1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
/*
* Insertion.cpp
*
* Created on: Dec 9, 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Insertion.h"
using namespace std;
Insertion::Insertion(): Insertion(Undefined_gene) {
this->type = Event_type::Insertion_t;
this->update_event_name();
}
Insertion::Insertion(Gene_class genes , pair<int,int> ins_range): Insertion( genes ) { //FIXME nonsense new
int min_ins = min(ins_range.first , ins_range.second);
int max_ins = max(ins_range.first , ins_range.second);
this->type = Event_type::Insertion_t;
this->len_max = max_ins;
this->len_min = min_ins;
for(int i=min_ins ; i!=max_ins+1 ; ++i){
this->add_realization(i);
}
this->update_event_name();
}
Insertion::Insertion(Gene_class gene ): Rec_Event(gene,Undefined_side ) , proba_contribution(-1) , previous_index(-1) , insertions(-1) , new_scenario_proba(-1) , base_index(-1) , new_index(-1) , realization_index(-1) , dinuc_updated_bound(NULL){
this->type = Event_type::Insertion_t;
for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
if((*iter).second.value_int > this->len_max){this->len_max = (*iter).second.value_int;}
else if ((*iter).second.value_int < this->len_min){this->len_min = (*iter).second.value_int;}
}
this->update_event_name();
}
Insertion::Insertion(Gene_class gene , unordered_map<string,Event_realization>& realizations): Insertion(gene){
this->event_realizations = realizations;
this->type = Event_type::Insertion_t;
for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
if((*iter).second.value_int > this->len_max){this->len_max = (*iter).second.value_int;}
else if ((*iter).second.value_int < this->len_min){this->len_min = (*iter).second.value_int;}
}
this->update_event_name();
}
Insertion::~Insertion() {
// TODO Auto-generated destructor stub
}
shared_ptr<Rec_Event> Insertion::copy(){
//TODO check this kind of copy for memory leak
shared_ptr<Insertion> new_insertion_p = shared_ptr<Insertion> (new Insertion(this->event_class,this->event_realizations));
new_insertion_p->priority = this->priority;
new_insertion_p->nickname = this->nickname;
new_insertion_p->fixed = this->fixed;
new_insertion_p->update_event_name();
new_insertion_p->set_event_identifier(this->event_index);
return new_insertion_p;
}
bool Insertion::add_realization(int insertion_number){
this->Rec_Event::add_realization( Event_realization(to_string(insertion_number),insertion_number ,"",Int_Str(),this->size() ));
if(insertion_number>this->len_max){this->len_max = insertion_number;}
else if(insertion_number < this->len_min){this->len_min = insertion_number;}
this->update_event_name();
return 0;
}
void Insertion::iterate(double& scenario_proba , Downstream_scenario_proba_bound_map& downstream_proba_map , const string& sequence , const Int_Str& int_sequence , Index_map& base_index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , shared_ptr<Next_event_ptr>& next_event_ptr_arr , Marginal_array_p& updated_marginals_point , const Marginal_array_p& model_parameters_point ,const unordered_map<Gene_class , vector<Alignment_data>>& allowed_realizations , Seq_type_str_p_map& constructed_sequences , Seq_offsets_map& seq_offsets , shared_ptr<Error_rate>& error_rate_p , map<size_t,shared_ptr<Counter>>& counters_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , Safety_bool_map& safety_set , Mismatch_vectors_map& mismatches_lists, double& seq_max_prob_scenario , double& proba_threshold_factor){
base_index = base_index_map.at(this->event_index);
new_scenario_proba = scenario_proba;
proba_contribution = 1;
switch((*this).event_class){
case VD_genes:
{
/*//Get the offset of D alignment and all D related informations
string d_seq = constructed_sequences.at(D_gene_seq);
int d_offset = chosen_genes.at(D_gene).second.offset; //will crash if no D has been chosen
int d_del = deletion_map[make_pair(D_gene,Five_prime)];
string v_seq = constructed_sequences.at(V_gene_seq);
//Get the offset of V alignment
int v_offset = chosen_genes.at(V_gene).second.offset;
int v_seq_size = constructed_sequences.at(V_gene_seq).size();
//Compute the number of insertions:
//ie the number of nucleotides in the read between the end of V and beginning of D
int insertions = (d_offset + d_del) - (v_offset + v_seq_size -1) -1;t(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1
