File: Coverageerrcounter.cpp

package info (click to toggle)
igor 1.4.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,116 kB
  • sloc: cpp: 12,453; python: 1,047; sh: 124; makefile: 32
file content (666 lines) | stat: -rw-r--r-- 27,745 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 * Coverageerrcounter.cpp
 *
 *  Created on: Oct 24, 2016
 *      Author: Quentin Marcou
 *
 *  This source code is distributed as part of the IGoR software.
 *  IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
 *  generation, selection, mutation and all other processes.
 *   Copyright (C) 2017  Quentin Marcou
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.

 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include "Coverageerrcounter.h"

using namespace std;


Coverage_err_counter::Coverage_err_counter(Gene_class count_on): Coverage_err_counter("/tmp/",count_on,1,false,false){

}

Coverage_err_counter::Coverage_err_counter(Gene_class count_on , bool dump_all_seq , bool last_iter_only): Coverage_err_counter("/tmp/",count_on,1,dump_all_seq,last_iter_only){

}


Coverage_err_counter::Coverage_err_counter(string path , Gene_class count_on , bool dump_all_seq): Coverage_err_counter(path,count_on,1,dump_all_seq,false){

}

Coverage_err_counter::Coverage_err_counter(string path , Gene_class count_on , size_t Npoint_count , bool dump_all_seq , bool last_iter_only): Counter(path , last_iter_only) ,
		count_on(count_on) , dump_individual_seqs(dump_all_seq), record_Npoint_occurence(Npoint_count),
		positions(NULL),
		n_v_real(0),n_d_real(0),n_j_real(0),
		v_gene_nucleotide_coverage_p(NULL) , v_gene_per_nucleotide_error_p(NULL),d_gene_nucleotide_coverage_p(NULL) , d_gene_per_nucleotide_error_p(NULL),j_gene_nucleotide_coverage_p(NULL) , j_gene_per_nucleotide_error_p(NULL),
		v_gene_nucleotide_coverage_seq_p(NULL) , v_gene_per_nucleotide_error_seq_p(NULL) , d_gene_nucleotide_coverage_seq_p(NULL) , d_gene_per_nucleotide_error_seq_p(NULL) , j_gene_nucleotide_coverage_seq_p(NULL) , j_gene_per_nucleotide_error_seq_p(NULL) ,
		vgene_offset_p(NULL) , dgene_offset_p(NULL) , jgene_offset_p(NULL) ,
		vgene_real_index_p(NULL) , dgene_real_index_p(NULL) , jgene_real_index_p(NULL),
		v_3_del_value_p(NULL) , d_5_del_value_p(NULL) , d_3_del_value_p(NULL) , j_5_del_value_p(NULL){

	if(count_on == V_gene | count_on == VJ_genes | count_on == VD_genes | count_on == VDJ_genes){
			count_on_v = true;
		}
		else count_on_v = false;

		if(count_on == D_gene | count_on == DJ_genes | count_on == VD_genes | count_on == VDJ_genes){
			count_on_d = true;
		}
		else count_on_d = false;

		if(count_on == J_gene | count_on == VJ_genes | count_on == DJ_genes | count_on == VDJ_genes){
			count_on_j = true;
		}
		else count_on_j = false;

}

Coverage_err_counter::~Coverage_err_counter() {
	//FIXME TONS OF STUFF TO DELETE
	if(count_on_v){
		this->deallocate_coverage_and_errors_arrays(n_v_real,v_realizations,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);
	}
	if(count_on_d){
		this->deallocate_coverage_and_errors_arrays(n_d_real,d_realizations,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);
	}
	if(count_on_j){
		this->deallocate_coverage_and_errors_arrays(n_j_real,j_realizations,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);
	}

}

void Coverage_err_counter::initialize_counter(const Model_Parms& parms , const Model_marginals& marginals){
	if(not fstreams_created){

		if(count_on_v){
			output_cov_err_v_file_ptr = shared_ptr<ofstream>(new ofstream);
			this->output_cov_err_v_file_ptr->open(path_to_file + "V_genes_cov_and_err.csv");

