1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
/*
* Dinuclmarkov.cpp
*
* Created on: Mar 4, 2015
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Dinuclmarkov.h"
using namespace std;
Dinucl_markov::Dinucl_markov(Gene_class gene): Rec_Event() , total_nucl_count(0) {
this->type = Event_type::Dinuclmarkov_t;
event_class = gene;
//Same indexes as Aligner::nt2int
event_realizations.emplace("A" , Event_realization("A",INT16_MAX,"A",Int_Str(),0));
event_realizations.emplace("C" , Event_realization("C",INT16_MAX,"C",Int_Str(),1));
event_realizations.emplace("G" , Event_realization("G",INT16_MAX,"G",Int_Str(),2));
event_realizations.emplace("T" , Event_realization("T",INT16_MAX,"T",Int_Str(),3));
updated = true;
updated_upper_bound_proba = new double;
dinuc_proba_matrix = Matrix<double>(15,15);
this->update_event_name();
}
Dinucl_markov::~Dinucl_markov() {
// TODO delete realization indices
delete updated_upper_bound_proba;
}
shared_ptr<Rec_Event> Dinucl_markov::copy(){
//TODO rewrite this by invoking a copy constructor?
shared_ptr<Dinucl_markov> new_dinucl_markov_p = shared_ptr<Dinucl_markov> (new Dinucl_markov(this->event_class));
new_dinucl_markov_p->priority = this->priority;
new_dinucl_markov_p->nickname = this->nickname;
new_dinucl_markov_p->fixed = this->fixed;
new_dinucl_markov_p->update_event_name();
new_dinucl_markov_p->set_event_identifier(this->event_index);
return new_dinucl_markov_p;
}
int Dinucl_markov::size()const{
return event_realizations.size()*event_realizations.size();
}
void Dinucl_markov::iterate(double& scenario_proba , Downstream_scenario_proba_bound_map& downstream_proba_map , const string& sequence , const Int_Str& int_sequence , Index_map& base_index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , shared_ptr<Next_event_ptr>& next_event_ptr_arr , Marginal_array_p& updated_marginals_point , const Marginal_array_p& model_parameters_point ,const unordered_map<Gene_class , vector<Alignment_data>>& allowed_realizations , Seq_type_str_p_map& constructed_sequences , Seq_offsets_map& seq_offsets ,shared_ptr<Error_rate>& error_rate_p, map<size_t,shared_ptr<Counter>>& counters_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , Safety_bool_map& safety_set , Mismatch_vectors_map& mismatches_lists, double& seq_max_prob_scenario , double& proba_threshold_factor){
base_index = base_index_map.at(this->event_index);
new_scenario_proba = scenario_proba;
proba_contribution = 1;
//Clear all previous scenario realizations
current_realizations_index_vec.clear();
correct_class=0;
//For now do not include possible sequencing error
if(event_class == VD_genes || event_class == VDJ_genes){
correct_class = 1;
previous_seq = (*constructed_sequences.at(V_gene_seq));
Int_Str& vd_seq = (*constructed_sequences.at(VD_ins_seq));
vd_seq_size = vd_seq.size();
previous_seq_size = previous_seq.size();
//data_seq_substr = sequence.substr(seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Five_prime)) + previous_seq_size , vd_seq.size());
//data_seq_substr = sequence.substr(seq_offsets.at(v_5_pair) + previous_seq_size , vd_seq.size());//TODO check this
//data_seq_substr = int_sequence.substr(seq_offsets.at(v_5_pair) + previous_seq_size , vd_seq.size());
data_seq_substr = int_sequence.substr(seq_offsets.at(V_gene_seq,Five_prime) + previous_seq_size , vd_seq.size()); //FIXME use precomputed vd seq size
previous_nt_str = previous_seq.back();
iterate_common( vd_realizations_indices , previous_nt_str , vd_seq , model_parameters_point);
downstream_proba_map.set_value(VD_ins_seq,1.0,memory_layer_proba_map_junction_1);