*/
//if(!(*constructed_sequences.at(D_gene_seq)).empty()){
//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(D_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1;
//TODO get the current memory layer to avoid any error
//insertions = seq_offsets.at(d_5_pair) - seq_offsets.at(v_3_pair) -1;
insertions = seq_offsets.at(D_gene_seq,Five_prime) - seq_offsets.at(V_gene_seq,Three_prime) -1;
//TODO Think about including in-dels in the insertion process(thus create a real loop on the number of insertion)
proba_contribution = (*this).iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);
if(proba_contribution!=0){
inserted_str.assign(insertions , -1);
new_index = base_index + this->event_realizations.at(to_string(insertions)).index; //FIXME this should not exist
constructed_sequences[VD_ins_seq]= &inserted_str;
downstream_proba_map.set_value(VD_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
}
//}
}
break;
case DJ_genes:
{
/*
//Get the offset of D alignment and all D related informations
string d_seq = constructed_sequences.at(D_gene_seq);
int d_offset = chosen_genes.at(D_gene).second.offset;
//Get number of deletions (if no deletion event before, default initialized to 0)
//need the number of 3' deletions in case the sequence has already been shortened
int d_del_5 = deletion_map[make_pair(D_gene,Five_prime)];
int d_del_3 = deletion_map[make_pair(D_gene,Three_prime)];
string j_seq = constructed_sequences.at(J_gene_seq);
//Get the offset of J alignment
int j_offset = chosen_genes.at(J_gene).second.offset;
//Get the number of deletions
int j_del = deletion_map[make_pair(J_gene,Five_prime)];
int insertions = (j_offset + j_del) - (d_offset + d_del_3 + d_seq.size() - 1 - d_del_5) -1;
*/
//if(!(*constructed_sequences.at(D_gene_seq)).empty()){
//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(J_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(D_gene_seq,Three_prime)) -1;
//insertions = seq_offsets.at(j_5_pair) - seq_offsets.at(d_3_pair) -1;
insertions = seq_offsets.at(J_gene_seq,Five_prime) - seq_offsets.at(D_gene_seq,Three_prime) -1;
proba_contribution = iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);
if(proba_contribution!=0){
inserted_str.assign(insertions , -1);
new_index = base_index + this->event_realizations.at(to_string(insertions)).index;
constructed_sequences[DJ_ins_seq]= &inserted_str;
downstream_proba_map.set_value(DJ_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
}
//}
break;
}
case VJ_genes:
{
//string v_seq = constructed_sequences.at(V_gene_seq);
/*
* //Get the offset of V alignment
int v_offset = chosen_genes.at(V_gene).second.offset;
int original_v_seq_size = chosen_genes.at(V_gene).first.value_str.size();
//Get the number of deletions
//use operator[] to find_or_add (default initialize int to 0 if not found)
//TODO check if default initializing to 0 is better and then change the values
int v_del = deletion_map[make_pair(V_gene,Three_prime)];
*/
//string j_seq = constructed_sequences.at(J_gene_seq);
/*
//Get the offset of J alignment
int j_offset = chosen_genes.at(J_gene).second.offset;
//Get the number of deletions
int j_del = deletion_map[make_pair(J_gene,Five_prime)];
*/
//TODO declare insertion before and call iterate common after, clean code get rid of code duplication
//int insertions = (j_offset + j_del) - (v_offset + (original_v_seq_size ) - v_del )-1;
//int insertions = sequence.size() - (v_seq.size() + j_seq.size());
//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(J_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1;
//insertions = seq_offsets.at(j_5_pair) - seq_offsets.at(v_3_pair) -1;
insertions = seq_offsets.at(J_gene_seq,Five_prime) - seq_offsets.at(V_gene_seq,Three_prime) -1;
proba_contribution = iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);
if(proba_contribution!=0){
inserted_str.assign(insertions , -1);
new_index = base_index + realization_index;//this->event_realizations.at(to_string(insertions)).index;
constructed_sequences[VJ_ins_seq] = &inserted_str;
downstream_proba_map.set_value(VJ_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
}
break;
}
default:
throw invalid_argument("Unknown gene_class for Insertion: " + this->event_class);
break;
}
if(proba_contribution!=0){
//TODO new_scenario proba necessary?
