File: PluginProcessor.cpp

package info (click to toggle)
iem-plugin-suite 1.15.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,080 kB
  • sloc: cpp: 58,973; python: 269; sh: 79; makefile: 41
file content (543 lines) | stat: -rw-r--r-- 21,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 ==============================================================================
 This file is part of the IEM plug-in suite.
 Author: Daniel Rudrich
 Copyright (c) 2017 - Institute of Electronic Music and Acoustics (IEM)
 https://iem.at

 The IEM plug-in suite is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 The IEM plug-in suite is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this software.  If not, see <https://www.gnu.org/licenses/>.
 ==============================================================================
 */

#include "PluginProcessor.h"
#include "PluginEditor.h"
#include <EQData.h>
#include <IRData.h>

const juce::StringArray BinauralDecoderAudioProcessor::headphoneEQs =
    juce::StringArray ("AKG-K141MK2",
                       "AKG-K240DF",
                       "AKG-K240MK2",
                       "AKG-K271MK2",
                       "AKG-K271STUDIO",
                       "AKG-K601",
                       "AKG-K701",
                       "AKG-K702",
                       "AKG-K1000-Closed",
                       "AKG-K1000-Open",
                       "AudioTechnica-ATH-M50",
                       "Beyerdynamic-DT250",
                       "Beyerdynamic-DT770PRO-250Ohms",
                       "Beyerdynamic-DT880",
                       "Beyerdynamic-DT990PRO",
                       "Presonus-HD7",
                       "Sennheiser-HD430",
                       "Sennheiser-HD480",
                       "Sennheiser-HD560ovationII",
                       "Sennheiser-HD565ovation",
                       "Sennheiser-HD600",
                       "Sennheiser-HD650",
                       "SHURE-SRH940");

//==============================================================================
BinauralDecoderAudioProcessor::BinauralDecoderAudioProcessor() :
    AudioProcessorBase (
#ifndef JucePlugin_PreferredChannelConfigurations
        BusesProperties()
    #if ! JucePlugin_IsMidiEffect
        #if ! JucePlugin_IsSynth
            .withInput ("Input",
                        ((juce::PluginHostType::getPluginLoadedAs()
                          == juce::AudioProcessor::wrapperType_VST3)
                             ? juce::AudioChannelSet::ambisonic (1)
                             : juce::AudioChannelSet::ambisonic (7)),
                        true)
        #endif
            .withOutput ("Output", juce::AudioChannelSet::stereo(), true)
    #endif
            ,
#endif
        createParameterLayout())
{
    // get pointers to the parameters
    inputOrderSetting = parameters.getRawParameterValue ("inputOrderSetting");
    useSN3D = parameters.getRawParameterValue ("useSN3D");
    applyHeadphoneEq = parameters.getRawParameterValue ("applyHeadphoneEq");

    // add listeners to parameter changes
    parameters.addParameterListener ("inputOrderSetting", this);
    parameters.addParameterListener ("applyHeadphoneEq", this);

    // load IRs
    juce::AudioFormatManager formatManager;
    formatManager.registerBasicFormats();
    juce::WavAudioFormat wavFormat;

    juce::MemoryInputStream* mis[7];
    mis[0] = new juce::MemoryInputStream (IRData::irsOrd1_wav, IRData::irsOrd1_wavSize, false);
    mis[1] = new juce::MemoryInputStream (IRData::irsOrd2_wav, IRData::irsOrd2_wavSize, false);
    mis[2] = new juce::MemoryInputStream (IRData::irsOrd3_wav, IRData::irsOrd3_wavSize, false);
    mis[3] = new juce::MemoryInputStream (IRData::irsOrd4_wav, IRData::irsOrd4_wavSize, false);
    mis[4] = new juce::MemoryInputStream (IRData::irsOrd5_wav, IRData::irsOrd5_wavSize, false);
    mis[5] = new juce::MemoryInputStream (IRData::irsOrd6_wav, IRData::irsOrd6_wavSize, false);
    mis[6] = new juce::MemoryInputStream (IRData::irsOrd7_wav, IRData::irsOrd7_wavSize, false);

    for (int i = 0; i < 7; ++i)
    {
        irs[i].setSize (juce::square (i + 2), irLength);
        std::unique_ptr<juce::AudioFormatReader> reader (wavFormat.createReaderFor (mis[i], true));
        reader->read (&irs[i], 0, irLength, 0, true, false);
        irs[i].applyGain (0.3f);
    }
}

