1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
/*
* Coverageerrcounter.cpp
*
* Created on: Oct 24, 2016
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Coverageerrcounter.h"
using namespace std;
Coverage_err_counter::Coverage_err_counter(Gene_class count_on): Coverage_err_counter("/tmp/",count_on,1,false,false){
}
Coverage_err_counter::Coverage_err_counter(Gene_class count_on , bool dump_all_seq , bool last_iter_only): Coverage_err_counter("/tmp/",count_on,1,dump_all_seq,last_iter_only){
}
Coverage_err_counter::Coverage_err_counter(string path , Gene_class count_on , bool dump_all_seq): Coverage_err_counter(path,count_on,1,dump_all_seq,false){
}
Coverage_err_counter::Coverage_err_counter(string path , Gene_class count_on , size_t Npoint_count , bool dump_all_seq , bool last_iter_only): Counter(path , last_iter_only) ,
count_on(count_on) , dump_individual_seqs(dump_all_seq), record_Npoint_occurence(Npoint_count),
positions(NULL),
n_v_real(0),n_d_real(0),n_j_real(0),
v_gene_nucleotide_coverage_p(NULL) , v_gene_per_nucleotide_error_p(NULL),d_gene_nucleotide_coverage_p(NULL) , d_gene_per_nucleotide_error_p(NULL),j_gene_nucleotide_coverage_p(NULL) , j_gene_per_nucleotide_error_p(NULL),
v_gene_nucleotide_coverage_seq_p(NULL) , v_gene_per_nucleotide_error_seq_p(NULL) , d_gene_nucleotide_coverage_seq_p(NULL) , d_gene_per_nucleotide_error_seq_p(NULL) , j_gene_nucleotide_coverage_seq_p(NULL) , j_gene_per_nucleotide_error_seq_p(NULL) ,
vgene_offset_p(NULL) , dgene_offset_p(NULL) , jgene_offset_p(NULL) ,
vgene_real_index_p(NULL) , dgene_real_index_p(NULL) , jgene_real_index_p(NULL),
v_3_del_value_p(NULL) , d_5_del_value_p(NULL) , d_3_del_value_p(NULL) , j_5_del_value_p(NULL){
if(count_on == V_gene | count_on == VJ_genes | count_on == VD_genes | count_on == VDJ_genes){
count_on_v = true;
}
else count_on_v = false;
if(count_on == D_gene | count_on == DJ_genes | count_on == VD_genes | count_on == VDJ_genes){
count_on_d = true;
}
else count_on_d = false;
if(count_on == J_gene | count_on == VJ_genes | count_on == DJ_genes | count_on == VDJ_genes){
count_on_j = true;
}
else count_on_j = false;
}
Coverage_err_counter::~Coverage_err_counter() {
//FIXME TONS OF STUFF TO DELETE
if(count_on_v){
this->deallocate_coverage_and_errors_arrays(n_v_real,v_realizations,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);
}
if(count_on_d){
this->deallocate_coverage_and_errors_arrays(n_d_real,d_realizations,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);
}
if(count_on_j){
this->deallocate_coverage_and_errors_arrays(n_j_real,j_realizations,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);
}
}
void Coverage_err_counter::initialize_counter(const Model_Parms& parms , const Model_marginals& marginals){
if(not fstreams_created){
if(count_on_v){
output_cov_err_v_file_ptr = shared_ptr<ofstream>(new ofstream);
this->output_cov_err_v_file_ptr->open(path_to_file + "V_genes_cov_and_err.csv");
//Create the header
if(dump_individual_seqs){
(*this->output_cov_err_v_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
}
else{
(*this->output_cov_err_v_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
}
}
if(count_on_d){
output_cov_err_d_file_ptr = shared_ptr<ofstream>(new ofstream);
this->output_cov_err_d_file_ptr->open(path_to_file + "D_genes_cov_and_err.csv");
//Create the header
if(dump_individual_seqs){
(*this->output_cov_err_d_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
}
else{
(*this->output_cov_err_d_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