new_scenario_proba*=proba_contribution;
//tmp_err_w_proba*=proba_contribution;
(*dinuc_updated_bound) = upper_bound_per_ins.at(insertions);
//Compute scenario downstream proba bound
scenario_upper_bound_proba = new_scenario_proba;
//Multiply all downstream probas
downstream_proba_map.multiply_all(scenario_upper_bound_proba,current_downstream_proba_memory_layers);
if(scenario_upper_bound_proba>=(seq_max_prob_scenario*proba_threshold_factor)){
Rec_Event::iterate_wrap_up(new_scenario_proba , downstream_proba_map , sequence , int_sequence , base_index_map , offset_map , next_event_ptr_arr , updated_marginals_point , model_parameters_point , allowed_realizations , constructed_sequences , seq_offsets , error_rate_p , counters_list , events_map , safety_set ,mismatches_lists,seq_max_prob_scenario,proba_threshold_factor);
}
}
}
/*
*This short method performs the iterate operations common to all Rec_event (modify index map and fetch realization probability)
*/
inline double Insertion::iterate_common(double scenario_proba , int insertions , int base_index , Index_map& base_index_map ,const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map ,const Marginal_array_p& model_parameters_point){
//insertions_str = to_string(insertions);
//TODO just output proba contribution no need to take it as argument
if(this->ordered_realization_map.count(insertions)>0){
realization_index = this->ordered_realization_map.at(insertions).index;
current_realizations_index_vec[0] = realization_index;
}else{
//discard out of range cases
realization_index = INT32_MAX;//make sure the index called at the end is in the range
//scenario_proba = 0;//discard the recombination scenario
return 0;
}
/* if (offset_map.count(this->name)!=0){
for(vector<pair<const Rec_Event*,int>>::const_iterator jiter = offset_map.at(this->name).begin() ; jiter!= offset_map.at(this->name).end() ; jiter++){
//modify index map using offset map
base_index_map.at((*jiter).first->get_name()) += realization_index * ((*jiter).second);
}
}*/
for(forward_list<tuple<int,int,int>>::const_iterator jiter = memory_and_offsets.begin() ; jiter!=memory_and_offsets.end() ; ++jiter){
//Get previous index for the considered event
previous_index = base_index_map.at(get<0>(*jiter),get<1>(*jiter)-1);
//Update the index given the realization and the offset
previous_index += realization_index*get<2>(*jiter);
//Set the value
base_index_map.set_value(get<0>(*jiter) , previous_index , get<1>(*jiter));
}
//Compute the probability of the scenario considering the realization (*iter) we're looking at
return scenario_proba * model_parameters_point[base_index+realization_index];
}
queue<int> Insertion::draw_random_realization(const Marginal_array_p& model_marginals_p , unordered_map<Rec_Event_name,int>& index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , unordered_map<Seq_type , string>& constructed_sequences , mt19937_64& generator)const{
uniform_real_distribution<double> distribution(0.0,1.0);
double rand = distribution(generator);
double prob_count = 0;
queue<int> realization_queue;
for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter ){
prob_count += model_marginals_p[index_map.at(this->get_name()) + (*iter).second.index];
if(prob_count>=rand){
switch(this->event_class){
case VD_genes:
constructed_sequences[VD_ins_seq] = string((*iter).second.value_int,'I');
break;
case DJ_genes:
constructed_sequences[DJ_ins_seq] = string((*iter).second.value_int,'I');
break;
case VJ_genes:
constructed_sequences[VJ_ins_seq] = string((*iter).second.value_int,'I');
break;
default:
break;
}
realization_queue.push((*iter).second.index);
if(offset_map.count(this->get_name()) != 0){
for (vector<pair<shared_ptr<const Rec_Event>,int>>::const_iterator jiter = offset_map.at(this->get_name()).begin() ; jiter!= offset_map.at(this->get_name()).end() ; ++jiter){
index_map.at((*jiter).first->get_name()) += (*iter).second.index*(*jiter).second;
}
}
break;
}
}
return realization_queue;
}
void Insertion::write2txt(ofstream& outfile){
outfile<<"#Insertion;"<<event_class<<";"<<event_side<<";"<<priority<<";"<<nickname<<endl;
for(unordered_map<string,Event_realization>::const_iterator iter=event_realizations.begin() ; iter!= event_realizations.end() ; ++iter){
