1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/* stem.c - the Porter algorithm for standardizing suffixes */
/* The Porter stemming algorithm is documented in: Porter, M.F., "An
Algorithm For Suffix Stripping," Program 14 (3), July 1980,
pp. 130-137.
Author History:
B. Frakes and C. Cox, 1986: Original authors.
C. Fox, 1990: made measure function a DFA, restructured structs,
renamed functions and variables, restricted function and variable scopes.
C. Fox, July, 1991: added ANSI C declarations, branch tested
to 90% coverage.
Andrew McCallum <mccallum@cs.cmu.edu> 1996: Changed to conform to GNU
coding standards. Rest of history is in GNU-style ChangeLog file
in this package.
This code will make little sense without the the Porter article.
The stemming function converts its input to lower case.
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
/* These used as return values. */
#define FALSE 0
#define TRUE 1
/* Used to test for end-of-string. */
#define EOS '\0'
/* Returns non-zero if `c' is one of the five vowels. */
#define is_vowel(c) ('a'==(c)||'e'==(c)||'i'==(c)||'o'==(c)||'u'==(c))
/* The Porter stemming rules are stored as arrays of this structure. */
typedef struct
{
int id; /* returned if rule fired */
char *old_end; /* suffix replaced */
char *new_end; /* suffix replacement */
int old_offset; /* from end of word to start of suffix */
int new_offset; /* from beginning to end of new suffix */
int min_root_size; /* min root word size for replacement */
int (*condition)(); /* the replacement test function */
} rule_list;
/* Used when declaring rule_list's. */
static char LAMBDA[] = "";
/* Used to point to the end of the word that is currently being stem()'ed. */
static char *end;
/* word_size (word)
Returns: int -- a weird count of word size in adjusted syllables
Purpose: Count syllables in a special way: count the number
vowel-consonant pairs in a word, disregarding initial
consonants and final vowels. The letter "y" counts as a
consonant at the beginning of a word and when it has a vowel
in front of it; otherwise (when it follows a consonant) it
is treated as a vowel. For example, the word_size of "cat"
is 1, of "any" is 1, of "amount" is 2, of "anything" is 3.
Plan: Run a DFA to compute the word size
Notes: The easiest and fastest way to compute this funny measure is
with a finite state machine. The initial state 0 checks
the first letter. If it is a vowel, then the machine changes
to state 1, which is the "last letter was a vowel" state.
If the first letter is a consonant or y, then it changes
to state 2, the "last letter was a consonant state". In
state 1, a y is treated as a consonant (since it follows
a vowel), but in state 2, y is treated as a vowel (since
it follows a consonant. The result counter is incremented
on the transition from state 1 to state 2, since this
transition only occurs after a vowel-consonant pair, which
is what we are counting.
*/
static int
word_size (const char *word)
{
register int result; /* word_size of the word */
register int state; /* current state in machine */
result = 0;
state = 0;
/* Run a DFA to compute the word size */
while (EOS != *word)
{
switch (state)
{
case 0:
state = (is_vowel (*word)) ? 1 : 2;
break;
case 1:
state = (is_vowel (*word)) ? 1 : 2;
if (2 == state)
result++;
break;
case 2:
state = (is_vowel (*word) || ('y' == *word)) ? 1 : 2;
break;
}
word++;
}
return (result);
}
/* contains_vowel (word)
Returns: int -- TRUE (1) if the word parameter contains a vowel,
FALSE (0) otherwise.
Purpose: Some of the rewrite rules apply only to a root containing
a vowel, where a vowel is one of "aeiou" or y with a
consonant in front of it.
Plan: Obviously, under the definition of a vowel, a word contains
a vowel iff either its first letter is one of "aeiou", or
any of its other letters are "aeiouy". The plan is to
test this condition.
*/
static int
contains_vowel (const char *word)
{
if (EOS == *word)
return (FALSE);
else
return (is_vowel (*word) || (NULL != strpbrk(word+1,"aeiouy")));
}
/* ends_with_cvc (word)
Returns: int -- TRUE (1) if the current word ends with a
consonant-vowel-consonant combination, and the second
consonant is not w, x, or y, FALSE (0) otherwise.
Purpose: Some of the rewrite rules apply only to a root with
this characteristic.
Plan: Look at the last three characters.
*/
static int
ends_with_cvc (const char *word)
{
int length; /* for finding the last three characters */
if ((length = strlen(word)) <= 2)
return (FALSE);
else
{
end = (char*) word + length - 1;
return ((NULL == strchr("aeiouwxy", *end--)) /* consonant */
&& (NULL != strchr("aeiouy", *end--)) /* vowel */
&& (NULL == strchr("aeiou", *end )) ); /* consonant */
}
}
/* add_an_e (word)
Returns: int -- TRUE (1) if the current word meets special conditions
for adding an e.