}
}
if(count_on_j){
output_cov_err_j_file_ptr = shared_ptr<ofstream>(new ofstream);
this->output_cov_err_j_file_ptr->open(path_to_file + "J_genes_cov_and_err.csv");
//Create the header
if(dump_individual_seqs){
(*this->output_cov_err_j_file_ptr.get())<<"iteration_n;seq_index;gene_index;coverage;errors"<<endl;
}
else{
(*this->output_cov_err_j_file_ptr.get())<<"iteration_n;gene_index;coverage;errors"<<endl;
}
}
fstreams_created = true;
}
positions = new size_t [record_Npoint_occurence];
auto events_map = parms.get_events_map();
if(count_on_v){
//Initialize V pointers
try{
v_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,V_gene,Undefined_side)));
vgene_offset_p = &v_gene_event_p->alignment_offset_p;
vgene_real_index_p = &v_gene_event_p->current_realization_index;
//Initialize gene counters
v_realizations = v_gene_event_p->get_realizations_map();
//Get the number of realizations
n_v_real = v_realizations.size();
this->allocate_coverage_and_errors_arrays(n_v_real,v_realizations,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);
}
catch(exception& except){
cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
cout<<"Exception caught trying to initialize V gene pointers"<<endl;
cout<<endl<<"throwing exception now..."<<endl;
throw except;
}
//Get deletion value pointer for V 3' deletions if it exists
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,V_gene,Three_prime)) != 0){
shared_ptr<const Deletion> v_3_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,V_gene,Three_prime)));
v_3_del_value_p = &(v_3_del_event_p->deletion_value);
}
else{v_3_del_value_p = &no_del_buffer;}
}
if(count_on_d){
//Initialize D pointers
try{
d_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,D_gene,Undefined_side)));
dgene_offset_p = &d_gene_event_p->alignment_offset_p;
dgene_real_index_p = &d_gene_event_p->current_realization_index;
//Initialize gene counters
d_realizations = d_gene_event_p->get_realizations_map();
//Get the number of realizations
n_d_real = d_realizations.size();
this->allocate_coverage_and_errors_arrays(n_d_real,d_realizations,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);
}
catch(exception& except){
cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
cout<<"Exception caught trying to initialize D gene pointers"<<endl;
cout<<endl<<"throwing exception now..."<<endl;
throw except;
}
//Get deletion value pointer for D 5' deletions if it exists
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Five_prime)) != 0){
shared_ptr<const Deletion> d_5_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Five_prime)));
d_5_del_value_p = &(d_5_del_event_p->deletion_value);
}
else{d_5_del_value_p = &no_del_buffer;}
//Get deletion value pointer for D 3' deletions if it exists
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Three_prime)) != 0){
shared_ptr<const Deletion> d_3_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,D_gene,Three_prime)));
d_3_del_value_p = &(d_3_del_event_p->deletion_value);
}
else{d_3_del_value_p = &no_del_buffer;}
}
if(count_on_j){
//Initialize J pointers
try{
j_gene_event_p = dynamic_pointer_cast<Gene_choice> (events_map.at(tuple<Event_type,Gene_class,Seq_side>(GeneChoice_t,J_gene,Undefined_side)));
jgene_offset_p = &j_gene_event_p->alignment_offset_p;
jgene_real_index_p = &j_gene_event_p->current_realization_index;
//Initialize gene counters
j_realizations = j_gene_event_p->get_realizations_map();
//Get the number of realizations
n_j_real = j_realizations.size();
