineage tag: {line}")
class MalformedHitSummaryLineageException(Exception):
def __init__(self, line):
super().__init__(f"Missing or malformed benchmark_lineage tag: {line}")
class MalformedHitSummaryReadIdException(Exception):
def __init__(self, line):
super().__init__(f"Missing or malformed id tag: {line}")
class HitCounters:
def __init__(self):
self.counters = defaultdict(lambda: defaultdict(lambda: defaultdict(int)))
def __getitem__(self, rank):
return self.counters[rank]
def by_rank(self, rank):
return self.counters[rank]
def ranks(self):
return self.counters.keys()
def increment(self, benchmark_lineage, lineage):
for rank, tax_id in lineage.items():
self.counters[rank][benchmark_lineage[rank]][tax_id] += 1
def __str__(self):
return json.dumps(self.counters, indent=4)
class IDseqSampleFileManager():
"""Manage download of files from IDseq
"""
def __init__(self, project_id, sample_id, pipeline_version, env='prod', local_path=None):
self.project_id = project_id
self.sample_id = sample_id
self.pipeline_version = pipeline_version
self.env = env or 'prod'
self.store = local_path or STORE
self.set_directory_vars()
def set_directory_vars(self):
# this enables benchmark scoring to work with both SFN-WDL and original filepaths
env_dir = f"{self.store}idseq-samples-{self.env}"
samples_dir = f"{env_dir}/samples/{self.project_id}/{self.sample_id}"
self.input_fastq_file_pattern = rf"{samples_dir}/fastqs/.+\.(?:fast|f)q(?:\..+)?"
results_dir = f"{samples_dir}/results/{self.pipeline_version}"
post_process_dir = f"{samples_dir}/postprocess/{self.pipeline_version}/assembly"
if(len(smart_ls(results_dir)) == 0):
results_dir = f"{samples_dir}/results/idseq-{self.env}-main-1/wdl-1/dag-{self.pipeline_version}"
self.post_assembly_summary_files = {
'NT': f"{results_dir}/gsnap.hitsummary2.tab",
'NR': f"{results_dir}/rapsearch2.hitsummary2.tab"
}
else:
self.post_assembly_summary_files = {
'NT': f"{post_process_dir}/gsnap.hitsummary2.tab",
'NR': f"{post_process_dir}/rapsearch2.hitsummary2.tab"
}
self.post_qc_fasta_file_pattern = rf"{results_dir}/gsnap_filter_[12]\.fa(?:sta)?"
@staticmethod
def parse_benchmark_lineage(line):
matches = re.search(BENCHMARK_LINEAGE_PATTERN, line)
if not matches:
raise MalformedBenchmarkLineageException(line)
return {
rank: int(matches.group(rank))
for rank in ['species', 'genus', 'family']
}
@staticmethod
def parse_hit_summary_lineage(line):
matches = re.search(IDSEQ_LINEAGE_HIT_SUMMARY_PATTERN, line)
if not matches:
raise MalformedHitSummaryLineageException(line)
return {
rank: int(matches.group(rank))
for rank in ['species', 'genus', 'family']
}
@staticmethod
def parse_hit_summary_read_id(line):
matches = re.search(HIT_SUMMARY_READ_ID, line)
if not matches:
raise MalformedHitSummaryReadIdException(line)
return matches.group("read_id")
def hit_summary_entries(self, summary_file, skip_benchmark_lineage=False):
try:
with smart_open(summary_file, 'rb') as input_file:
for line in input_file:
line = line.decode('UTF-8')
entry = {}
entry['benchmark_lineage'] = None if skip_benchmark_lineage else self.parse_benchmark_lineage(line)
entry['hit_summary_lineage'] = self.parse_hit_summary_lineage(line)
entry['read_id'] = self.parse_hit_summary_read_id(line)
entry['line'] = line
yield entry
