File: Insertion.cpp

package info (click to toggle)
igor 1.4.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,116 kB
  • sloc: cpp: 12,453; python: 1,047; sh: 124; makefile: 32
file content (580 lines) | stat: -rw-r--r-- 24,770 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
 * Insertion.cpp
 *
 *  Created on: Dec 9, 2014
 *      Author: Quentin Marcou
 *
 *  This source code is distributed as part of the IGoR software.
 *  IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
 *  generation, selection, mutation and all other processes.
 *   Copyright (C) 2017  Quentin Marcou
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.

 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

#include "Insertion.h"


using namespace std;
Insertion::Insertion(): Insertion(Undefined_gene) {
	this->type = Event_type::Insertion_t;
	this->update_event_name();
}


Insertion::Insertion(Gene_class genes , pair<int,int> ins_range): Insertion( genes )  { //FIXME nonsense new

	int min_ins = min(ins_range.first , ins_range.second);
	int max_ins = max(ins_range.first , ins_range.second);

	this->type = Event_type::Insertion_t;
	this->len_max = max_ins;
	this->len_min = min_ins;

	for(int i=min_ins ; i!=max_ins+1 ; ++i){
		this->add_realization(i);
	}
	this->update_event_name();
}

Insertion::Insertion(Gene_class gene ): Rec_Event(gene,Undefined_side ) , proba_contribution(-1) , previous_index(-1) , insertions(-1) , new_scenario_proba(-1) , base_index(-1) , new_index(-1) , realization_index(-1) , dinuc_updated_bound(NULL){
	this->type = Event_type::Insertion_t;
	for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
		if((*iter).second.value_int > this->len_max){this->len_max = (*iter).second.value_int;}
		else if ((*iter).second.value_int < this->len_min){this->len_min = (*iter).second.value_int;}
	}
	this->update_event_name();
}

Insertion::Insertion(Gene_class gene , unordered_map<string,Event_realization>& realizations): Insertion(gene){
	this->event_realizations = realizations;

	this->type = Event_type::Insertion_t;
	for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
		if((*iter).second.value_int > this->len_max){this->len_max = (*iter).second.value_int;}
		else if ((*iter).second.value_int < this->len_min){this->len_min = (*iter).second.value_int;}
	}
	this->update_event_name();
}

Insertion::~Insertion() {
	// TODO Auto-generated destructor stub
}

shared_ptr<Rec_Event> Insertion::copy(){
	//TODO check this kind of copy for memory leak
	shared_ptr<Insertion> new_insertion_p = shared_ptr<Insertion> (new Insertion(this->event_class,this->event_realizations));
	new_insertion_p->priority = this->priority;
	new_insertion_p->nickname = this->nickname;
	new_insertion_p->fixed = this->fixed;
	new_insertion_p->update_event_name();
	new_insertion_p->set_event_identifier(this->event_index);
	return new_insertion_p;
}


bool Insertion::add_realization(int insertion_number){
	this->Rec_Event::add_realization( Event_realization(to_string(insertion_number),insertion_number ,"",Int_Str(),this->size() ));
	if(insertion_number>this->len_max){this->len_max = insertion_number;}
	else if(insertion_number < this->len_min){this->len_min = insertion_number;}
	this->update_event_name();
	return 0;
}

void Insertion::iterate(double& scenario_proba , Downstream_scenario_proba_bound_map& downstream_proba_map , const string& sequence , const Int_Str& int_sequence , Index_map& base_index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , shared_ptr<Next_event_ptr>& next_event_ptr_arr , Marginal_array_p& updated_marginals_point , const Marginal_array_p& model_parameters_point ,const unordered_map<Gene_class , vector<Alignment_data>>& allowed_realizations , Seq_type_str_p_map& constructed_sequences , Seq_offsets_map& seq_offsets , shared_ptr<Error_rate>& error_rate_p , map<size_t,shared_ptr<Counter>>& counters_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , Safety_bool_map& safety_set , Mismatch_vectors_map& mismatches_lists, double& seq_max_prob_scenario , double& proba_threshold_factor){
	base_index = base_index_map.at(this->event_index);
	new_scenario_proba = scenario_proba;
	proba_contribution = 1;



	switch((*this).event_class){

		case VD_genes:
			{
					/*//Get the offset of D alignment and all D related informations
					string d_seq = constructed_sequences.at(D_gene_seq);
					int d_offset = chosen_genes.at(D_gene).second.offset; //will crash if no D has been chosen
					int d_del = deletion_map[make_pair(D_gene,Five_prime)];




					string v_seq = constructed_sequences.at(V_gene_seq);