this->allocate_coverage_and_errors_arrays(n_j_real,j_realizations,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);
}
catch(exception& except){
cout<<"Exception caught during initialization of Hypermutation global error rate"<<endl;
cout<<"Exception caught trying to initialize J gene pointers"<<endl;
cout<<endl<<"throwing exception now..."<<endl;
throw except;
}
//Get deletion value pointer for J 5' deletions if it exists
if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,J_gene,Five_prime)) != 0){
shared_ptr<const Deletion> j_5_del_event_p = dynamic_pointer_cast<Deletion>(events_map.at(tuple<Event_type,Gene_class,Seq_side>(Deletion_t,J_gene,Five_prime)));
j_5_del_value_p = &(j_5_del_event_p->deletion_value);
}
else{j_5_del_value_p = &no_del_buffer;}
}
}
void Coverage_err_counter::count_scenario(long double scenario_seq_joint_proba , double scenario_probability , const string& original_sequence , Seq_type_str_p_map& constructed_sequences , const Seq_offsets_map& seq_offsets , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , Mismatch_vectors_map& mismatches_lists){
if(count_on_v){
//Get mismatch list
vector<int>& v_mismatch_list = *mismatches_lists.at(V_gene_seq);
//Get the coverage
//Get the length of the gene and a pointer to the right array to write on
tmp_corr_len = v_gene_nucleotide_coverage_seq_p[**vgene_real_index_p].first;
tmp_cov_p = v_gene_nucleotide_coverage_seq_p[**vgene_real_index_p].second;
tmp_err_p = v_gene_per_nucleotide_error_seq_p[**vgene_real_index_p].second;
/*
* Start at position 0
* Assume V is on the left of the read and compute left bound: max(0,-(**vgene_offset_p))
* Disregard P nucleotides, and set end bound as: tmp_corr_len - max(0,*v_3_del_value_p)
*/
this->recurs_coverage_count(scenario_seq_joint_proba,0,max(0,-(**vgene_offset_p)),tmp_corr_len - max(0,*v_3_del_value_p),tmp_corr_len);
/*
* compute the position on the mismatch vector of the first Pnuc error and set it as the end bound
*/
size_t tmp_len_util = v_mismatch_list.size();
for( i = 0 ; i != tmp_len_util ; ++i){
//Disregard mismatches due to P nucleotides
if( (v_mismatch_list[i]-(**vgene_offset_p))>=tmp_corr_len ){
tmp_len_util = i;
break;
}
}
this->recurs_errors_count(scenario_seq_joint_proba,v_mismatch_list,vgene_offset_p,0,0,tmp_len_util,tmp_corr_len);
/* //Get the corrected number of deletions(no negative deletion)
tmp_corr_len -= max(0,*v_3_del_value_p); //FIXME assumes that V is on the left of the read
// Compute the coverage
for( i = max(0,-(**vgene_offset_p)) ; i != tmp_corr_len ; ++i ){
tmp_cov_p[i]+=scenario_seq_joint_proba;
}
//Compute the error per nucleotide on the gene
tmp_len_util = v_mismatch_list.size();
for( i = 0 ; i != tmp_len_util ; ++i){
//Disregard mismatches due to P nucleotides
if( (v_mismatch_list[i]-(**vgene_offset_p))<tmp_corr_len ){
tmp_err_p[v_mismatch_list[i]-(**vgene_offset_p)]+=scenario_seq_joint_proba;
}
}*/
}
if(count_on_d){
throw("/!\\ D coverage and errors counters not implemented yet! /!\\ ");
}
if(count_on_j){
//Get mismatch list
vector<int>& j_mismatch_list = *mismatches_lists.at(J_gene_seq);
//Get the coverage
//Get the length of the gene and a pointer to the right array to write on
tmp_corr_len = j_gene_nucleotide_coverage_seq_p[**jgene_real_index_p].first; //Length of the J gene
tmp_cov_p = j_gene_nucleotide_coverage_seq_p[**jgene_real_index_p].second; //Coverage array
tmp_err_p = j_gene_per_nucleotide_error_seq_p[**jgene_real_index_p].second; //Errors array
/*
* Start at position 0
*
* Disregard P nucleotides, and set begin bound as: max(0,(*j_5_del_value_p))