except GeneratorExit:
# If the generator is closing, we should just reraise and not output an error
raise
except:
print(f"[ERROR] Parsing file: {summary_file}")
raise
def post_assembly_hit_summary_entries(self, db_type, skip_benchmark_lineage=False):
return self.hit_summary_entries(
self.post_assembly_summary_files[db_type],
skip_benchmark_lineage=skip_benchmark_lineage
)
def parse_fastx_entry(self, entry):
parsed_entry = {
"lineage": self.parse_benchmark_lineage(entry[0]),
"accession_id": extract_accession_id(entry[0]),
"read": entry[1].strip()
}
if len(entry) == 4:
parsed_entry['quality'] = entry[3].strip()
return parsed_entry
def fastx_iterator(self, fastx_file, file_type="q"):
file_type = extract_fast_file_type_from_path(fastx_file)
lines_per_entry = 4 if file_type == "q" else 2
read_number = 1
try:
with smart_open(fastx_file) as input_file:
entry_first_line = input_file.readline()
while entry_first_line:
entry = self.parse_fastx_entry([entry_first_line] + [
input_file.readline()
for _ in range(lines_per_entry - 1)
])
yield entry
read_number += 1
entry_first_line = input_file.readline()
except GeneratorExit:
# If the generator is closing, we should just reraise and not output an error
raise
except:
print(f"[ERROR] Parsing read number {read_number} in {fastx_file}")
raise
def input_files(self):
return smart_glob(self.input_fastq_file_pattern, expected_num_files=[1, 2])
def post_qc_files(self):
return smart_glob(self.post_qc_fasta_file_pattern, expected_num_files=[1, 2])
def lineage_key(lineage_dict):
return "{species}:{genus}:{family}".format(**lineage_dict)
def key_to_lineage(key):
return {k: int(v) for k, v in zip(["species", "genus", "family"], key.split(":"))}
def hit_summary_counts_per_benchmark_lineage(idseq_file_manager, db_type, counters=None):
counters = counters or HitCounters()
for entry in idseq_file_manager.post_assembly_hit_summary_entries(db_type):
counters.increment(entry['benchmark_lineage'], entry['hit_summary_lineage'])
return counters
def hit_summary_counts_per_tax_id(idseq_file_manager, db_type):
print(f" * Counting hits per tax id for {db_type}")
counters = defaultdict(lambda: defaultdict(int))
for entry in idseq_file_manager.post_assembly_hit_summary_entries(db_type, skip_benchmark_lineage=True):
for rank, tax_id in entry['hit_summary_lineage'].items():
counters[rank][tax_id] += 1
return counters
def hit_summary_concordance(idseq_file_manager):
concordance_counters = defaultdict(int)
hit_by_read_id = {}
# Loop through both hit summary files simultaneously to take advantage of
# similarly sorted entries
for nt_hit_summary_entry, nr_hit_summary_entry in zip(
idseq_file_manager.post_assembly_hit_summary_entries('NT'),
idseq_file_manager.post_assembly_hit_summary_entries('NR')
):
nt_idseq_lineage, nt_read_id = nt_hit_summary_entry['hit_summary_lineage'], nt_hit_summary_entry['read_id']
nr_idseq_lineage, nr_read_id = nr_hit_summary_entry['hit_summary_lineage'], nr_hit_summary_entry['read_id']
for idseq_lineage, read_id in zip([nt_idseq_lineage, nr_idseq_lineage], [nt_read_id, nr_read_id]):
if read_id in hit_by_read_id:
for rank, tax_id in idseq_lineage.items():
if hit_by_read_id[read_id][rank] == tax_id:
concordance_counters[tax_id] += 1
del hit_by_read_id[read_id]
