File: Triangle.hh

package info (click to toggle)
ignition-math4 4.0.0%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,840 kB
  • sloc: cpp: 18,143; python: 2,716; ansic: 503; sh: 168; makefile: 16
file content (246 lines) | stat: -rw-r--r-- 8,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Copyright (C) 2014 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/
#ifndef IGNITION_MATH_TRIANGLE_HH_
#define IGNITION_MATH_TRIANGLE_HH_

#include <set>
#include <ignition/math/Helpers.hh>
#include <ignition/math/Line2.hh>
#include <ignition/math/Vector2.hh>
#include <ignition/math/config.hh>

namespace ignition
{
  namespace math
  {
    inline namespace IGNITION_MATH_VERSION_NAMESPACE
    {
    /// \class Triangle Triangle.hh ignition/math/Triangle.hh
    /// \brief Triangle class and related functions.
    template<typename T>
    class Triangle
    {
      /// \brief Default constructor
      public: Triangle() = default;

      /// \brief Constructor
      /// \param[in] _pt1 First point that defines the triangle.
      /// \param[in] _pt2 Second point that defines the triangle.
      /// \param[in] _pt3 Third point that defines the triangle.
      public: Triangle(const math::Vector2<T> &_pt1,
                       const math::Vector2<T> &_pt2,
                       const math::Vector2<T> &_pt3)
      {
        this->Set(_pt1, _pt2, _pt3);
      }

      /// \brief Set one vertex of the triangle.
      /// \param[in] _index Index of the point to set, where
      /// 0 == first vertex, 1 == second vertex, and 2 == third vertex.
      /// The index is clamped to the range [0, 2].
      /// \param[in] _pt Value of the point to set.
      public: void Set(const unsigned int _index, const math::Vector2<T> &_pt)
      {
        this->pts[clamp(_index, 0u, 2u)] = _pt;
      }

      /// \brief Set all vertices of the triangle.
      /// \param[in] _pt1 First point that defines the triangle.
      /// \param[in] _pt2 Second point that defines the triangle.
      /// \param[in] _pt3 Third point that defines the triangle.
      public: void Set(const math::Vector2<T> &_pt1,
                       const math::Vector2<T> &_pt2,
                       const math::Vector2<T> &_pt3)
      {
        this->pts[0] = _pt1;
        this->pts[1] = _pt2;
        this->pts[2] = _pt3;
      }

      /// \brief Get whether this triangle is valid, based on triangle
      /// inequality: the sum of the lengths of any two sides must be greater
      /// than the length of the remaining side.
      /// \return True if the triangle inequality holds
      public: bool Valid() const
      {
        T a = this->Side(0).Length();
        T b = this->Side(1).Length();
        T c = this->Side(2).Length();
        return (a+b) > c && (b+c) > a && (c+a) > b;
      }

      /// \brief Get a line segment for one side of the triangle.
      /// \param[in] _index Index of the side to retreive, where
      /// 0 == Line2(pt1, pt2),
      /// 1 == Line2(pt2, pt3),
      /// 2 == Line2(pt3, pt1)
      /// The index is clamped to the range [0, 2]
      /// \return Line segment of the requested side.
      public: Line2<T> Side(const unsigned int _index) const
      {
        if (_index == 0)
          return Line2<T>(this->pts[0], this->pts[1]);
        else if (_index == 1)
          return Line2<T>(this->pts[1], this->pts[2]);
        else
          return Line2<T>(this->pts[2], this->pts[0]);
      }

      /// \brief Check if this triangle completely contains the given line
      /// segment.
      /// \param[in] _line Line to check.
      /// \return True if the line's start and end points are both inside
      /// this triangle.
      public: bool Contains(const Line2<T> &_line) const
      {
        return this->Contains(_line[0]) && this->Contains(_line[1]);
      }