* Assume J is on the right of the read and compute end bound: max(0,(*j_5_del_value_p))+(seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1)
* i.e : begin bound + number of visible nucleotides
*/
this->recurs_coverage_count(scenario_seq_joint_proba,0,max(0,(*j_5_del_value_p)),max(0,(*j_5_del_value_p))+(seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1),tmp_corr_len);
/*
* compute the position on the mismatch vector of the first Pnuc error and set it as the begin bound
*/
size_t tmp_len_util = j_mismatch_list.size();
for( i = 0 ; i != tmp_len_util ; ++i){
//Disregard mismatches due to P nucleotides
if( (j_mismatch_list[i] >= (**jgene_offset_p) ) ){
//Since the alignment offset does not take into account Pnuc, any error due to Pnucs will have an index smaller than the gene offset
tmp_len_util = i;
break;
}
}
this->recurs_errors_count(scenario_seq_joint_proba,j_mismatch_list,jgene_offset_p,0,tmp_len_util,j_mismatch_list.size(),tmp_corr_len);
/* //Get the corrected number of deletions(no negative deletion)
tmp_corr_len = max(0,(*j_5_del_value_p));
// Compute the coverage
const int tmp = (seq_offsets.at(J_gene_seq,Three_prime) - seq_offsets.at(J_gene_seq,Five_prime) +1);
for( i = 0 ; i != tmp ; ++i ){
tmp_cov_p[i+tmp_corr_len]+=scenario_seq_joint_proba;
}
//Compute the error per nucleotide on the gene
tmp_len_util = j_mismatch_list.size();
for( i = 0 ; i != tmp_len_util ; ++i){
//Disregard mismatches due to P nucleotides
if( (j_mismatch_list[i] >= (**jgene_offset_p) + tmp_corr_len) ){
tmp_err_p[j_mismatch_list[i]-(**jgene_offset_p)]+=scenario_seq_joint_proba;
}
}*/
}
}
void Coverage_err_counter::count_sequence(double seq_likelihood , const Model_marginals& single_seq_marginals , const Model_Parms& single_seq_model_parms){
//Normalize by the sequence likelihood and clean counter if not all seq are dumped
if(seq_likelihood!=0){
if(count_on_v){
this->normalize_and_add_cov_and_err(seq_likelihood , n_v_real , v_gene_nucleotide_coverage_p , v_gene_per_nucleotide_error_p , v_gene_nucleotide_coverage_seq_p , v_gene_per_nucleotide_error_seq_p);
}
if(count_on_d){
this->normalize_and_add_cov_and_err(seq_likelihood , n_d_real , d_gene_nucleotide_coverage_p , d_gene_per_nucleotide_error_p , d_gene_nucleotide_coverage_seq_p , d_gene_per_nucleotide_error_seq_p);
}
if(count_on_j){
this->normalize_and_add_cov_and_err(seq_likelihood , n_j_real , j_gene_nucleotide_coverage_p , j_gene_per_nucleotide_error_p , j_gene_nucleotide_coverage_seq_p , j_gene_per_nucleotide_error_seq_p);
}
}
}
/*
* Will copy multi sequence information on this
* Will clean the other counter at the same time
*/
void Coverage_err_counter::add_checked(shared_ptr<Counter> counter){
shared_ptr<Coverage_err_counter> other = dynamic_pointer_cast<Coverage_err_counter>(counter);
//TODO add checks on counter nature and content
double identity = 1.0;
if(count_on_v){
this->normalize_and_add_cov_and_err(identity , n_v_real , this->v_gene_nucleotide_coverage_p , this->v_gene_per_nucleotide_error_p , other->v_gene_nucleotide_coverage_p , other->v_gene_per_nucleotide_error_p);
}
if(count_on_d){
this->normalize_and_add_cov_and_err(identity , n_d_real , this->d_gene_nucleotide_coverage_p , this->d_gene_per_nucleotide_error_p , other->d_gene_nucleotide_coverage_p , other->d_gene_per_nucleotide_error_p);
}
if(count_on_j){
this->normalize_and_add_cov_and_err(identity , n_j_real , this->j_gene_nucleotide_coverage_p , this->j_gene_per_nucleotide_error_p , other->j_gene_nucleotide_coverage_p , other->j_gene_per_nucleotide_error_p);