else:
hit_by_read_id[read_id] = idseq_lineage
return concordance_counters
def count_reads_per_benchmark_lineage(idseq_file_manager, fastx_files):
counters = {}
for fastx_file in fastx_files:
for entry in idseq_file_manager.fastx_iterator(fastx_file):
for _, tax_id in entry['lineage'].items():
counters[tax_id] = counters.get(tax_id, 0) + 1
return counters
def count_hits_per_benchmark_lineage(idseq_file_manager):
counts_nt = hit_summary_counts_per_benchmark_lineage(idseq_file_manager, 'NT')
counts_nr = hit_summary_counts_per_benchmark_lineage(idseq_file_manager, 'NR')
return counts_nt, counts_nr
def count_hits_per_tax_id(idseq_file_manager):
counts_nt = hit_summary_counts_per_tax_id(idseq_file_manager, 'NT')
counts_nr = hit_summary_counts_per_tax_id(idseq_file_manager, 'NR')
return counts_nt, counts_nr
def score_benchmark(project_id, sample_id, pipeline_version, env='prod', local_path=None, force_monotonic=False):
idseq_file_manager = IDseqSampleFileManager(project_id, sample_id, pipeline_version, env=env, local_path=local_path)
print(" * Counting reads from input files")
input_reads_by_tax_id = count_reads_per_benchmark_lineage(idseq_file_manager, idseq_file_manager.input_files())
print(" * Counting reads from post qc files")
post_qc_reads_by_tax_id = count_reads_per_benchmark_lineage(idseq_file_manager, idseq_file_manager.post_qc_files())
print(" * Counting hits per benchmark lineage")
hit_counters_nt, hit_counters_nr = count_hits_per_benchmark_lineage(idseq_file_manager)
print(" * Counting corcordant hits per taxon id")
concordance_by_tax_id = hit_summary_concordance(idseq_file_manager)
stats = {
'per_rank': {}
}
ranks = sorted(set(hit_counters_nt.ranks()) | set(hit_counters_nr.ranks()))
for rank in ranks:
stats_per_rank = stats['per_rank'].setdefault(rank, {})
total_reads_per_rank = sum(
input_reads_by_tax_id[benchmark_tax_id]
for benchmark_tax_id in hit_counters_nt.by_rank(rank)
if benchmark_tax_id > 0)
total_post_qc_reads_per_rank = sum(
post_qc_reads_by_tax_id[benchmark_tax_id]
for benchmark_tax_id in hit_counters_nt.by_rank(rank)
if benchmark_tax_id > 0)
for db_type, hit_counters in zip(['NT', 'NR'], [hit_counters_nt, hit_counters_nr]):
stats_per_db_type = stats_per_rank.setdefault(db_type, {})
benchmark_hits = hit_counters.by_rank(rank)
total_correct_reads_per_db_type = 0
for benchmark_tax_id in benchmark_hits.keys():
stats_by_tax_id = stats_per_db_type.setdefault(benchmark_tax_id, {})
stats_by_tax_id['total_reads'] = input_reads_by_tax_id[benchmark_tax_id]
stats_by_tax_id['post_qc_reads'] = post_qc_reads_by_tax_id[benchmark_tax_id]
stats_by_tax_id['recall_per_read'] = {
'count': benchmark_hits[benchmark_tax_id][benchmark_tax_id],
'value': benchmark_hits[benchmark_tax_id][benchmark_tax_id] / post_qc_reads_by_tax_id[benchmark_tax_id],
}
total_correct_reads_per_db_type += benchmark_hits[benchmark_tax_id][benchmark_tax_id]
stats_per_db_type['accuracy'] = {
'count': total_correct_reads_per_db_type,
'value': total_correct_reads_per_db_type/total_post_qc_reads_per_rank
}
idseq_hit_counters = defaultdict(int)
bench_hit_counters = defaultdict(int)
for bench_tax_id, idseq_hits in benchmark_hits.items():
for idseq_tax_id, counts in idseq_hits.items():