			//Create the header
			if(dump_individual_seqs){
				(*this->output_cov_err_v_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
			}
			else{
				(*this->output_cov_err_v_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
			}
		}

		if(count_on_d){
			output_cov_err_d_file_ptr = shared_ptr<ofstream>(new ofstream);
			this->output_cov_err_d_file_ptr->open(path_to_file + "D_genes_cov_and_err.csv");

			//Create the header
			if(dump_individual_seqs){
				(*this->output_cov_err_d_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
			}
			else{
				(*this->output_cov_err_d_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
			}
		}

		if(count_on_j){
			output_cov_err_j_file_ptr = shared_ptr<ofstream>(new ofstream);
			this->output_cov_err_j_file_ptr->open(path_to_file + "J_genes_cov_and_err.csv");

			//Create the header
			if(dump_individual_seqs){
				(*this->output_cov_err_j_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
			}
			else{
				(*this->output_cov_err_j_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
			}
		}

		fstreams_created = true;

	}
	positions = new size_t [record_Npoint_occurence];
	auto events_map = parms.get_events_map();

	if(count_on_v){
		//Initialize V pointers
		try{
			v_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,V_gene,Undefined_side)));
			vgene_offset_p = &v_gene_event_p->alignment_offset_p;
			vgene_real_index_p = &v_gene_event_p->current_realization_index;

			//Initialize gene counters
			v_realizations = v_gene_event_p->get_realizations_map();
			//Get the number of realizations
			n_v_real = v_realizations.size();


			this->allocate_coverage_and_errors_arrays(n_v_real,v_realizations,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);

		}
		catch(exception& except){
			cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
			cout<<"Exception caught trying to initialize V gene pointers"<<endl;
			cout<<endl<<"throwing exception now..."<<endl;
			throw except;
		}

		//Get deletion value pointer for V 3' deletions if it exists
		if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,V_gene,Three_prime)) != 0){
			shared_ptr<const Deletion> v_3_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,V_gene,Three_prime)));
			v_3_del_value_p = &(v_3_del_event_p->deletion_value);
		}
		else{v_3_del_value_p = &no_del_buffer;}

	}


	if(count_on_d){
		//Initialize D pointers
		try{
			d_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,D_gene,Undefined_side)));
			dgene_offset_p = &d_gene_event_p->alignment_offset_p;
			dgene_real_index_p = &d_gene_event_p->current_realization_index;

			//Initialize gene counters
			d_realizations = d_gene_event_p->get_realizations_map();
			//Get the number of realizations
			n_d_real = d_realizations.size();


			this->allocate_coverage_and_errors_arrays(n_d_real,d_realizations,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);

		}
		catch(exception& except){
			cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
			cout<<"Exception caught trying to initialize D gene pointers"<<endl;
			cout<<endl<<"throwing exception now..."<<endl;
			throw except;
		}


		//Get deletion value pointer for D 5' deletions if it exists
		if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Five_prime)) != 0){
			shared_ptr<const Deletion> d_5_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Five_prime)));
			d_5_del_value_p = &(d_5_del_event_p->deletion_value);
		}
		else{d_5_del_value_p = &no_del_buffer;}

		//Get deletion value pointer for D 3' deletions if it exists
		if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Three_prime)) != 0){
			shared_ptr<const Deletion> d_3_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Three_prime)));
			d_3_del_value_p = &(d_3_del_event_p->deletion_value);
		}
		else{d_3_del_value_p = &no_del_buffer;}

	}

	if(count_on_j){
		//Initialize J pointers
		try{
			j_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,J_gene,Undefined_side)));
			jgene_offset_p = &j_gene_event_p->alignment_offset_p;
			jgene_real_index_p = &j_gene_event_p->current_realization_index;

			//Initialize gene counters
			j_realizations = j_gene_event_p->get_realizations_map();
			//Get the number of realizations
			n_j_real = j_realizations.size();


			this->allocate_coverage_and_errors_arrays(n_j_real,j_realizations,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);