      /// \brief Get whether this triangle contains the given point.
      /// \param[in] _pt Point to check.
      /// \return True if the point is inside or on the triangle.
      public: bool Contains(const math::Vector2<T> &_pt) const
      {
        // Compute vectors
        math::Vector2<T> v0 = this->pts[2] -this->pts[0];
        math::Vector2<T> v1 = this->pts[1] -this->pts[0];
        math::Vector2<T> v2 = _pt - this->pts[0];

        // Compute dot products
        double dot00 = v0.Dot(v0);
        double dot01 = v0.Dot(v1);
        double dot02 = v0.Dot(v2);
        double dot11 = v1.Dot(v1);
        double dot12 = v1.Dot(v2);

        // Compute barycentric coordinates
        double invDenom = 1.0 / (dot00 * dot11 - dot01 * dot01);
        double u = (dot11 * dot02 - dot01 * dot12) * invDenom;
        double v = (dot00 * dot12 - dot01 * dot02) * invDenom;

        // Check if point is in triangle
        return (u >= 0) && (v >= 0) && (u + v <= 1);
      }

      /// \brief Get whether the given line intersects this triangle.
      /// \param[in] _line Line to check.
      /// \param[out] _ipt1 Return value of the first intersection point,
      /// only valid if the return value of the function is true.
      /// \param[out] _ipt2 Return value of the second intersection point,
      /// only valid if the return value of the function is true.
      /// \return True if the given line intersects this triangle.
      public: bool Intersects(const Line2<T> &_line,
                              math::Vector2<T> &_ipt1,
                              math::Vector2<T> &_ipt2) const
      {
        if (this->Contains(_line))
        {
          _ipt1 = _line[0];
          _ipt2 = _line[1];
          return true;
        }

        Line2<T> line1(this->pts[0], this->pts[1]);
        Line2<T> line2(this->pts[1], this->pts[2]);
        Line2<T> line3(this->pts[2], this->pts[0]);

        math::Vector2<T> pt;
        std::set<math::Vector2<T> > points;

        if (line1.Intersect(_line, pt))
          points.insert(pt);

        if (line2.Intersect(_line, pt))
          points.insert(pt);

        if (line3.Intersect(_line, pt))
          points.insert(pt);

        if (points.empty())
        {
          return false;
        }
        else if (points.size() == 1)
        {
          auto iter = points.begin();

          _ipt1 = *iter;
          if (this->Contains(_line[0]))
            _ipt2 = _line[0];
          else
          {
            _ipt2 = _line[1];
          }
        }
        else
        {
          auto iter = points.begin();
          _ipt1 = *(iter++);
          _ipt2 = *iter;
        }

        return true;
      }

      /// \brief Get the length of the triangle's perimeter.
      /// \return Sum of the triangle's line segments.
      public: T Perimeter() const
      {
        return this->Side(0).Length() + this->Side(1).Length() +
               this->Side(2).Length();
      }

      /// \brief Get the area of this triangle.
      /// \return Triangle's area.
      public: double Area() const
      {
        double s = this->Perimeter() / 2.0;
        T a = this->Side(0).Length();
        T b = this->Side(1).Length();
        T c = this->Side(2).Length();

        // Heron's formula
        // http://en.wikipedia.org/wiki/Heron%27s_formula
        return sqrt(s * (s-a) * (s-b) * (s-c));
      }

      /// \brief Get one of points that define the triangle.
      /// \param[in] _index The index, where 0 == first vertex,
      /// 1 == second vertex, and 2 == third vertex.
      /// The index is clamped to the range [0, 2]
      /// \return The point specified by _index.
      public: math::Vector2<T> operator[](const size_t _index) const
      {
        return this->pts[clamp(_index, IGN_ZERO_SIZE_T, IGN_TWO_SIZE_T)];
      }

      /// The points of the triangle
      private: math::Vector2<T> pts[3];
    };

    /// Integer specialization of the Triangle class.
    typedef Triangle<int> Trianglei;

    /// Double specialization of the Triangle class.
    typedef Triangle<double> Triangled;

    /// Float specialization of the Triangle class.
    typedef Triangle<float> Trianglef;
    }
  }
}
#endif