outfile<<"%"<<(*iter).second.value_int<<";"<<(*iter).second.index<<endl;
}
}
void Insertion::initialize_event( unordered_set<Rec_Event_name>& processed_events , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , Downstream_scenario_proba_bound_map& downstream_proba_map , Seq_type_str_p_map& constructed_sequences , Safety_bool_map& safety_set , shared_ptr<Error_rate> error_rate_p , Mismatch_vectors_map& mismatches_list , Seq_offsets_map& seq_offsets , Index_map& index_map){
switch(this->event_class){
case VD_genes:
downstream_proba_map.request_memory_layer(VD_ins_seq);
memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(VD_ins_seq);
break;
case DJ_genes:
downstream_proba_map.request_memory_layer(DJ_ins_seq);
memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(DJ_ins_seq);
break;
case VJ_genes:
downstream_proba_map.request_memory_layer(VJ_ins_seq);
memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(VJ_ins_seq);
break;
}
this->Rec_Event::initialize_event(processed_events,events_map,offset_map,downstream_proba_map,constructed_sequences,safety_set,error_rate_p,mismatches_list,seq_offsets,index_map);
}
void Insertion::add_to_marginals(long double scenario_proba , Marginal_array_p& updated_marginals) const{
if(viterbi_run){
updated_marginals[this->new_index]=scenario_proba;
}
else{
updated_marginals[this->new_index]+=scenario_proba;
}
}
void Insertion::set_crude_upper_bound_proba(size_t base_index , size_t event_size , Marginal_array_p& marginal_array_p){
size_t numb_realizations = this->size();
upper_bound_per_ins.clear();
for(unordered_map < string, Event_realization >::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
//Get the max proba for each number of insertions
size_t real_index = (*iter).second.index;
size_t j = 0;
double max_proba = 0;
while((j*numb_realizations + real_index) < event_size){
if(marginal_array_p[base_index + ((j*numb_realizations + real_index))] > max_proba){
max_proba = marginal_array_p[base_index + ((j*numb_realizations + real_index))];
}
++j;
}
upper_bound_per_ins[(*iter).second.value_int] = max_proba;
}
}
void Insertion::initialize_crude_scenario_proba_bound(double& downstream_proba_bound , forward_list<double*>& updated_proba_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map){
this->scenario_downstream_upper_bound_proba = downstream_proba_bound;
this->updated_proba_bounds_list = updated_proba_list;
this->event_upper_bound_proba = 0;
shared_ptr<Rec_Event> dinuc_event_p;
//TODO remove this and correct the way ordered realization map works
ordered_realization_map.clear();
for(unordered_map<string,Event_realization>::const_iterator iter=(*this).event_realizations.begin() ; iter != (*this).event_realizations.end() ; ++iter){
ordered_realization_map.emplace ((*iter).second.value_int,(*iter).second);
}
switch(this->event_class){
//TODO be careful in case there is both VDJ and VD/DJ (however this should not happen)
case VD_genes:
if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VD_genes,Undefined_side))){
dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VD_genes,Undefined_side));
}
else if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side))){
dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side));
}
break;
case VJ_genes:
if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VJ_genes,Undefined_side))){
dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VJ_genes,Undefined_side));
}
break;
case DJ_genes:
if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,DJ_genes,Undefined_side))){
dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,DJ_genes,Undefined_side));
}
else if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side))){
dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side));
}
break;
default:
throw runtime_error("Unknown Gene class for insertion in initialize_scenario_proba_bound()");
break;
}
double dinuc_upper_bound_proba = dinuc_event_p->get_upper_bound_proba();
for(map<int,double>::iterator iter = upper_bound_per_ins.begin() ; iter != upper_bound_per_ins.end() ; ++iter){
//Compute joint upper bound of dinuc and insertion and store it as insertion upper bound