//constructed_sequences.at(VD_ins_seq) = &vd_seq;
}
if(event_class == DJ_genes || event_class == VDJ_genes){
correct_class = 1;
/* //TODO check the side taken into account for the first nucleotide
string d_seq = constructed_sequences.at(D_gene_seq);
size_t d_seq_size = d_seq.size();
size_t char_index = seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Five_prime)) + constructed_sequences.at(V_gene_seq).size() + constructed_sequences.at(VD_ins_seq).size() + d_seq_size ;//TODO rewrite this and once deletion mechanism has been rewritten
string data_seq_substr = sequence.substr(char_index , constructed_sequences.at(DJ_ins_seq).size());
new_scenario_proba = iterate_common(new_scenario_proba , prev_seq.substr(prev_seq_size-1,1) , data_seq_substr , constructed_sequences.at(DJ_ins_seq) , base_index , write_index_list , model_parameters_point);
*/
previous_seq = (*constructed_sequences.at(J_gene_seq));
Int_Str& dj_seq = (*constructed_sequences.at(DJ_ins_seq));
dj_seq_size = dj_seq.size();
//string& constr_ins_seq = constructed_sequences.at(DJ_ins_seq);
//size_t char_index = seq_offsets.at(pair<Seq_type,Seq_side>(J_gene_seq,Five_prime)) -dj_seq.size();
//size_t char_index = seq_offsets.at(j_5_pair) -dj_seq.size();
size_t char_index = seq_offsets.at(J_gene_seq,Five_prime) -dj_seq.size();
//data_seq_substr = sequence.substr(char_index , dj_seq.size());
data_seq_substr = int_sequence.substr(char_index , dj_seq.size());
previous_nt_str = previous_seq.front();
reverse(data_seq_substr.begin(),data_seq_substr.end());
iterate_common( dj_realizations_indices , previous_nt_str , dj_seq , model_parameters_point);
reverse(dj_seq.begin(),dj_seq.end());
downstream_proba_map.set_value(DJ_ins_seq,1.0,memory_layer_proba_map_junction_2);
}
if(event_class == VJ_genes){
correct_class = 1;
previous_seq = (*constructed_sequences.at(V_gene_seq));
Int_Str& vj_seq = (*constructed_sequences.at(VJ_ins_seq));
vj_seq_size = vj_seq.size();
previous_seq_size = previous_seq.size();
//data_seq_substr = sequence.substr(seq_offsets.at(v_5_pair) + previous_seq_size , vj_seq.size());
//data_seq_substr = int_sequence.substr(seq_offsets.at(v_5_pair) + previous_seq_size , vj_seq.size());
data_seq_substr = int_sequence.substr(seq_offsets.at(V_gene_seq,Five_prime) + previous_seq_size , vj_seq.size());
previous_nt_str = previous_seq.back();
iterate_common( vj_realizations_indices , previous_nt_str , vj_seq , model_parameters_point);
downstream_proba_map.set_value(VJ_ins_seq,1.0,memory_layer_proba_map_junction_1);
}
if(!correct_class){
throw invalid_argument("Unknown gene class for DincuclMarkov model: " + this->event_class);
}
new_scenario_proba*=proba_contribution;
//Compute scenario downstream proba bound
scenario_upper_bound_proba = new_scenario_proba;
//Multiply all downstream probas
downstream_proba_map.multiply_all(scenario_upper_bound_proba,current_downstream_proba_memory_layers);
if(scenario_upper_bound_proba>=(seq_max_prob_scenario*proba_threshold_factor)){
iterate_wrap_up(new_scenario_proba , downstream_proba_map , sequence , int_sequence , base_index_map , offset_map , next_event_ptr_arr , updated_marginals_point , model_parameters_point , allowed_realizations , constructed_sequences , seq_offsets , error_rate_p , counters_list , events_map , safety_set , mismatches_lists ,seq_max_prob_scenario , proba_threshold_factor);
}
}
queue<int> Dinucl_markov::draw_random_realization(const Marginal_array_p& model_marginals_p , unordered_map<Rec_Event_name,int>& index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , unordered_map<Seq_type , string>& constructed_sequences , mt19937_64& generator)const{