					//Get the offset of V alignment
					int v_offset = chosen_genes.at(V_gene).second.offset;
					int v_seq_size = constructed_sequences.at(V_gene_seq).size();



					//Compute the number of insertions:
					//ie the number of nucleotides in the read between the end of V and beginning of D

					int insertions =  (d_offset + d_del) - (v_offset + v_seq_size -1) -1;t(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1
					*/

					//if(!(*constructed_sequences.at(D_gene_seq)).empty()){
						//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(D_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1;

				//TODO get the current memory layer to avoid any error
					//insertions = seq_offsets.at(d_5_pair) - seq_offsets.at(v_3_pair) -1;
				insertions = seq_offsets.at(D_gene_seq,Five_prime) - seq_offsets.at(V_gene_seq,Three_prime) -1;


						//TODO Think about including in-dels in the insertion process(thus create a real loop on the number of insertion)

						proba_contribution = (*this).iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);
						if(proba_contribution!=0){
							inserted_str.assign(insertions , -1);
							new_index = base_index + this->event_realizations.at(to_string(insertions)).index; //FIXME this should not exist
							constructed_sequences[VD_ins_seq]= &inserted_str;
							downstream_proba_map.set_value(VD_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
						}
					//}


			}

			break;

		case DJ_genes:
			{
				/*
				//Get the offset of D alignment and all D related informations
				string d_seq = constructed_sequences.at(D_gene_seq);
				int d_offset = chosen_genes.at(D_gene).second.offset;
				//Get number of deletions (if no deletion event before, default initialized to 0)
				//need the number of 3' deletions in case the sequence has already been shortened
				int d_del_5 = deletion_map[make_pair(D_gene,Five_prime)];
				int d_del_3 = deletion_map[make_pair(D_gene,Three_prime)];


				string j_seq = constructed_sequences.at(J_gene_seq);

				//Get the offset of J alignment
				int j_offset = chosen_genes.at(J_gene).second.offset;
				//Get the number of deletions
				int j_del = deletion_map[make_pair(J_gene,Five_prime)];

				int insertions = (j_offset + j_del) - (d_offset + d_del_3  + d_seq.size() - 1 - d_del_5) -1;
				*/
				//if(!(*constructed_sequences.at(D_gene_seq)).empty()){
					//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(J_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(D_gene_seq,Three_prime)) -1;
					//insertions = seq_offsets.at(j_5_pair) - seq_offsets.at(d_3_pair) -1;
				insertions = seq_offsets.at(J_gene_seq,Five_prime) - seq_offsets.at(D_gene_seq,Three_prime) -1;

					proba_contribution = iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);


					if(proba_contribution!=0){
						inserted_str.assign(insertions , -1);
						new_index = base_index + this->event_realizations.at(to_string(insertions)).index;
						constructed_sequences[DJ_ins_seq]= &inserted_str;
						downstream_proba_map.set_value(DJ_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
					}


				//}

				break;
			}
		case VJ_genes:
			{


				//string v_seq = constructed_sequences.at(V_gene_seq);

				/*
				 * //Get the offset of V alignment
					int v_offset = chosen_genes.at(V_gene).second.offset;
					int original_v_seq_size = chosen_genes.at(V_gene).first.value_str.size();




				//Get the number of deletions
				//use operator[] to find_or_add (default initialize int to 0 if not found)
				//TODO check if default initializing to 0 is better and then change the values
				int v_del = deletion_map[make_pair(V_gene,Three_prime)];
				*/