BinauralDecoderAudioProcessor::~BinauralDecoderAudioProcessor()
{
}

int BinauralDecoderAudioProcessor::getNumPrograms()
{
    return 1; // NB: some hosts don't cope very well if you tell them there are 0 programs,
    // so this should be at least 1, even if you're not really implementing programs.
}

int BinauralDecoderAudioProcessor::getCurrentProgram()
{
    return 0;
}

void BinauralDecoderAudioProcessor::setCurrentProgram (int index)
{
}

const juce::String BinauralDecoderAudioProcessor::getProgramName (int index)
{
    return {};
}

void BinauralDecoderAudioProcessor::changeProgramName (int index, const juce::String& newName)
{
}

//==============================================================================
void BinauralDecoderAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
{
    checkInputAndOutput (this, *inputOrderSetting, 0, true);

    juce::dsp::ProcessSpec convSpec;
    convSpec.sampleRate = sampleRate;
    convSpec.maximumBlockSize = samplesPerBlock;
    convSpec.numChannels =
        2; // convolve two channels (which actually point two one and the same input channel)

    EQ.prepare (convSpec);
}

void BinauralDecoderAudioProcessor::releaseResources()
{
    // When playback stops, you can use this as an opportunity to free up any
    // spare memory, etc.
}

void BinauralDecoderAudioProcessor::processBlock (juce::AudioBuffer<float>& buffer,
                                                  juce::MidiBuffer& midiMessages)
{
    checkInputAndOutput (this, *inputOrderSetting, 0, false);
    juce::ScopedNoDenormals noDenormals;

    if (buffer.getNumChannels() < 2)
    {
        buffer.clear();
        return;
    }

    const int nCh = juce::jmin (buffer.getNumChannels(), input.getNumberOfChannels());
    const int L = buffer.getNumSamples();
    const int ergL = overlapBuffer.getNumSamples();
    const int overlap = irLengthMinusOne;
    const int copyL = juce::jmin (L, overlap); // copy max L samples of the overlap data

    if (*useSN3D >= 0.5f)
        for (int ch = 1; ch < nCh; ++ch)
            buffer.applyGain (ch, 0, buffer.getNumSamples(), sn3d2n3d[ch]);

    // clear accumulation buffers
    juce::FloatVectorOperations::clear (reinterpret_cast<float*> (accumMid.data()), fftLength + 2);
    juce::FloatVectorOperations::clear (reinterpret_cast<float*> (accumSide.data()), fftLength + 2);

    const int nZeros = fftLength - L;

    //compute mid signal in frequency domain
    for (int midix = 0; midix < nMidCh; ++midix)
    {
        const int ch = mix2cix[midix];

        juce::FloatVectorOperations::copy (reinterpret_cast<float*> (fftBuffer.data()),
                                           buffer.getReadPointer (ch),
                                           L);
        juce::FloatVectorOperations::clear (reinterpret_cast<float*> (fftBuffer.data()) + L,
                                            nZeros);

        fft->performRealOnlyForwardTransform (reinterpret_cast<float*> (fftBuffer.data()));

        const auto tfMid =
            reinterpret_cast<const std::complex<float>*> (irsFrequencyDomain.getReadPointer (ch));
        for (int i = 0; i < fftLength / 2 + 1; ++i)
            accumMid[i] += fftBuffer[i] * tfMid[i];
    }

    //compute side signal in frequency domain
    for (int sidix = 0; sidix < nSideCh; ++sidix)
    {
        const int ch = six2cix[sidix];

        juce::FloatVectorOperations::copy (reinterpret_cast<float*> (fftBuffer.data()),
                                           buffer.getReadPointer (ch),
                                           L);
        juce::FloatVectorOperations::clear (reinterpret_cast<float*> (fftBuffer.data()) + L,
                                            nZeros);

        fft->performRealOnlyForwardTransform (reinterpret_cast<float*> (fftBuffer.data()));

        const auto tfSide =
            reinterpret_cast<const std::complex<float>*> (irsFrequencyDomain.getReadPointer (ch));
        for (int i = 0; i < fftLength / 2 + 1; ++i)
            accumSide[i] += fftBuffer[i] * tfSide[i];
    }

    fft->performRealOnlyInverseTransform (reinterpret_cast<float*> (accumMid.data()));
    fft->performRealOnlyInverseTransform (reinterpret_cast<float*> (accumSide.data()));

