1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*
* Copyright (C) 2018 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <cmath>
#include <ignition/plugin/Register.hh>
#include "integrators.hh"
namespace ignition {
namespace plugin {
namespace examples {
namespace ExponentialODE {
/// \brief Create an exponential ODE, like radioactive decay or continuously
/// compounding interest.
ODESystem CreateExponentialODE(
const double t0 = 0.0,
const double x0 = 1.0,
const double base = std::exp(1),
const double lambda = 1.0)
{
ODESystem exponential;
exponential.name = "exponential ode";
exponential.initialTime = t0;
exponential.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return { x0 * std::pow(base, lambda*_t) };
};
exponential.initialState = exponential.exact(t0);
exponential.ode = [=](const NumericalIntegrator::Time /*_t*/,
const NumericalIntegrator::State &_state)
-> NumericalIntegrator::State
{
const double ln_base = std::log(base);
return { x0*lambda * std::pow(_state[0], lambda/ln_base) * ln_base };
};
return exponential;
}
/// \brief Create an ODE system that represents a circular trajectory.
ODESystem CreateCircularSystem(
const double t0 = 0.0,
const double theta0 = 0.0,
const double R = 1.0,
const double w = 1.0)
{
ODESystem circular;
circular.name = "circular system";
circular.initialTime = t0;
circular.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return { R * cos(w * (_t-t0) + theta0), R * sin(w * (_t-t0) + theta0) };
};
circular.initialState = circular.exact(t0);
circular.ode = [=](const NumericalIntegrator::Time _t,
const NumericalIntegrator::State &_state)
-> NumericalIntegrator::State
{
return { -w * _state[1], w * _state[0] };
};
return circular;
}
/// \brief Create an ODE system that represents an exponential spiral trajectory
ODESystem CreateSpiralSystem(
const double t0 = 0.0,
const double theta0 = 0.0,
const double R0 = 0.1,
const double lambda = 0.5,
const double w = 1.0)
{
ODESystem spiral;
spiral.name = "exponential spiral system";
spiral.initialTime = t0;
spiral.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return {
R0 * std::exp(lambda*(_t-t0)) * cos(w*(_t-t0) + theta0),
R0 * std::exp(lambda*(_t-t0)) * cos(w*(_t-t0) + theta0)
};
};
spiral.initialState = spiral.exact(t0);
spiral.ode = [=](const NumericalIntegrator::Time /*_t*/,
const NumericalIntegrator::State &_state)
-> NumericalIntegrator::State
{
return { lambda * _state[0] - w * _state[1],
lambda * _state[1] + w * _state[0] };
};
return spiral;
}
/// \brief A factory that provides these exponential ODE systems
class Factory : public ODESystemFactory
{
public: std::vector<ODESystem> CreateSystems() override
{
return {
CreateExponentialODE(),
CreateCircularSystem(),
CreateSpiralSystem()
};
}
};
IGNITION_ADD_PLUGIN(Factory, ODESystemFactory)
}
}
}
}
|