		}
		catch(exception& except){
			cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
			cout<<"Exception caught trying to initialize J gene pointers"<<endl;
			cout<<endl<<"throwing exception now..."<<endl;
			throw except;
		}

		//Get deletion value pointer for J 5' deletions if it exists
		if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,J_gene,Five_prime)) != 0){
			shared_ptr<const Deletion> j_5_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,J_gene,Five_prime)));
			j_5_del_value_p = &(j_5_del_event_p->deletion_value);
		}
		else{j_5_del_value_p = &no_del_buffer;}

	}

}

void Coverage_err_counter::count_scenario(long double scenario_seq_joint_proba , double scenario_probability , const string& original_sequence ,  Seq_type_str_p_map& constructed_sequences , const Seq_offsets_map& seq_offsets , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , Mismatch_vectors_map& mismatches_lists){
	if(count_on_v){

		//Get mismatch list
		vector<int>& v_mismatch_list = *mismatches_lists.at(V_gene_seq);

		//Get the coverage
		//Get the length of the gene and a pointer to the right array to write on
		tmp_corr_len = v_gene_nucleotide_coverage_seq_p[**vgene_real_index_p].first;
		tmp_cov_p = v_gene_nucleotide_coverage_seq_p[**vgene_real_index_p].second;
		tmp_err_p = v_gene_per_nucleotide_error_seq_p[**vgene_real_index_p].second;

		/*
		 * Start at position 0
		 * Assume V is on the left of the read and compute left bound: max(0,-(**vgene_offset_p))
		 * Disregard P nucleotides, and set end bound as: tmp_corr_len - max(0,*v_3_del_value_p)
		 */

		this->recurs_coverage_count(scenario_seq_joint_proba,0,max(0,-(**vgene_offset_p)),tmp_corr_len - max(0,*v_3_del_value_p),tmp_corr_len);

		/*
		 * compute the position on the mismatch vector of the first Pnuc error and set it as the end bound
		 */
		size_t tmp_len_util = v_mismatch_list.size();
		for( i = 0 ; i != tmp_len_util ; ++i){
			//Disregard mismatches due to P nucleotides
			if(	 (v_mismatch_list[i]-(**vgene_offset_p))>=tmp_corr_len ){
				tmp_len_util = i;
				break;
			}
		}
		this->recurs_errors_count(scenario_seq_joint_proba,v_mismatch_list,vgene_offset_p,0,0,tmp_len_util,tmp_corr_len);

/*		//Get the corrected number of deletions(no negative deletion)
		tmp_corr_len -= max(0,*v_3_del_value_p); //FIXME assumes that V is on the left of the read

		// Compute the coverage
		for( i = max(0,-(**vgene_offset_p)) ; i != tmp_corr_len ; ++i ){
			tmp_cov_p[i]+=scenario_seq_joint_proba;
		}

		//Compute the error per nucleotide on the gene
		tmp_len_util = v_mismatch_list.size();
		for( i = 0 ; i != tmp_len_util ; ++i){
			//Disregard mismatches due to P nucleotides
			if(	 (v_mismatch_list[i]-(**vgene_offset_p))<tmp_corr_len ){
				tmp_err_p[v_mismatch_list[i]-(**vgene_offset_p)]+=scenario_seq_joint_proba;
			}
		}*/

	}

	if(count_on_d){
		throw("/!\\ D coverage and errors counters not implemented yet! /!\\ ");
	}

	if(count_on_j){

		//Get mismatch list
		vector<int>& j_mismatch_list = *mismatches_lists.at(J_gene_seq);

		//Get the coverage
		//Get the length of the gene and a pointer to the right array to write on
		tmp_corr_len = j_gene_nucleotide_coverage_seq_p[**jgene_real_index_p].first; //Length of the J gene
		tmp_cov_p = j_gene_nucleotide_coverage_seq_p[**jgene_real_index_p].second; //Coverage array
		tmp_err_p = j_gene_per_nucleotide_error_seq_p[**jgene_real_index_p].second; //Errors array