    ///* MS -> LR  */
    juce::FloatVectorOperations::copy (buffer.getWritePointer (0),
                                       reinterpret_cast<float*> (accumMid.data()),
                                       L);
    juce::FloatVectorOperations::copy (buffer.getWritePointer (1),
                                       reinterpret_cast<float*> (accumMid.data()),
                                       L);
    juce::FloatVectorOperations::add (buffer.getWritePointer (0),
                                      reinterpret_cast<float*> (accumSide.data()),
                                      L);
    juce::FloatVectorOperations::subtract (buffer.getWritePointer (1),
                                           reinterpret_cast<float*> (accumSide.data()),
                                           L);

    juce::FloatVectorOperations::add (buffer.getWritePointer (0),
                                      overlapBuffer.getWritePointer (0),
                                      copyL);
    juce::FloatVectorOperations::add (buffer.getWritePointer (1),
                                      overlapBuffer.getWritePointer (1),
                                      copyL);

    if (copyL < overlap) // there is some overlap left, want some?
    {
        const int howManyAreLeft = overlap - L;

        //shift the overlap buffer to the left
        juce::FloatVectorOperations::copy (overlapBuffer.getWritePointer (0),
                                           overlapBuffer.getReadPointer (0, L),
                                           howManyAreLeft);
        juce::FloatVectorOperations::copy (overlapBuffer.getWritePointer (1),
                                           overlapBuffer.getReadPointer (1, L),
                                           howManyAreLeft);

        //clear the tail
        juce::FloatVectorOperations::clear (overlapBuffer.getWritePointer (0, howManyAreLeft),
                                            ergL - howManyAreLeft);
        juce::FloatVectorOperations::clear (overlapBuffer.getWritePointer (1, howManyAreLeft),
                                            ergL - howManyAreLeft);

        /* MS -> LR  */
        juce::FloatVectorOperations::add (overlapBuffer.getWritePointer (0),
                                          reinterpret_cast<float*> (accumMid.data()) + L,
                                          irLengthMinusOne);
        juce::FloatVectorOperations::add (overlapBuffer.getWritePointer (1),
                                          reinterpret_cast<float*> (accumMid.data()) + L,
                                          irLengthMinusOne);
        juce::FloatVectorOperations::add (overlapBuffer.getWritePointer (0),
                                          reinterpret_cast<float*> (accumSide.data()) + L,
                                          irLengthMinusOne);
        juce::FloatVectorOperations::subtract (overlapBuffer.getWritePointer (1),
                                               reinterpret_cast<float*> (accumSide.data()) + L,
                                               irLengthMinusOne);
    }
    else
    {
        /* MS -> LR  */
        juce::FloatVectorOperations::copy (overlapBuffer.getWritePointer (0),
                                           reinterpret_cast<float*> (accumMid.data()) + L,
                                           irLengthMinusOne);
        juce::FloatVectorOperations::copy (overlapBuffer.getWritePointer (1),
                                           reinterpret_cast<float*> (accumMid.data()) + L,
                                           irLengthMinusOne);
        juce::FloatVectorOperations::add (overlapBuffer.getWritePointer (0),
                                          reinterpret_cast<float*> (accumSide.data()) + L,
                                          irLengthMinusOne);
        juce::FloatVectorOperations::subtract (overlapBuffer.getWritePointer (1),
                                               reinterpret_cast<float*> (accumSide.data()) + L,
                                               irLengthMinusOne);
    }

    if (*applyHeadphoneEq >= 0.5f)
    {
        float* channelData[2] = { buffer.getWritePointer (0), buffer.getWritePointer (1) };
        juce::dsp::AudioBlock<float> sumBlock (channelData, 2, L);
        juce::dsp::ProcessContextReplacing<float> eqContext (sumBlock);
        EQ.process (eqContext);
    }

    for (int ch = 2; ch < buffer.getNumChannels(); ++ch)
        buffer.clear (ch, 0, buffer.getNumSamples());
}