}
}
/*
* Will output per sequence coverage and errors if needed
* Also cleans individual seq counters at the same time
*/
void Coverage_err_counter::dump_sequence_data(int seq_index , int iteration_n){
if(dump_individual_seqs){
if(count_on_v){
this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_v_file_ptr,n_v_real,v_gene_nucleotide_coverage_seq_p,v_gene_per_nucleotide_error_seq_p);
}
if(count_on_d){
this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_d_file_ptr,n_d_real,d_gene_nucleotide_coverage_seq_p,d_gene_per_nucleotide_error_seq_p);
}
if(count_on_j){
this->dump_cov_and_err_arrays(iteration_n,seq_index,output_cov_err_j_file_ptr,n_j_real,j_gene_nucleotide_coverage_seq_p,j_gene_per_nucleotide_error_seq_p);
}
}
}
void Coverage_err_counter::dump_data_summary(int iteration_n){
if(not dump_individual_seqs){
if(count_on_v){
this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_v_file_ptr,n_v_real,v_gene_nucleotide_coverage_p,v_gene_per_nucleotide_error_p);
}
if(count_on_d){
this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_d_file_ptr,n_d_real,d_gene_nucleotide_coverage_p,d_gene_per_nucleotide_error_p);
}
if(count_on_j){
this->dump_cov_and_err_arrays(iteration_n,-1,output_cov_err_j_file_ptr,n_j_real,j_gene_nucleotide_coverage_p,j_gene_per_nucleotide_error_p);
}
}
}
shared_ptr<Counter> Coverage_err_counter::copy() const{
shared_ptr<Coverage_err_counter> counter_copy_ptr (new Coverage_err_counter(path_to_file , count_on , record_Npoint_occurence , dump_individual_seqs , last_iter_only));
counter_copy_ptr->fstreams_created = this->fstreams_created;
if(this->fstreams_created){
if(count_on_v){
counter_copy_ptr->output_cov_err_v_file_ptr = this->output_cov_err_v_file_ptr;
}
if(count_on_d){
counter_copy_ptr->output_cov_err_d_file_ptr = this->output_cov_err_d_file_ptr;
}
if(count_on_j){
counter_copy_ptr->output_cov_err_j_file_ptr = this->output_cov_err_j_file_ptr;
}
}
else{
throw runtime_error("Counters should not be copied before stream initialization");
}
return counter_copy_ptr;
}
void Coverage_err_counter::allocate_coverage_and_errors_arrays(size_t n_real, const unordered_map<string , Event_realization> realizations ,pair<size_t,double*>*& gene_nucleotide_coverage_p,pair<size_t,double*>*& gene_per_nucleotide_error_p,pair<size_t,double*>*& gene_nucleotide_coverage_seq_p,pair<size_t,double*>*& gene_per_nucleotide_error_seq_p){
//Create coverage and errors arrays
gene_nucleotide_coverage_p = new pair<size_t,double*>[n_real];
gene_per_nucleotide_error_p = new pair<size_t,double*>[n_real];
gene_nucleotide_coverage_seq_p = new pair<size_t,double*>[n_real];
gene_per_nucleotide_error_seq_p = new pair<size_t,double*>[n_real];
for(unordered_map<string , Event_realization>::const_iterator iter = realizations.begin() ; iter != realizations.end() ; iter++){
size_t tmp = pow((*iter).second.value_str_int.size(),record_Npoint_occurence);
//Initialize normalized counters
gene_nucleotide_coverage_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
gene_per_nucleotide_error_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
//Initialize sequence counters
gene_nucleotide_coverage_seq_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
gene_per_nucleotide_error_seq_p[(*iter).second.index] = pair<size_t,double*>((*iter).second.value_str_int.size(),new double [tmp]);
for(i=0 ; i!=pow((*iter).second.value_str_int.size(),record_Npoint_occurence) ; ++i){
gene_nucleotide_coverage_p[(*iter).second.index].second[i]=0;