		/*
		 * Start at position 0
		 *
		 * Disregard P nucleotides, and set begin bound as: max(0,(*j_5_del_value_p))
		 * Assume J is on the right of the read and compute end bound: max(0,(*j_5_del_value_p))+(seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1)
		 * 																i.e : begin bound + number of visible nucleotides
		 */

		this->recurs_coverage_count(scenario_seq_joint_proba,0,max(0,(*j_5_del_value_p)),max(0,(*j_5_del_value_p))+(seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1),tmp_corr_len);

		/*
		 * compute the position on the mismatch vector of the first Pnuc error and set it as the begin bound
		 */
		size_t tmp_len_util = j_mismatch_list.size();
		for( i = 0 ; i != tmp_len_util ; ++i){
			//Disregard mismatches due to P nucleotides
			if(	 (j_mismatch_list[i] >= (**jgene_offset_p) ) ){
				//Since the alignment offset does not take into account Pnuc, any error due to Pnucs will have an index smaller than the gene offset
				tmp_len_util = i;
				break;
			}
		}
		this->recurs_errors_count(scenario_seq_joint_proba,j_mismatch_list,jgene_offset_p,0,tmp_len_util,j_mismatch_list.size(),tmp_corr_len);

/*		//Get the corrected number of deletions(no negative deletion)
		tmp_corr_len = max(0,(*j_5_del_value_p));

		// Compute the coverage
		const int tmp = (seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1);
		for( i = 0 ; i != tmp ; ++i ){
			tmp_cov_p[i+tmp_corr_len]+=scenario_seq_joint_proba;
		}

		//Compute the error per nucleotide on the gene
		tmp_len_util = j_mismatch_list.size();
		for( i = 0 ; i != tmp_len_util ; ++i){
			//Disregard mismatches due to P nucleotides
			if(	(j_mismatch_list[i] >= (**jgene_offset_p) + tmp_corr_len) ){
				tmp_err_p[j_mismatch_list[i]-(**jgene_offset_p)]+=scenario_seq_joint_proba;
			}
		}*/

	}
}

void Coverage_err_counter::count_sequence(double seq_likelihood , const Model_marginals& single_seq_marginals , const Model_Parms& single_seq_model_parms){
	//Normalize by the sequence likelihood and clean counter if not all seq are dumped
	if(seq_likelihood!=0){
		if(count_on_v){
			this->normalize_and_add_cov_and_err(seq_likelihood , n_v_real , v_gene_nucleotide_coverage_p , v_gene_per_nucleotide_error_p , v_gene_nucleotide_coverage_seq_p , v_gene_per_nucleotide_error_seq_p);
		}
		if(count_on_d){
			this->normalize_and_add_cov_and_err(seq_likelihood , n_d_real , d_gene_nucleotide_coverage_p , d_gene_per_nucleotide_error_p , d_gene_nucleotide_coverage_seq_p , d_gene_per_nucleotide_error_seq_p);
		}
		if(count_on_j){
			this->normalize_and_add_cov_and_err(seq_likelihood , n_j_real , j_gene_nucleotide_coverage_p , j_gene_per_nucleotide_error_p , j_gene_nucleotide_coverage_seq_p , j_gene_per_nucleotide_error_seq_p);
		}
	}
}

/*
 * Will copy multi sequence information on this
 * Will clean the other counter at the same time
 */
void Coverage_err_counter::add_checked(shared_ptr<Counter> counter){
	shared_ptr<Coverage_err_counter> other = dynamic_pointer_cast<Coverage_err_counter>(counter);

	//TODO add checks on counter nature and content
	double identity = 1.0;
	if(count_on_v){
		this->normalize_and_add_cov_and_err(identity , n_v_real , this->v_gene_nucleotide_coverage_p , this->v_gene_per_nucleotide_error_p , other->v_gene_nucleotide_coverage_p , other->v_gene_per_nucleotide_error_p);
	}
	if(count_on_d){
		this->normalize_and_add_cov_and_err(identity , n_d_real , this->d_gene_nucleotide_coverage_p , this->d_gene_per_nucleotide_error_p , other->d_gene_nucleotide_coverage_p , other->d_gene_per_nucleotide_error_p);
	}
	if(count_on_j){
		this->normalize_and_add_cov_and_err(identity , n_j_real , this->j_gene_nucleotide_coverage_p , this->j_gene_per_nucleotide_error_p , other->j_gene_nucleotide_coverage_p , other->j_gene_per_nucleotide_error_p);
	}
}