				//string j_seq = constructed_sequences.at(J_gene_seq);
				/*
				//Get the offset of J alignment
				int j_offset = chosen_genes.at(J_gene).second.offset;
				//Get the number of deletions
				int j_del = deletion_map[make_pair(J_gene,Five_prime)];
				*/
				//TODO declare insertion before and call iterate common after, clean code get rid of code duplication
				//int insertions = (j_offset + j_del) - (v_offset  + (original_v_seq_size ) - v_del )-1;
				//int insertions = sequence.size() - (v_seq.size() + j_seq.size());

				//insertions = seq_offsets.at(pair<Seq_type,Seq_side>(J_gene_seq,Five_prime)) - seq_offsets.at(pair<Seq_type,Seq_side>(V_gene_seq,Three_prime)) -1;
				//insertions = seq_offsets.at(j_5_pair) - seq_offsets.at(v_3_pair) -1;
				insertions = seq_offsets.at(J_gene_seq,Five_prime) - seq_offsets.at(V_gene_seq,Three_prime) -1;

				proba_contribution = iterate_common( proba_contribution , insertions , base_index , base_index_map , offset_map , model_parameters_point);


				if(proba_contribution!=0){
					inserted_str.assign(insertions , -1);
					new_index = base_index + realization_index;//this->event_realizations.at(to_string(insertions)).index;
					constructed_sequences[VJ_ins_seq] = &inserted_str;
					downstream_proba_map.set_value(VJ_ins_seq,junction_length_best_proba_map.at(insertions),memory_layer_proba_map_junction);
				}


				break;
			}

		default:
			throw invalid_argument("Unknown gene_class for Insertion: " + this->event_class);
			break;
	}

	if(proba_contribution!=0){
		//TODO new_scenario proba necessary?
		new_scenario_proba*=proba_contribution;
		//tmp_err_w_proba*=proba_contribution;
		(*dinuc_updated_bound) = upper_bound_per_ins.at(insertions);

		//Compute scenario downstream proba bound
		scenario_upper_bound_proba = new_scenario_proba;
		//Multiply all downstream probas
		downstream_proba_map.multiply_all(scenario_upper_bound_proba,current_downstream_proba_memory_layers);

		if(scenario_upper_bound_proba>=(seq_max_prob_scenario*proba_threshold_factor)){
			Rec_Event::iterate_wrap_up(new_scenario_proba , downstream_proba_map , sequence , int_sequence , base_index_map , offset_map , next_event_ptr_arr  , updated_marginals_point  , model_parameters_point , allowed_realizations , constructed_sequences , seq_offsets , error_rate_p , counters_list , events_map , safety_set ,mismatches_lists,seq_max_prob_scenario,proba_threshold_factor);
		}
	}
}



/*
 *This short method performs the iterate operations common to all Rec_event (modify index map and fetch realization probability)
 */
inline double Insertion::iterate_common(double scenario_proba , int insertions , int base_index , Index_map& base_index_map ,const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map ,const Marginal_array_p& model_parameters_point){

	//insertions_str = to_string(insertions);
	//TODO just output proba contribution no need to take it as argument
	if(this->ordered_realization_map.count(insertions)>0){
		realization_index = this->ordered_realization_map.at(insertions).index;
		current_realizations_index_vec[0] = realization_index;
	}else{
		//discard out of range cases
		realization_index = INT32_MAX;//make sure the index called at the end is in the range
		//scenario_proba = 0;//discard the recombination scenario
		return 0;
	}

/*	if (offset_map.count(this->name)!=0){
		for(vector<pair<const Rec_Event*,int>>::const_iterator jiter = offset_map.at(this->name).begin() ; jiter!= offset_map.at(this->name).end() ; jiter++){
			//modify index map using offset map
			base_index_map.at((*jiter).first->get_name()) += realization_index * ((*jiter).second);
		}
	}*/

	for(forward_list<tuple<int,int,int>>::const_iterator jiter = memory_and_offsets.begin() ; jiter!=memory_and_offsets.end() ; ++jiter){
		//Get previous index for the considered event
		previous_index = base_index_map.at(get<0>(*jiter),get<1>(*jiter)-1);
		//Update the index given the realization and the offset
		previous_index += realization_index*get<2>(*jiter);
		//Set the value
		base_index_map.set_value(get<0>(*jiter) , previous_index , get<1>(*jiter));
	}