uniform_real_distribution<double> distribution(0.0,1.0);
bool correct_class=0;
int index = index_map.at(this->get_name());
queue<int> realization_queue;
if(event_class == VD_genes || event_class == VDJ_genes){
correct_class=1;
string& vd_ins_seq = constructed_sequences.at(VD_ins_seq);
string v_seq = constructed_sequences.at(V_gene_seq);
queue<int> tmp = this->draw_random_common(v_seq , vd_ins_seq , model_marginals_p , index , distribution , generator);
while(!tmp.empty()){
realization_queue.push(tmp.front());
tmp.pop();
}
}
if(event_class == DJ_genes || event_class == VDJ_genes){
correct_class=1;
string& dj_ins_seq = constructed_sequences.at(DJ_ins_seq);
string j_seq = constructed_sequences.at(J_gene_seq);
reverse(j_seq.begin(),j_seq.end());
queue<int> tmp = this->draw_random_common(j_seq , dj_ins_seq , model_marginals_p , index , distribution , generator);
while(!tmp.empty()){
realization_queue.push(tmp.front());
tmp.pop();
}
reverse(dj_ins_seq.begin(),dj_ins_seq.end());
}
if(event_class == VJ_genes){
correct_class=1;
string& vj_ins_seq = constructed_sequences.at(VJ_ins_seq);
string v_seq = constructed_sequences.at(V_gene_seq);
queue<int> tmp = this->draw_random_common(v_seq , vj_ins_seq , model_marginals_p , index , distribution , generator);
while(!tmp.empty()){
realization_queue.push(tmp.front());
tmp.pop();
}
}
if(! correct_class){
throw invalid_argument("Unknown gene class for DincuclMarkov model: " + this->event_class);
}
return realization_queue;
}
queue<int> Dinucl_markov::draw_random_common(const string& previous_seq , string& inserted_seq ,const Marginal_array_p& model_marginals_p , int index , uniform_real_distribution<double>& distribution , mt19937_64& generator)const{
queue<int> realization_queue;
double prob_count;
if(!inserted_seq.empty()){
double rand;
if(inserted_seq[0]=='I'){
rand = distribution(generator);
prob_count = 0;
/*THIS WAS REMOVED WHEN INTRODUCING AMBIGUOUS NUCLEOTIDES SUPPORT
* int offset;
try{
offset = event_realizations.at(previous_seq.substr(previous_seq.size()-1,1)).index*event_realizations.size();
}
catch(exception& except){
cout<<"exception caught in DinucMarkov draw random common, key used: "<<previous_seq.substr(previous_seq.size()-1,1);
throw except;
}
*/
int prev_nt = nt2int(previous_seq.substr(previous_seq.size()-1,1)).at(0);
for(unordered_map<string,Event_realization>::const_iterator iter = event_realizations.begin() ; iter != event_realizations.end() ; ++iter){
//prob_count += model_marginals_p[index + offset + (*iter).second.index];
prob_count += this->dinuc_proba_matrix(prev_nt,(*iter).second.index);
if(prob_count>=rand){
inserted_seq[0] = (*iter).second.value_str[0];
realization_queue.push((*iter).second.index);
break;
}
}
}
for(size_t i=1 ; i!=inserted_seq.size() ; ++i){
if(inserted_seq[i]=='I'){
/*THIS WAS REMOVED WHEN INTRODUCING AMBIGUOUS NUCLEOTIDES SUPPORT
int offset;
try{
offset = event_realizations.at(inserted_seq.substr(i-1,1)).index*event_realizations.size();
}
catch(exception& except){
cout<<"exception caught, key used: "<<inserted_seq.substr(i-1,1)<<",ins seq: "<<inserted_seq<<",i = "<<i<<", previous rand: "<<rand<<", previous prob_count: "<<prob_count<<endl;
throw except;
}
*/
int prev_nt = nt2int(inserted_seq.substr(i-1,1)).at(0);
rand = distribution(generator);
prob_count = 0;
for(unordered_map<string,Event_realization>::const_iterator iter = event_realizations.begin() ; iter != event_realizations.end() ; ++iter){
//prob_count += model_marginals_p[index + offset + (*iter).second.index];