/*
 * Will output per sequence coverage and errors if needed
 * Also cleans individual seq counters at the same time
 */
void Coverage_err_counter::dump_sequence_data(int seq_index , int iteration_n){
	if(dump_individual_seqs){
		if(count_on_v){
			this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_v_file_ptr,n_v_real,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);
		}

		if(count_on_d){
			this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_d_file_ptr,n_d_real,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);
		}

		if(count_on_j){
			this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_j_file_ptr,n_j_real,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);
		}
	}
}

void Coverage_err_counter::dump_data_summary(int iteration_n){
	if(not dump_individual_seqs){
		if(count_on_v){
			this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_v_file_ptr,n_v_real,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p);
		}

		if(count_on_d){
			this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_d_file_ptr,n_d_real,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p);
		}

		if(count_on_j){
			this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_j_file_ptr,n_j_real,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p);
		}
	}
}

shared_ptr<Counter> Coverage_err_counter::copy() const{
	shared_ptr<Coverage_err_counter> counter_copy_ptr (new Coverage_err_counter(path_to_file , count_on , record_Npoint_occurence , dump_individual_seqs , last_iter_only));
	counter_copy_ptr->fstreams_created = this->fstreams_created;
	if(this->fstreams_created){
		if(count_on_v){
			counter_copy_ptr->output_cov_err_v_file_ptr = this->output_cov_err_v_file_ptr;
		}
		if(count_on_d){
			counter_copy_ptr->output_cov_err_d_file_ptr = this->output_cov_err_d_file_ptr;
		}
		if(count_on_j){
			counter_copy_ptr->output_cov_err_j_file_ptr = this->output_cov_err_j_file_ptr;
		}
	}
	else{
		throw runtime_error("Counters should not be copied before stream initialization");
	}
	return counter_copy_ptr;
}

void Coverage_err_counter::allocate_coverage_and_errors_arrays(size_t n_real, const unordered_map<string , Event_realization> realizations ,pair<size_t,double*>*& gene_nucleotide_coverage_p,pair<size_t,double*>*& gene_per_nucleotide_error_p,pair<size_t,double*>*& gene_nucleotide_coverage_seq_p,pair<size_t,double*>*& gene_per_nucleotide_error_seq_p){

	//Create coverage and errors arrays
	gene_nucleotide_coverage_p = new pair<size_t,double*>[n_real];
	gene_per_nucleotide_error_p = new pair<size_t,double*>[n_real];
	gene_nucleotide_coverage_seq_p = new pair<size_t,double*>[n_real];
	gene_per_nucleotide_error_seq_p = new pair<size_t,double*>[n_real];

	for(unordered_map<string , Event_realization>::const_iterator iter = realizations.begin() ; iter != realizations.end() ; iter++){

		size_t tmp = pow((*iter).second.value_str_int.size(),record_Npoint_occurence);

		//Initialize normalized counters
		gene_nucleotide_coverage_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
		gene_per_nucleotide_error_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);

		//Initialize sequence counters
		gene_nucleotide_coverage_seq_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
		gene_per_nucleotide_error_seq_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);

		for(i=0 ; i!=pow((*iter).second.value_str_int.size(),record_Npoint_occurence) ; ++i){
			gene_nucleotide_coverage_p[(*iter).second.index].second[i]=0;
			gene_per_nucleotide_error_p[(*iter).second.index].second[i]=0;

			gene_nucleotide_coverage_seq_p[(*iter).second.index].second[i]=0;
			gene_per_nucleotide_error_seq_p[(*iter).second.index].second[i]=0;
		}
	}