//==============================================================================
bool BinauralDecoderAudioProcessor::hasEditor() const
{
    return true; // (change this to false if you choose to not supply an editor)
}

juce::AudioProcessorEditor* BinauralDecoderAudioProcessor::createEditor()
{
    return new BinauralDecoderAudioProcessorEditor (*this, parameters);
}

//==============================================================================
void BinauralDecoderAudioProcessor::getStateInformation (juce::MemoryBlock& destData)
{
    auto state = parameters.copyState();

    auto oscConfig = state.getOrCreateChildWithName ("OSCConfig", nullptr);
    oscConfig.copyPropertiesFrom (oscParameterInterface.getConfig(), nullptr);

    std::unique_ptr<juce::XmlElement> xml (state.createXml());
    copyXmlToBinary (*xml, destData);
}

void BinauralDecoderAudioProcessor::setStateInformation (const void* data, int sizeInBytes)
{
    std::unique_ptr<juce::XmlElement> xmlState (getXmlFromBinary (data, sizeInBytes));
    if (xmlState.get() != nullptr)
        if (xmlState->hasTagName (parameters.state.getType()))
        {
            parameters.replaceState (juce::ValueTree::fromXml (*xmlState));
            if (parameters.state.hasProperty ("OSCPort")) // legacy
            {
                oscParameterInterface.getOSCReceiver().connect (
                    parameters.state.getProperty ("OSCPort", juce::var (-1)));
                parameters.state.removeProperty ("OSCPort", nullptr);
            }

            auto oscConfig = parameters.state.getChildWithName ("OSCConfig");
            if (oscConfig.isValid())
                oscParameterInterface.setConfig (oscConfig);
        }
}

//==============================================================================
void BinauralDecoderAudioProcessor::parameterChanged (const juce::String& parameterID,
                                                      float newValue)
{
    if (parameterID == "inputOrderSetting")
        userChangedIOSettings = true;
    else if (parameterID == "applyHeadphoneEq")
    {
        const int sel (juce::roundToInt (newValue));
        if (sel > 0)
        {
            int sourceDataSize;
            juce::String name = headphoneEQs[sel - 1].replace ("-", "") + "_wav";
            auto* sourceData = EQData::getNamedResource (name.toUTF8(), sourceDataSize);
            if (sourceData == nullptr)
                DBG ("error");
            EQ.loadImpulseResponse (sourceData,
                                    sourceDataSize,
                                    juce::dsp::Convolution::Stereo::yes,
                                    juce::dsp::Convolution::Trim::no,
                                    2048,
                                    juce::dsp::Convolution::Normalise::no);
        }
    }
}

void BinauralDecoderAudioProcessor::updateBuffers()
{
    DBG ("IOHelper:  input size: " << input.getSize());
    DBG ("IOHelper: output size: " << output.getSize());

    const double sampleRate = getSampleRate();
    const int blockSize = getBlockSize();

    int order = juce::jmax (input.getOrder(), 1);
    const int nCh =
        input
            .getNumberOfChannels(); // why not juce::jmin(buffer.....)? Is updateBuffers called before the first processBlock?
    DBG ("order: " << order);
    DBG ("nCh: " << nCh);

    int tmpOrder = sqrt (nCh) - 1;
    if (tmpOrder < order)
    {
        order = tmpOrder;
    }

    //get number of mid- and side-channels
    nSideCh = order * (order + 1) / 2;
    nMidCh = juce::square (order + 1)
             - nSideCh; //nMidCh = nCh - nSideCh; //nCh should be equalt to (order+1)^2

    if (order < 1)
        order = 1; // just use first order filters

    juce::AudioBuffer<float> resampledIRs;
    bool useResampled = false;
    irLength = 236;

    if (sampleRate != irsSampleRate && order != 0) // do resampling!
    {
        useResampled = true;
        double factorReading = irsSampleRate / sampleRate;
        irLength = juce::roundToInt (irLength / factorReading + 0.49);

        juce::MemoryAudioSource memorySource (irs[order - 1], false);
        juce::ResamplingAudioSource resamplingSource (&memorySource, false, nCh);

        resamplingSource.setResamplingRatio (factorReading);
        resamplingSource.prepareToPlay (irLength, sampleRate);

        resampledIRs.setSize (nCh, irLength);
        juce::AudioSourceChannelInfo info;
        info.startSample = 0;
        info.numSamples = irLength;
        info.buffer = &resampledIRs;

        resamplingSource.getNextAudioBlock (info);