prob_count += this->dinuc_proba_matrix(prev_nt,(*iter).second.index);
if(prob_count>=rand){
inserted_seq[i] = (*iter).second.value_str[0];
realization_queue.push((*iter).second.index);
break;
}
}
}
}
}
return realization_queue;
}
void Dinucl_markov::write2txt(ofstream& outfile){
outfile<<"#DinucMarkov;"<<event_class<<";"<<event_side<<";"<<priority<<";"<<nickname<<endl;
for(unordered_map<string,Event_realization>::const_iterator iter = event_realizations.begin() ; iter != event_realizations.end() ; ++iter){
outfile<<"%"<<(*iter).second.value_str<<";"<<(*iter).second.index<<endl;
}
}
void Dinucl_markov::iterate_common( int* indices_array , int& previous_assigned_nt , Int_Str& ins_seq , const Marginal_array_p& model_parameters_point){
if(!ins_seq.empty()){
if(ins_seq.at(0)==-1){
//first_nt_index = event_realizations.at(previous_assigned_nt).index;
//sec_nt_index = event_realizations.at(data_seq_substr.substr(0,1)).index;
first_nt_index = previous_assigned_nt;//[0] -'0';
sec_nt_index = data_seq_substr[0] ;//-'0';
current_realizations_index_vec.emplace_back( sec_nt_index );
//For this Dinucl_Markov model the values on the marginal array represents the conditional probability of a couple of nucleotides (N2 | N1)
if((first_nt_index<4) & (sec_nt_index<4)){
offset = first_nt_index*event_realizations.size();
realization_final_index = base_index + offset + sec_nt_index;
proba_contribution*= model_parameters_point[realization_final_index];///compute_nt_freq(base_index+offset , model_parameters_point);
indices_array[0] = realization_final_index;
}
else{
//If an ambiguous nucleotide is present we take the average probability over possible underlying nts
proba_contribution*=dinuc_proba_matrix(first_nt_index,sec_nt_index);
indices_array[0] = -1;
}
ins_seq.at(0) = data_seq_substr.at(0);
total_nucl_count+=1;
}
for(size_t i = 1 ; i!= ins_seq.size() ; ++i){
if(ins_seq.at(i)==-1){
//first_nt_index = event_realizations.at(data_seq_substr.substr(i-1,1)).index;
//sec_nt_index = event_realizations.at(data_seq_substr.substr(i,1)).index;
first_nt_index = data_seq_substr[i-1];// -'0';
sec_nt_index = data_seq_substr[i];// -'0';
current_realizations_index_vec.emplace_back( sec_nt_index );
//For this Dinucl_Markov model the values on the marginal array represents the joint probability of a couple of nucleotides (N1 , N2)
if((first_nt_index<4) & (sec_nt_index<4)){
offset = first_nt_index*event_realizations.size();
realization_final_index = base_index + offset + sec_nt_index;
proba_contribution*= model_parameters_point[base_index + offset + sec_nt_index];///compute_nt_freq(base_index+offset , model_parameters_point);
indices_array[i] = realization_final_index;
}
else{
//If an ambiguous nucleotide is present we take the average probability over possible underlying nts
proba_contribution*=dinuc_proba_matrix(first_nt_index,sec_nt_index);
indices_array[i] = -1;
}
ins_seq.at(i) = data_seq_substr.at(i);
total_nucl_count+=1;
}
}
}
}
/*
* This way of proceeding is highly not optimal, should be modified
*/
double Dinucl_markov::compute_nt_freq(int index , const Marginal_array_p& model_marginals) const{
double nucl_freq = 0;
for(size_t i = 0 ; i != event_realizations.size() ; ++i){
nucl_freq+=model_marginals[index + i];
}
return nucl_freq;
}
void Dinucl_markov::ind_normalize(Marginal_array_p& marginal_array_p , size_t base_index) const{
size_t numb_realizations = this->event_realizations.size();
for(size_t i = 0 ; i != numb_realizations ; ++i){
long double sum_marginals = 0;
for(size_t j=0 ; j != numb_realizations ; ++j){