gene_per_nucleotide_error_p[(*iter).second.index].second[i]=0;
gene_nucleotide_coverage_seq_p[(*iter).second.index].second[i]=0;
gene_per_nucleotide_error_seq_p[(*iter).second.index].second[i]=0;
}
}
}
void Coverage_err_counter::deallocate_coverage_and_errors_arrays(size_t n_real, const unordered_map<string , Event_realization> realizations ,pair<size_t,double*>*& gene_nucleotide_coverage_p,pair<size_t,double*>*& gene_per_nucleotide_error_p,pair<size_t,double*>*& gene_nucleotide_coverage_seq_p,pair<size_t,double*>*& gene_per_nucleotide_error_seq_p){
if(n_real!=0){
//If n_real==0 then the Counter has probably not been initialized
for(unordered_map<string , Event_realization>::const_iterator iter = realizations.begin() ; iter != realizations.end() ; iter++){
//Deallocate normalized counters
delete [] gene_nucleotide_coverage_p[(*iter).second.index].second;
delete [] gene_per_nucleotide_error_p[(*iter).second.index].second;
//Deallocate sequence counters
delete [] gene_nucleotide_coverage_seq_p[(*iter).second.index].second;
delete [] gene_per_nucleotide_error_seq_p[(*iter).second.index].second;
}
//Deallocate coverage and errors arrays
delete [] gene_nucleotide_coverage_p;
delete [] gene_per_nucleotide_error_p;
delete [] gene_nucleotide_coverage_seq_p;
delete [] gene_per_nucleotide_error_seq_p;
}
}
void Coverage_err_counter::dump_cov_and_err_arrays( int iteration_n , int seq_index , shared_ptr<ofstream> outfile_ptr , size_t n_real , pair<size_t,double*>* coverage_array_p , pair<size_t,double*>* error_array_p ){
for(i=0 ; i!=n_real; ++i ){
tmp_len_util = pow(coverage_array_p[i].first,record_Npoint_occurence);
tmp_cov_p = coverage_array_p[i].second;
tmp_err_p = error_array_p[i].second;
if(dump_individual_seqs){
(*outfile_ptr.get())<<iteration_n<<";"<<seq_index<<";"<<i<<";(";
}
else{
(*outfile_ptr.get())<<iteration_n<<";"<<i<<";(";
}
//Symmetrize the array
this->symmetrize_counter_array(tmp_cov_p,0,0,coverage_array_p[i].first);
//Output it
for(size_t j=0 ; j!=tmp_len_util ; ++j ){
if(j!=0) (*outfile_ptr.get())<<",";
(*outfile_ptr.get())<<tmp_cov_p[j];
tmp_cov_p[j] = 0;
}
(*outfile_ptr.get())<<");(";
//Symmetrize the array
this->symmetrize_counter_array(tmp_err_p,0,0,coverage_array_p[i].first);
//Output error array
for(size_t j=0 ; j!=tmp_len_util ; ++j ){
if(j!=0) (*outfile_ptr.get())<<",";
(*outfile_ptr.get())<<tmp_err_p[j];
tmp_err_p[j] = 0;
}
(*outfile_ptr.get())<<")"<<endl;
}
}
void Coverage_err_counter::normalize_and_add_cov_and_err(double& normalizing_cst , size_t n_real , pair<size_t,double*>* target_coverage_array_p , pair<size_t,double*>* target_error_array_p , pair<size_t,double*>* base_coverage_array_p , pair<size_t,double*>* base_error_array_p){
for(i=0 ; i!=n_real; ++i ){
tmp_len_util = pow(base_coverage_array_p[i].first,record_Npoint_occurence);
tmp_cov_p = base_coverage_array_p[i].second;
tmp_err_p = base_error_array_p[i].second;
for(size_t j=0 ; j!=tmp_len_util ; ++j){
tmp_cov_p[j]/=normalizing_cst;
tmp_err_p[j]/=normalizing_cst;
}
if(not dump_individual_seqs){
for(size_t j=0 ; j!=tmp_len_util ; ++j){
target_coverage_array_p[i].second[j]+=tmp_cov_p[j];
tmp_cov_p[j] = 0; //Clean seq counter
target_error_array_p[i].second[j]+=tmp_err_p[j];
tmp_err_p[j] = 0; //Clean seq counter
}
}
}
}
/**
* \brief Computes recursively the N point coverage
* \author Q.Marcou
* \version 1.0
*
* This function computes recursively the N point coverage. The N point coverage is an N dimensional array for which we fill only half and symmetrize later.