        // compensate for more (correlated) samples contributing to output signal
        resampledIRs.applyGain (irsSampleRate / sampleRate);
    }

    irLengthMinusOne = irLength - 1;

    const int prevFftLength = fftLength;

    const int ergL = blockSize + irLength - 1; //max number of nonzero output samples
    fftLength = juce::nextPowerOfTwo (ergL); //fftLength >= ergL

    overlapBuffer.setSize (2, irLengthMinusOne);
    overlapBuffer.clear();

    if (prevFftLength != fftLength)
    {
        const int fftOrder = std::log2 (fftLength);

        fft = std::make_unique<juce::dsp::FFT> (fftOrder);

        fftBuffer.resize (fftLength);

        accumMid.resize (fftLength);
        accumSide.resize (fftLength);
    }

    irsFrequencyDomain.setSize (nCh, 2 * (fftLength / 2 + 1));
    irsFrequencyDomain.clear();

    for (int i = 0; i < nCh; ++i)
    {
        float* inOut = reinterpret_cast<float*> (fftBuffer.data());
        const float* src =
            useResampled ? resampledIRs.getReadPointer (i) : irs[order - 1].getReadPointer (i);
        juce::FloatVectorOperations::copy (inOut, src, irLength);
        juce::FloatVectorOperations::clear (inOut + irLength, fftLength - irLength); // zero padding
        fft->performRealOnlyForwardTransform (inOut);
        juce::FloatVectorOperations::copy (irsFrequencyDomain.getWritePointer (i),
                                           inOut,
                                           2 * (fftLength / 2 + 1));
    }
}

//==============================================================================
std::vector<std::unique_ptr<juce::RangedAudioParameter>>
    BinauralDecoderAudioProcessor::createParameterLayout()
{
    // add your audio parameters here
    std::vector<std::unique_ptr<juce::RangedAudioParameter>> params;

    params.push_back (OSCParameterInterface::createParameterTheOldWay (
        "inputOrderSetting",
        "Input Ambisonic Order",
        "",
        juce::NormalisableRange<float> (0.0f, 8.0f, 1.0f),
        0.0f,
        [] (float value)
        {
            if (value >= 0.5f && value < 1.5f)
                return "0th";
            else if (value >= 1.5f && value < 2.5f)
                return "1st";
            else if (value >= 2.5f && value < 3.5f)
                return "2nd";
            else if (value >= 3.5f && value < 4.5f)
                return "3rd";
            else if (value >= 4.5f && value < 5.5f)
                return "4th";
            else if (value >= 5.5f && value < 6.5f)
                return "5th";
            else if (value >= 6.5f && value < 7.5f)
                return "6th";
            else if (value >= 7.5f)
                return "7th";
            else
                return "Auto";
        },
        nullptr));

    params.push_back (OSCParameterInterface::createParameterTheOldWay (
        "useSN3D",
        "Input Normalization",
        "",
        juce::NormalisableRange<float> (0.0f, 1.0f, 1.0f),
        1.0f,
        [] (float value)
        {
            if (value >= 0.5f)
                return "SN3D";
            else
                return "N3D";
        },
        nullptr));

    params.push_back (OSCParameterInterface::createParameterTheOldWay (
        "applyHeadphoneEq",
        "Headphone Equalization",
        "",
        juce::NormalisableRange<float> (0.0f, float (headphoneEQs.size()), 1.0f),
        0.0f,
        [this] (float value)
        {
            if (value < 0.5f)
                return juce::String ("OFF");
            else
                return juce::String (this->headphoneEQs[juce::roundToInt (value) - 1]);
        },
        nullptr));

    return params;
}

//==============================================================================
// This creates new instances of the plugin..
juce::AudioProcessor* JUCE_CALLTYPE createPluginFilter()
{
    return new BinauralDecoderAudioProcessor();
}