Purpose: Rule 122 applies only to a root with this characteristic.
Plan: Check for size of 1 and a consonant-vowel-consonant ending.
*/
static int
add_an_e (const char *word)
{
return ((1 == word_size (word)) && ends_with_cvc(word));
}
/* remove_an_e (word)
Returns: int -- TRUE (1) if the current word meets special conditions
for removing an e.
Purpose: Rule 502 applies only to a root with this characteristic.
Plan: Check for size of 1 and no consonant-vowel-consonant ending.
*/
static int
remove_an_e (const char *word)
{
return ((1 == word_size (word)) && !ends_with_cvc (word));
}
/* replace_end (word, rule)
Returns: int -- the id for the rule fired, 0 is none is fired
Purpose: Apply a set of rules to replace the suffix of a word
Plan: Loop through the rule set until a match meeting all conditions
is found. If a rule fires, return its id, otherwise return 0.
Connditions on the length of the root are checked as part of this
function's processing because this check is so often made.
Notes: This is the main routine driving the stemmer. It goes through
a set of suffix replacement rules looking for a match on the
current suffix. When it finds one, if the root of the word
is long enough, and it meets whatever other conditions are
required, then the suffix is replaced, and the function returns.
*/
static int
replace_end (char *word, const rule_list *rule)
{
register char *ending; /* set to start of possible stemmed suffix */
char tmp_ch; /* save replaced character when testing */
while (0 != rule->id)
{
ending = end - rule->old_offset;
if (word <= ending)
if (0 == strcmp (ending,rule->old_end))
{
tmp_ch = *ending;
*ending = EOS;
if ((rule->min_root_size < word_size (word))
&& (!rule->condition || (*rule->condition)(word)))
{
strcat (word, rule->new_end);
end = ending + rule->new_offset;
break;
}
*ending = tmp_ch;
}
rule++;
}
return (rule->id);
}
/* The Porter stemming rules. */
static rule_list step1a_rules[] =
{
{101, "sses", "ss", 3, 1, -1, NULL},
{102, "ies", "i", 2, 0, -1, NULL},
{103, "ss", "ss", 1, 1, -1, NULL},
{104, "s", LAMBDA, 0, -1, -1, NULL},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step1b_rules[] =
{
{105, "eed", "ee", 2, 1, 0, NULL},
{106, "ed", LAMBDA, 1, -1, -1, contains_vowel},
{107, "ing", LAMBDA, 2, -1, -1, contains_vowel},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step1b1_rules[] =
{
{108, "at", "ate", 1, 2, -1, NULL},
{109, "bl", "ble", 1, 2, -1, NULL},
{110, "iz", "ize", 1, 2, -1, NULL},
{111, "bb", "b", 1, 0, -1, NULL},
{112, "dd", "d", 1, 0, -1, NULL},
{113, "ff", "f", 1, 0, -1, NULL},
{114, "gg", "g", 1, 0, -1, NULL},
{115, "mm", "m", 1, 0, -1, NULL},
{116, "nn", "n", 1, 0, -1, NULL},
{117, "pp", "p", 1, 0, -1, NULL},
{118, "rr", "r", 1, 0, -1, NULL},
{119, "tt", "t", 1, 0, -1, NULL},
{120, "ww", "w", 1, 0, -1, NULL},
{121, "xx", "x", 1, 0, -1, NULL},
{122, LAMBDA, "e", -1, 0, -1, add_an_e},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step1c_rules[] =
{
{123, "y", "i", 0, 0, -1, contains_vowel},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step2_rules[] =
{
{203, "ational", "ate", 6, 2, 0, NULL},
{204, "tional", "tion", 5, 3, 0, NULL},
{205, "enci", "ence", 3, 3, 0, NULL},
{206, "anci", "ance", 3, 3, 0, NULL},
{207, "izer", "ize", 3, 2, 0, NULL},
{208, "abli", "able", 3, 3, 0, NULL},
{209, "alli", "al", 3, 1, 0, NULL},
{210, "entli", "ent", 4, 2, 0, NULL},
{211, "eli", "e", 2, 0, 0, NULL},
{213, "ousli", "ous", 4, 2, 0, NULL},
{214, "ization", "ize", 6, 2, 0, NULL},