idseq_hit_counters[idseq_tax_id] += counts
bench_hit_counters[bench_tax_id] += counts
truth_taxa = [
{'tax_id': tax_id, 'abs_abundance': counts}
for tax_id, counts in bench_hit_counters.items()
]
sample_level_metrics = metrics_per_sample(idseq_hit_counters, truth_taxa, force_monotonic=force_monotonic)
stats_per_db_type.update(sample_level_metrics)
stats_concordance = {}
benchmark_tax_ids = set(hit_counters_nt.by_rank(rank).keys()) | set(hit_counters_nr.by_rank(rank).keys())
for benchmark_tax_id in benchmark_tax_ids:
stats_concordance[benchmark_tax_id] = {
"count": concordance_by_tax_id[benchmark_tax_id],
"value": concordance_by_tax_id[benchmark_tax_id] / post_qc_reads_by_tax_id[benchmark_tax_id]
}
stats_per_rank['concordance'] = stats_concordance
stats_per_rank['total_reads'] = total_reads_per_rank
stats_per_rank['post_qc_reads'] = total_post_qc_reads_per_rank
return stats
def metrics_per_sample(hit_counters, truth_taxa, force_monotonic=False):
stats = {}
total_simulated_taxa = len(truth_taxa)
total_correctly_identified_taxa = sum(1 for taxon in truth_taxa if taxon['tax_id'] in hit_counters)
total_identified_taxa = len(hit_counters)
stats['total_simulated_taxa'] = total_simulated_taxa
stats['total_correctly_identified_taxa'] = total_correctly_identified_taxa
stats['total_identified_taxa'] = total_identified_taxa
recall = total_correctly_identified_taxa / total_simulated_taxa
precision = total_correctly_identified_taxa / total_identified_taxa
stats['recall'] = recall
stats['precision'] = precision
stats['f1-score'] = 2 * recall * precision / (recall + precision)
# AUPR - Area Under Precision and Recall curve
tax_ids = hit_counters.keys()
benchmark_tax_ids_set = set(taxon['tax_id'] for taxon in truth_taxa)
missed_tax_ids = [tax_id for tax_id in benchmark_tax_ids_set if tax_id not in tax_ids]
y_true = [1 if tax_id in benchmark_tax_ids_set else 0 for tax_id in tax_ids] + [1] * len(missed_tax_ids)
total_sum = sum(hit_counters.values())
y_score = [hit_counters[tax_id] / total_sum for tax_id in tax_ids] + [0] * len(missed_tax_ids)
aupr_results = adjusted_aupr(y_true, y_score, force_monotonic=force_monotonic)
stats['aupr'] = aupr_results["aupr"]
total_benchmark_reads = sum(taxon['abs_abundance'] for taxon in truth_taxa)
relative_abundances_diff = [
taxon['abs_abundance']/total_benchmark_reads - hit_counters[taxon['tax_id']]/total_benchmark_reads
for taxon in truth_taxa
]
l1_norm = np.linalg.norm(relative_abundances_diff, ord=1)
l2_norm = np.linalg.norm(relative_abundances_diff, ord=2)
stats['l1_norm'] = l1_norm
stats['l2_norm'] = l2_norm
return stats
def score_sample(project_id, sample_id, pipeline_version, truth_taxa, env='prod', local_path=None, force_monotonic=False):
idseq_file_manager = IDseqSampleFileManager(project_id, sample_id, pipeline_version, env=env, local_path=local_path)
hit_counters_nt, hit_counters_nr = count_hits_per_tax_id(idseq_file_manager)
stats = {'per_rank': {}}
ranks = sorted(truth_taxa.keys())
for rank in ranks:
stats_per_rank = stats['per_rank'].setdefault(rank, {})
for db_type, hit_counters in zip(['NT', 'NR'], [hit_counters_nt, hit_counters_nr]):
stats_per_rank[db_type] = metrics_per_sample(hit_counters[rank], truth_taxa[rank], force_monotonic=force_monotonic)
return stats
|