1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*
* Copyright (C) 2018 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <cmath>
#include <ignition/plugin/Register.hh>
#include "integrators.hh"
namespace ignition {
namespace plugin {
namespace examples {
namespace PolynomialODE {
/// \brief Create a simple parabola, like an object falling under the influence
/// of gravity.
ODESystem CreateParabolicODE(
const double t0 = 0.0,
const double p0 = 0.0,
const double v0=1.0,
const double a=2.0)
{
ODESystem parabola;
parabola.name = "parabolic ode";
parabola.initialTime = t0;
parabola.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return {0.5*a*std::pow(_t+t0, 2) + v0*(_t+t0) + p0};
};
parabola.initialState = parabola.exact(t0);
parabola.ode = [=](const NumericalIntegrator::Time _t,
const NumericalIntegrator::State & /*_state*/)
-> NumericalIntegrator::State
{
return {a*(_t+t0) + v0};
};
return parabola;
}
/// \brief Create a parabolic system of equations. Similar to the ParabolicODE,
/// except this is expressed as a system instead of a single function of time.
ODESystem CreateParabolicSystem(
const double t0 = 0.0,
const double p0 = 0.0,
const double v0=1.0,
const double a=2.0)
{
ODESystem parabola;
parabola.name = "parabolic system";
parabola.initialTime = t0;
parabola.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return { 0.5*a*std::pow(_t+t0, 2) + v0*(_t+t0) + p0,
a*std::pow(_t+t0, 1) + v0 };
};
parabola.initialState = parabola.exact(t0);
parabola.ode = [=](const NumericalIntegrator::Time /*_t*/,
const NumericalIntegrator::State & _state)
-> NumericalIntegrator::State
{
return {_state[1], a};
};
return parabola;
}
/// \brief Create a cubic trajectory, like a car whose level acceleration is
/// linearly increasing.
ODESystem CreateCubicODE(
const double t0 = 0.0,
const double p0 = 1.0,
const double v0 = 2.0,
const double a0 = 3.0,
const double jerk = 4.0)
{
ODESystem cubic;
cubic.name = "cubic ode";
cubic.initialTime = t0;
cubic.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return { 1.0/6.0*jerk*std::pow(_t+t0, 3)
+ 1.0/2.0*a0*std::pow(_t+t0, 2)
+ v0*std::pow(_t+t0, 1)
+ p0*std::pow(_t+t0, 0) };
};
cubic.initialState = cubic.exact(t0);
cubic.ode = [=](const NumericalIntegrator::Time _t,
const NumericalIntegrator::State & /*_state*/)
-> NumericalIntegrator::State
{
return { 1.0/2.0*jerk*std::pow(_t+t0, 2)
+ a0*std::pow(_t+t0, 1)
+ v0*std::pow(_t+t0, 0) };
};
return cubic;
}
/// \brief Create a cubic system of equations. Similar to the CubicODE, except
/// this is expressed as a system instead of a single function of time.
ODESystem CreateCubicSystem(
const double t0 = 0.0,
const double p0 = 1.0,
const double v0 = 2.0,
const double a0 = 3.0,
const double jerk = 4.0)
{
ODESystem cubic;
cubic.name = "cubic system";
cubic.initialTime = t0;
cubic.exact = [=](const NumericalIntegrator::Time _t)
-> NumericalIntegrator::State
{
return { 1.0/6.0*jerk*std::pow(_t+t0, 3)
+ 1.0/2.0*a0*std::pow(_t+t0, 2)
+ v0*std::pow(_t+t0, 1)
+ p0*std::pow(_t+t0, 0)
,
1.0/2.0*jerk*std::pow(_t+t0, 2)
+ a0*std::pow(_t+t0, 1)
+ v0*std::pow(_t+t0, 0)
,
jerk*std::pow(_t+t0, 1)
+ a0*std::pow(_t+t0, 0) };
};
cubic.initialState = cubic.exact(t0);
cubic.ode = [=](const NumericalIntegrator::Time /*_t*/,
const NumericalIntegrator::State &_state)
-> NumericalIntegrator::State
{
return { _state[1], _state[2], jerk };
};
return cubic;
}
/// \brief A factory that provides the parabolic ODE systems
class ParabolicFactory : public ODESystemFactory
{
// Documentation inherited
public: std::vector<ODESystem> CreateSystems() override
{
return {
CreateParabolicODE(),
CreateParabolicSystem()
};
}
};
/// \brief A factory that provides cubic ODE systems
class CubicFactory : public ODESystemFactory
{
// Documentation inherited
public: std::vector<ODESystem> CreateSystems() override
{
return {
CreateCubicODE(),
CreateCubicSystem()
};
}
};
}
}
}
}
// Register multiple plugins for this library
IGNITION_ADD_PLUGIN(
ignition::plugin::examples::PolynomialODE::ParabolicFactory,
ignition::plugin::examples::ODESystemFactory)
IGNITION_ADD_PLUGIN(
ignition::plugin::examples::PolynomialODE::CubicFactory,
ignition::plugin::examples::ODESystemFactory)
|