{215, "ation", "ate", 4, 2, 0, NULL},
{216, "ator", "ate", 3, 2, 0, NULL},
{217, "alism", "al", 4, 1, 0, NULL},
{218, "iveness", "ive", 6, 2, 0, NULL},
{219, "fulnes", "ful", 5, 2, 0, NULL},
{220, "ousness", "ous", 6, 2, 0, NULL},
{221, "aliti", "al", 4, 1, 0, NULL},
{222, "iviti", "ive", 4, 2, 0, NULL},
{223, "biliti", "ble", 5, 2, 0, NULL},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step3_rules[] =
{
{301, "icate", "ic", 4, 1, 0, NULL},
{302, "ative", LAMBDA, 4, -1, 0, NULL},
{303, "alize", "al", 4, 1, 0, NULL},
{304, "iciti", "ic", 4, 1, 0, NULL},
{305, "ical", "ic", 3, 1, 0, NULL},
{308, "ful", LAMBDA, 2, -1, 0, NULL},
{309, "ness", LAMBDA, 3, -1, 0, NULL},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step4_rules[] =
{
{401, "al", LAMBDA, 1, -1, 1, NULL},
{402, "ance", LAMBDA, 3, -1, 1, NULL},
{403, "ence", LAMBDA, 3, -1, 1, NULL},
{405, "er", LAMBDA, 1, -1, 1, NULL},
{406, "ic", LAMBDA, 1, -1, 1, NULL},
{407, "able", LAMBDA, 3, -1, 1, NULL},
{408, "ible", LAMBDA, 3, -1, 1, NULL},
{409, "ant", LAMBDA, 2, -1, 1, NULL},
{410, "ement", LAMBDA, 4, -1, 1, NULL},
{411, "ment", LAMBDA, 3, -1, 1, NULL},
{412, "ent", LAMBDA, 2, -1, 1, NULL},
{423, "sion", "s", 3, 0, 1, NULL},
{424, "tion", "t", 3, 0, 1, NULL},
{415, "ou", LAMBDA, 1, -1, 1, NULL},
{416, "ism", LAMBDA, 2, -1, 1, NULL},
{417, "ate", LAMBDA, 2, -1, 1, NULL},
{418, "iti", LAMBDA, 2, -1, 1, NULL},
{419, "ous", LAMBDA, 2, -1, 1, NULL},
{420, "ive", LAMBDA, 2, -1, 1, NULL},
{421, "ize", LAMBDA, 2, -1, 1, NULL},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step5a_rules[] =
{
{501, "e", LAMBDA, 0, -1, 1, NULL},
{502, "e", LAMBDA, 0, -1, -1, remove_an_e},
{000, NULL, NULL, 0, 0, 0, NULL}
};
static rule_list step5b_rules[] =
{
{503, "ll", "l", 1, 0, 1, NULL},
{000, NULL, NULL, 0, 0, 0, NULL}
};
/* stem (word)
Returns: int -- FALSE (0) if the word contains non-alphabetic characters
and hence is not stemmed, TRUE (1) otherwise
Purpose: Stem a word
Plan: Part 1: Check to ensure the word is all alphabetic
Part 2: Run through the Porter algorithm
Part 3: Return an indication of successful stemming
Notes: This function implements the Porter stemming algorithm, with
a few additions here and there. See:
Porter, M.F., "An Algorithm For Suffix Stripping,"
Program 14 (3), July 1980, pp. 130-137.
Porter's algorithm is an ad hoc set of rewrite rules with
various conditions on rule firing. The terminology of
"step 1a" and so on, is taken directly from Porter's
article, which unfortunately gives almost no justification
for the various steps. Thus this function more or less
faithfully refects the opaque presentation in the article.
Changes from the article amount to a few additions to the
rewrite rules; these are marked in the rule_list data
structures with comments.
*/
int
ifile_stem_porter (char *word)
{
int rule; /* which rule is fired in replacing an end */
/* Part 1: Check to ensure the word is all alphabetic */
for (end = word; *end != EOS; end++)
{
if (!isalpha(*end))
return (FALSE);
else
*end = tolower (*end);
}
end--;
/* Part 2: Run through the Porter algorithm */
replace_end (word, step1a_rules);
rule = replace_end (word, step1b_rules);
if ((106 == rule) || (107 == rule))
replace_end (word, step1b1_rules);
replace_end (word, step1c_rules);
replace_end (word, step2_rules);
replace_end (word, step3_rules);
replace_end (word, step4_rules);
replace_end (word, step5a_rules);
replace_end (word, step5b_rules);
/* Part 3: Return an indication of successful stemming */
return (TRUE);
}
|