(*iter).second*=pow(dinuc_upper_bound_proba,(*iter).first);
if((*iter).second>this->event_upper_bound_proba){
this->event_upper_bound_proba = (*iter).second;
}
//Only keep information about the dinucleotide probability to update the dinuc upperbound
(*iter).second = pow(dinuc_upper_bound_proba,(*iter).first);
}
this->dinuc_updated_bound = dinuc_event_p->get_updated_ptr();
//Remove the pointer from the list (otherwise dinuc upperbound is accounted for twice for events before insertion)
updated_proba_list.remove(dinuc_updated_bound);
//Apply the computed upper bound
downstream_proba_bound*=event_upper_bound_proba;
}
bool Insertion::has_effect_on(Seq_type seq_type) const{
switch(this->event_class){
case VD_genes:
if(seq_type == VJ_ins_seq or seq_type==VD_ins_seq){
return true;
}
else return false;
break;
case VJ_genes:
if(seq_type==VJ_ins_seq){
return true;
}
else return false;
break;
case DJ_genes:
if(seq_type==VJ_ins_seq or seq_type==DJ_ins_seq){
return true;
}
else return false;
break;
default:
return false;
}
}
void Insertion::iterate_initialize_Len_proba(Seq_type considered_junction , std::map<int,double>& length_best_proba_map , std::queue<std::shared_ptr<Rec_Event>>& model_queue , double& scenario_proba , const Marginal_array_p& model_parameters_point , Index_map& base_index_map , Seq_type_str_p_map& constructed_sequences , int& seq_len/*=0*/ ) const{
if(this->has_effect_on(considered_junction)){
base_index = base_index_map.at(this->event_index,0);
//Insert sequence in the right constructed sequence
Seq_type seq_type;
switch(this->event_class){
case VD_genes:
seq_type = VD_ins_seq;
break;
case VJ_ins_seq:
seq_type = VJ_ins_seq;
break;
case DJ_ins_seq:
seq_type = DJ_ins_seq;
break;
}
for(unordered_map <string, Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter!= this->event_realizations.end() ; ++iter){
/* //Update base index map
for(forward_list<tuple<int,int,int>>::const_iterator jiter = memory_and_offsets.begin() ; jiter!=memory_and_offsets.end() ; ++jiter){
//Get previous index for the considered event
int previous_index = base_index_map.at(get<0>(*jiter),get<1>(*jiter)-1);
//Update the index given the realization and the offset
previous_index += iter->second.index *get<2>(*jiter);
//Set the value
base_index_map.set_value(get<0>(*jiter) , previous_index , get<1>(*jiter));
}*/
//Get the max proba for this realization (in case the event is child of another)
double real_max_proba = 0;
for(size_t i = 0 ; i!=this->event_marginal_size/this->size() ; ++i){
if(model_parameters_point[base_index + (*iter).second.index + i*this->size()]>real_max_proba){
real_max_proba = model_parameters_point[base_index + (*iter).second.index + i*this->size()];
}
}
//Build an inserted sequence to let the Dinuc know about the number of insertions considered
inserted_str.assign(iter->second.value_int , -1);
constructed_sequences[seq_type] = &inserted_str;
//Update the length and the probability within the recursive call
Rec_Event::iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map , model_queue , scenario_proba*real_max_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len+(*iter).second.value_int);
}
}
else{
//Recursive call
Rec_Event::iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map , model_queue , scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len);
}
}
void Insertion::initialize_Len_proba_bound(queue<shared_ptr<Rec_Event>>& model_queue , const Marginal_array_p& model_parameters_point , Index_map& base_index_map ){
Seq_type seq_type;
switch(this->event_class){
case VD_genes:
seq_type = VD_ins_seq;
break;
case VJ_ins_seq:
seq_type = VJ_ins_seq;
break;
case DJ_ins_seq:
seq_type = DJ_ins_seq;
break;
}
Seq_type_str_p_map constructed_sequences(6);
junction_length_best_proba_map.clear();
for(unordered_map <string, Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter!= this->event_realizations.end() ; ++iter){
inserted_str.assign(iter->second.value_int , -1);
constructed_sequences[seq_type] = &inserted_str;
double init_proba = 1.0;
this->Rec_Event::iterate_initialize_Len_proba(seq_type,junction_length_best_proba_map,model_queue,init_proba,model_parameters_point,base_index_map,constructed_sequences);
}
}
|