}

void Coverage_err_counter::deallocate_coverage_and_errors_arrays(size_t n_real, const unordered_map<string , Event_realization> realizations ,pair<size_t,double*>*& gene_nucleotide_coverage_p,pair<size_t,double*>*& gene_per_nucleotide_error_p,pair<size_t,double*>*& gene_nucleotide_coverage_seq_p,pair<size_t,double*>*& gene_per_nucleotide_error_seq_p){

	if(n_real!=0){
		//If n_real==0 then the Counter has probably not been initialized
		for(unordered_map<string , Event_realization>::const_iterator iter = realizations.begin() ; iter != realizations.end() ; iter++){

			//Deallocate normalized counters
			delete [] gene_nucleotide_coverage_p[(*iter).second.index].second;
			delete [] gene_per_nucleotide_error_p[(*iter).second.index].second;

			//Deallocate sequence counters
			delete [] gene_nucleotide_coverage_seq_p[(*iter).second.index].second;
			delete [] gene_per_nucleotide_error_seq_p[(*iter).second.index].second;

		}

		//Deallocate coverage and errors arrays
		delete [] gene_nucleotide_coverage_p;
		delete [] gene_per_nucleotide_error_p;
		delete [] gene_nucleotide_coverage_seq_p;
		delete [] gene_per_nucleotide_error_seq_p;
	}
}

void Coverage_err_counter::dump_cov_and_err_arrays( int iteration_n ,  int seq_index , shared_ptr<ofstream> outfile_ptr , size_t n_real , pair<size_t,double*>* coverage_array_p , pair<size_t,double*>* error_array_p ){
	for(i=0 ; i!=n_real; ++i ){

		tmp_len_util = pow(coverage_array_p[i].first,record_Npoint_occurence);
		tmp_cov_p = coverage_array_p[i].second;
		tmp_err_p = error_array_p[i].second;

		if(dump_individual_seqs){
			(*outfile_ptr.get())<<iteration_n<<";"<<seq_index<<";"<<i<<";(";
		}
		else{
			(*outfile_ptr.get())<<iteration_n<<";"<<i<<";(";
		}

		//Symmetrize the array
		this->symmetrize_counter_array(tmp_cov_p,0,0,coverage_array_p[i].first);
		//Output it
		for(size_t j=0 ; j!=tmp_len_util ; ++j ){
			if(j!=0) (*outfile_ptr.get())<<",";
			(*outfile_ptr.get())<<tmp_cov_p[j];

			tmp_cov_p[j] = 0;
		}
		(*outfile_ptr.get())<<");(";

		//Symmetrize the array
		this->symmetrize_counter_array(tmp_err_p,0,0,coverage_array_p[i].first);
		//Output error array
		for(size_t j=0 ; j!=tmp_len_util ; ++j ){
			if(j!=0) (*outfile_ptr.get())<<",";
			(*outfile_ptr.get())<<tmp_err_p[j];

			tmp_err_p[j] = 0;
		}
		(*outfile_ptr.get())<<")"<<endl;
	}
}

void Coverage_err_counter::normalize_and_add_cov_and_err(double& normalizing_cst , size_t n_real , pair<size_t,double*>* target_coverage_array_p , pair<size_t,double*>* target_error_array_p , pair<size_t,double*>* base_coverage_array_p , pair<size_t,double*>* base_error_array_p){
	for(i=0 ; i!=n_real; ++i ){
		tmp_len_util = pow(base_coverage_array_p[i].first,record_Npoint_occurence);
		tmp_cov_p = base_coverage_array_p[i].second;
		tmp_err_p = base_error_array_p[i].second;

		for(size_t j=0 ; j!=tmp_len_util ; ++j){
			tmp_cov_p[j]/=normalizing_cst;
			tmp_err_p[j]/=normalizing_cst;
		}

		if(not dump_individual_seqs){
			for(size_t j=0 ; j!=tmp_len_util ; ++j){
				target_coverage_array_p[i].second[j]+=tmp_cov_p[j];
				tmp_cov_p[j] = 0; //Clean seq counter

				target_error_array_p[i].second[j]+=tmp_err_p[j];
				tmp_err_p[j] = 0; //Clean seq counter
			}
		}
	}
}