* The recursion is called to explore each dimension, setting the begin bounds and end bounds delimit the positions for which coverage should be recorded (nucleotides inside the read and not deleted).
* The begin bound is used internally to explore only half of the array.
*
* \param scenario_seq_joint_proba
* \param N : dimension
* \param begin_bound : begin address on the coverage array
* \param end_bound : end address on the coverage array
* \param gene_len : Considered gene length
*/
void Coverage_err_counter::recurs_coverage_count(double scenario_seq_joint_proba , size_t N , size_t begin_bound , size_t end_bound , size_t gene_len){
for(size_t j = begin_bound ; j!=end_bound ; ++j){
this->positions[N] = j;
if(N<record_Npoint_occurence-1){
this->recurs_coverage_count(scenario_seq_joint_proba , N+1 , j , end_bound , gene_len);
}
else{
size_t adress = 0;
for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
adress+=positions[a]*pow(gene_len,a);
}
tmp_cov_p[adress] += scenario_seq_joint_proba;
}
}
}
/**
* \brief Computes recursively the N point errors
* \author Q.Marcou
* \version 1.0
*
* This function computes recursively the N point errors.
*
* \param scenario_seq_joint_proba
* \param mismatch list
* \param gene_offset_p
* \param N : dimension
* \param begin_bound : begin address on the mismatch list
* \param end_bound : end address on the mismatch list
* \param gene_len : Considered gene length
*/
void Coverage_err_counter::recurs_errors_count(double scenario_seq_joint_proba , vector<int>& mismatch_list , const int** gene_offset_p , size_t N , size_t begin_bound , size_t end_bound , size_t gene_len){
for(size_t j = begin_bound ; j!=end_bound ; ++j){
this->positions[N] = mismatch_list.at(j)-(**gene_offset_p);
if(N<record_Npoint_occurence-1){
this->recurs_errors_count(scenario_seq_joint_proba , mismatch_list , gene_offset_p , N+1 , j , end_bound , gene_len);
}
else{
size_t adress = 0;
for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
adress+=positions[a]*pow(gene_len,a);
}
tmp_err_p[adress] += scenario_seq_joint_proba;
}
}
}
void Coverage_err_counter::symmetrize_counter_array(double* counter_array , size_t N , size_t begin_bound , size_t gene_len){
if(record_Npoint_occurence>1){
for(size_t j = begin_bound ; j!=gene_len ; ++j){
this->positions[N] = j;
if(N<record_Npoint_occurence-1){
this->symmetrize_counter_array(counter_array , N+1 , j , gene_len);
}
else{
size_t adress = 0;
for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
adress+=positions[a]*pow(gene_len,a);
}
size_t* position_array = new size_t[record_Npoint_occurence];
symmetrize_counter_array_recurs(adress , 0 , position_array , counter_array , gene_len);
delete [] position_array;
}
}
}
}
void Coverage_err_counter::symmetrize_counter_array_recurs(size_t adress , size_t N , size_t* position_array ,double* counter_array , size_t gene_len){
for(size_t j=0 ; j!=record_Npoint_occurence ; ++j){
bool is_valid = true;
for(size_t k=0 ; k!= N ; ++k){
if(j==position_array[k]){
is_valid = false;
break;
}
}
if(is_valid){
position_array[N] = j;
if(N<record_Npoint_occurence-1){
symmetrize_counter_array_recurs(adress,N+1,position_array,counter_array,gene_len);
}
else{
size_t new_adress = 0;
for(size_t a = 0 ; a!=record_Npoint_occurence ; ++a){
new_adress+=positions[a]*pow(gene_len,position_array[a]);
}
counter_array[new_adress] = counter_array[adress];
}
}
}
}
|