sum_marginals += marginal_array_p[base_index + i*numb_realizations + j];
}
if(sum_marginals != 0){
for(size_t j=0 ; j != numb_realizations ; ++j){
marginal_array_p[base_index + i*numb_realizations + j]/=sum_marginals;
}
}
}
}
void Dinucl_markov::initialize_event( unordered_set<Rec_Event_name>& processed_events , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , Downstream_scenario_proba_bound_map& downstream_proba_map , Seq_type_str_p_map& constructed_sequences , Safety_bool_map& safety_set , shared_ptr<Error_rate> error_rate_p , Mismatch_vectors_map& mismatches_list,Seq_offsets_map& seq_offsets , Index_map& index_map){
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,VD_genes,Undefined_side))!=0){
shared_ptr<const Rec_Event> ins_vd_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,VD_genes,Undefined_side));
max_vd_ins=ins_vd_p->get_len_max();
}
else{
max_vd_ins = 0;
}
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,VJ_genes,Undefined_side))!=0){
shared_ptr<const Rec_Event> ins_vj_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,VJ_genes,Undefined_side));
max_vj_ins=ins_vj_p->get_len_max();
}
else{
max_vj_ins=0;
}
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,DJ_genes,Undefined_side))!=0){
shared_ptr<const Rec_Event> ins_dj_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Insertion_t,DJ_genes,Undefined_side));
max_dj_ins = ins_dj_p->get_len_max();
}
else{
max_dj_ins = 0;
}
if( (this->event_class == VD_genes) or (this->event_class==VDJ_genes) ){
downstream_proba_map.request_memory_layer(VD_ins_seq);
memory_layer_proba_map_junction_1 = downstream_proba_map.get_current_memory_layer(VD_ins_seq);
}
if( (this->event_class == DJ_genes) or (this->event_class==VDJ_genes) ){
downstream_proba_map.request_memory_layer(DJ_ins_seq);
memory_layer_proba_map_junction_2 = downstream_proba_map.get_current_memory_layer(DJ_ins_seq);
}
if( this->event_class == VJ_genes ){
downstream_proba_map.request_memory_layer(VJ_ins_seq);
memory_layer_proba_map_junction_1 = downstream_proba_map.get_current_memory_layer(VJ_ins_seq);
}
vd_realizations_indices = new int [max_vd_ins];
vj_realizations_indices = new int [max_vj_ins];
dj_realizations_indices = new int [max_dj_ins];
unmutable_base_index = index_map.at(this->event_index,0);
this->Rec_Event::initialize_event(processed_events,events_map,offset_map,downstream_proba_map,constructed_sequences,safety_set,error_rate_p,mismatches_list,seq_offsets,index_map);
}
/**
* \bug Will only count realizations of unambiguous nucleotides (realization indices>=0 since they are set to -1 in iterate_common)
*/
void Dinucl_markov::add_to_marginals(long double scenario_proba , Marginal_array_p& updated_marginals) const{
if(viterbi_run){
for(size_t i=0 ; i!=this->event_marginal_size ; ++i){
updated_marginals[unmutable_base_index + i] = 0;
}
}
if(event_class == VD_genes || event_class == VDJ_genes){
for(size_t i = 0 ; i != vd_seq_size ; ++i){
if(vd_realizations_indices[i]>=0){
updated_marginals[vd_realizations_indices[i]] +=scenario_proba;
}
}
}
if(event_class == DJ_genes || event_class == VDJ_genes){
for(size_t i = 0 ; i != dj_seq_size ; ++i){
if(dj_realizations_indices[i]>=0){
updated_marginals[dj_realizations_indices[i]] +=scenario_proba;
}
}
}
if(event_class == VJ_genes){
for(size_t i = 0 ; i != vj_seq_size ; ++i){
if(vj_realizations_indices[i]>=0){
updated_marginals[vj_realizations_indices[i]] +=scenario_proba;
}
}
}
}
/**
* Update probability values contained in a matrix where coordinates >=4 indicates ambiguous nucleotides
* We simply take the average probability over the different possible nucleotides.