/**
 * \brief Computes recursively the N point coverage
 * \author Q.Marcou
 * \version 1.0
 *
 * This function computes recursively the N point coverage. The N point coverage is an N dimensional array for which we fill only half and symmetrize later.
 * The recursion is called to explore each dimension, setting the begin bounds and end bounds delimit the positions for which coverage should be recorded (nucleotides inside the read and not deleted).
 * The begin bound is used internally to explore only half of the array.
 *
 * \param scenario_seq_joint_proba
 * \param N : dimension
 * \param begin_bound : begin address on the coverage array
 * \param end_bound :	end address on the coverage array
 * \param gene_len : Considered gene length
 */
void Coverage_err_counter::recurs_coverage_count(double scenario_seq_joint_proba , size_t N , size_t begin_bound , size_t end_bound , size_t gene_len){
	for(size_t j = begin_bound ; j!=end_bound ; ++j){
		this->positions[N] = j;
		if(N<record_Npoint_occurence-1){
			this->recurs_coverage_count(scenario_seq_joint_proba , N+1 , j , end_bound , gene_len);
		}
		else{
			size_t adress = 0;
			for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
				adress+=positions[a]*pow(gene_len,a);
			}
			tmp_cov_p[adress] += scenario_seq_joint_proba;
		}
	}
}

/**
 * \brief Computes recursively the N point errors
 * \author Q.Marcou
 * \version 1.0
 *
 * This function computes recursively the N point errors.
 *
 * \param scenario_seq_joint_proba
 * \param mismatch list
 * \param gene_offset_p
 * \param N : dimension
 * \param begin_bound : begin address on the mismatch list
 * \param end_bound :	end address on the mismatch list
 * \param gene_len : Considered gene length
 */
void Coverage_err_counter::recurs_errors_count(double scenario_seq_joint_proba , vector<int>& mismatch_list , const int** gene_offset_p , size_t N , size_t begin_bound , size_t end_bound , size_t gene_len){
	for(size_t j = begin_bound ; j!=end_bound ; ++j){
		this->positions[N] = mismatch_list.at(j)-(**gene_offset_p);
		if(N<record_Npoint_occurence-1){
			this->recurs_errors_count(scenario_seq_joint_proba , mismatch_list , gene_offset_p , N+1 , j , end_bound , gene_len);
		}
		else{
			size_t adress = 0;
			for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
				adress+=positions[a]*pow(gene_len,a);
			}
			tmp_err_p[adress] += scenario_seq_joint_proba;
		}
	}
}

void Coverage_err_counter::symmetrize_counter_array(double* counter_array , size_t N , size_t begin_bound , size_t gene_len){
	if(record_Npoint_occurence>1){
		for(size_t j = begin_bound ; j!=gene_len ; ++j){
			this->positions[N] = j;
			if(N<record_Npoint_occurence-1){
				this->symmetrize_counter_array(counter_array , N+1 , j  , gene_len);
			}
			else{
				size_t adress = 0;
				for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
					adress+=positions[a]*pow(gene_len,a);
				}
				size_t* position_array = new size_t[record_Npoint_occurence];
				symmetrize_counter_array_recurs(adress , 0 , position_array , counter_array , gene_len);
				delete [] position_array;
			}
		}
	}
}

void Coverage_err_counter::symmetrize_counter_array_recurs(size_t adress , size_t N , size_t* position_array ,double* counter_array , size_t gene_len){
	for(size_t j=0 ; j!=record_Npoint_occurence ; ++j){

		bool is_valid = true;
		for(size_t k=0 ; k!= N ; ++k){
			if(j==position_array[k]){
				is_valid = false;
				break;
			}
		}

		if(is_valid){
			position_array[N] = j;
			if(N<record_Npoint_occurence-1){
				symmetrize_counter_array_recurs(adress,N+1,position_array,counter_array,gene_len);
			}
			else{
				size_t new_adress = 0;
				for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
					new_adress+=positions[a]*pow(gene_len,position_array[a]);
				}
				counter_array[new_adress] = counter_array[adress];
			}
		}
	}
}