*/
void Dinucl_markov::update_event_internal_probas(const Marginal_array_p& marginal_array , const unordered_map<Rec_Event_name,int>& index_map){
Int_nt const all_nt_vals [] = {int_A , int_C , int_G , int_T , int_R , int_Y , int_K , int_M , int_S ,int_W , int_B , int_D , int_H , int_V , int_N};
size_t event_index = index_map.at(this->get_name());
for(size_t i=0 ; i!=15 ; ++i){
for(size_t j=0 ; j!=15 ; ++j){
list<Int_nt> previous_list = get_ambiguous_nt_list(all_nt_vals[i]);
list<Int_nt> next_list = get_ambiguous_nt_list(all_nt_vals[j]);
//Reset the dinuc proba matrix
this->dinuc_proba_matrix(i,j) = 0;
for(Int_nt prev_nt: previous_list){
for(Int_nt next_nt : next_list){
this->dinuc_proba_matrix(i,j) += marginal_array[event_index + prev_nt*event_realizations.size() + next_nt];
}
}
//By taking the average we assume all nucleotides underlying the ambiguous one are equally probable
this->dinuc_proba_matrix(i,j) /= (double)(previous_list.size() * next_list.size());
}
}
}
double* Dinucl_markov::get_updated_ptr(){
return updated_upper_bound_proba;
}
void Dinucl_markov::initialize_crude_scenario_proba_bound(double& downstream_proba_bound , forward_list<double*>& updated_proba_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map){
this->scenario_downstream_upper_bound_proba = downstream_proba_bound;
this->updated_proba_bounds_list = updated_proba_list;
updated_proba_list.push_front(this->updated_upper_bound_proba);
}
bool Dinucl_markov::has_effect_on(Seq_type seq_type) const{
switch(this->event_class){
case VD_genes:
if(seq_type == VJ_ins_seq or seq_type==VD_ins_seq){
return true;
}
else return false;
break;
case VJ_genes:
if(seq_type==VJ_ins_seq){
return true;
}
else return false;
break;
case DJ_genes:
if(seq_type==VJ_ins_seq or seq_type==DJ_ins_seq){
return true;
}
else return false;
break;
case VDJ_genes:
if(seq_type == VJ_ins_seq or seq_type==VD_ins_seq or seq_type==DJ_ins_seq){
return true;
}
else return false;
default:
return false;
break;
}
}
void Dinucl_markov::iterate_initialize_Len_proba(Seq_type considered_junction , std::map<int,double>& length_best_proba_map , std::queue<std::shared_ptr<Rec_Event>>& model_queue , double& scenario_proba , const Marginal_array_p& model_parameters_point , Index_map& base_index_map , Seq_type_str_p_map& constructed_sequences , int& seq_len/*=0*/ ) const{
base_index = base_index_map.at(this->event_index,0);
correct_class=0;
if(event_class == VD_genes or event_class == VDJ_genes){
correct_class = 1;
if(this->has_effect_on(considered_junction)){
if(constructed_sequences.exist(VD_ins_seq)){
scenario_proba*=pow(this->get_upper_bound_proba(),constructed_sequences.at(VD_ins_seq)->size());
}
//Otherwise the proba contribution is 1
}
}
if(event_class == DJ_genes or event_class == VDJ_genes){
correct_class = 1;
if(this->has_effect_on(considered_junction)){
if(constructed_sequences.exist(DJ_ins_seq)){
scenario_proba*=pow(this->get_upper_bound_proba(),constructed_sequences.at(DJ_ins_seq)->size());
}
//Otherwise the proba contribution is 1
}
}
if(event_class == VJ_genes){
correct_class = 1;
if(this->has_effect_on(considered_junction)){
if(constructed_sequences.exist(VJ_ins_seq)){
scenario_proba*=pow(this->get_upper_bound_proba(),constructed_sequences.at(VJ_ins_seq)->size());
}
//Otherwise the proba contribution is 1
}
}
if(!correct_class){
throw invalid_argument("Unknown gene class for DincuclMarkov model: " + this->event_class);
}
//TODO use a better proba bound for this dinucleotide markov model
//Recursive call
Rec_Event::iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map , model_queue , scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len/*=0*/);
}
void Dinucl_markov::initialize_Len_proba_bound(queue<shared_ptr<Rec_Event>>& model_queue , const Marginal_array_p& model_parameters_point , Index_map& base_index_map ){
//Do nothing
/*
* For now let's assume nothing can happen to the junction once the dinucleotide has been chosen
* =>no errors
* =>no in/dels
*/
}
|