	//Compute the probability of the scenario considering the realization (*iter) we're looking at
	return  scenario_proba * model_parameters_point[base_index+realization_index];
}

queue<int> Insertion::draw_random_realization(const Marginal_array_p& model_marginals_p , unordered_map<Rec_Event_name,int>& index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , unordered_map<Seq_type , string>& constructed_sequences , mt19937_64& generator)const{
	uniform_real_distribution<double> distribution(0.0,1.0);
	double rand = distribution(generator);
	double prob_count = 0;
	queue<int> realization_queue;
	for(unordered_map<string,Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter ){
		prob_count += model_marginals_p[index_map.at(this->get_name()) + (*iter).second.index];
		if(prob_count>=rand){
			switch(this->event_class){
			case VD_genes:
				constructed_sequences[VD_ins_seq] = string((*iter).second.value_int,'I');
				break;
			case DJ_genes:
				constructed_sequences[DJ_ins_seq] = string((*iter).second.value_int,'I');
				break;
			case VJ_genes:
				constructed_sequences[VJ_ins_seq] = string((*iter).second.value_int,'I');
				break;
			default:
				break;

			}
			realization_queue.push((*iter).second.index);
			if(offset_map.count(this->get_name()) != 0){
				for (vector<pair<shared_ptr<const Rec_Event>,int>>::const_iterator jiter = offset_map.at(this->get_name()).begin() ; jiter!= offset_map.at(this->get_name()).end() ; ++jiter){
					index_map.at((*jiter).first->get_name()) += (*iter).second.index*(*jiter).second;
				}
			}

			break;
		}
	}
	return realization_queue;
}


void Insertion::write2txt(ofstream& outfile){
	outfile<<"#Insertion;"<<event_class<<";"<<event_side<<";"<<priority<<";"<<nickname<<endl;
	for(unordered_map<string,Event_realization>::const_iterator iter=event_realizations.begin() ; iter!= event_realizations.end() ; ++iter){
		outfile<<"%"<<(*iter).second.value_int<<";"<<(*iter).second.index<<endl;
	}
}

void Insertion::initialize_event( unordered_set<Rec_Event_name>& processed_events , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , Downstream_scenario_proba_bound_map& downstream_proba_map , Seq_type_str_p_map& constructed_sequences , Safety_bool_map& safety_set , shared_ptr<Error_rate> error_rate_p , Mismatch_vectors_map& mismatches_list , Seq_offsets_map& seq_offsets , Index_map& index_map){

	switch(this->event_class){

	case VD_genes:
		downstream_proba_map.request_memory_layer(VD_ins_seq);
		memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(VD_ins_seq);
		break;

	case DJ_genes:
		downstream_proba_map.request_memory_layer(DJ_ins_seq);
		memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(DJ_ins_seq);
		break;

	case VJ_genes:
		downstream_proba_map.request_memory_layer(VJ_ins_seq);
		memory_layer_proba_map_junction = downstream_proba_map.get_current_memory_layer(VJ_ins_seq);
		break;

	}

	this->Rec_Event::initialize_event(processed_events,events_map,offset_map,downstream_proba_map,constructed_sequences,safety_set,error_rate_p,mismatches_list,seq_offsets,index_map);
}




void Insertion::add_to_marginals(long double scenario_proba , Marginal_array_p& updated_marginals) const{
	if(viterbi_run){
		updated_marginals[this->new_index]=scenario_proba;
	}
	else{
		updated_marginals[this->new_index]+=scenario_proba;
	}
}



void Insertion::set_crude_upper_bound_proba(size_t base_index , size_t event_size , Marginal_array_p& marginal_array_p){

	size_t numb_realizations = this->size();
	upper_bound_per_ins.clear();
	for(unordered_map < string, Event_realization >::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
		//Get the max proba for each number of insertions
		size_t real_index = (*iter).second.index;
		size_t j = 0;
		double max_proba = 0;

		while((j*numb_realizations + real_index) < event_size){
			if(marginal_array_p[base_index + ((j*numb_realizations + real_index))] > max_proba){
				max_proba = marginal_array_p[base_index + ((j*numb_realizations + real_index))];
			}
			++j;
		}
		upper_bound_per_ins[(*iter).second.value_int] = max_proba;
	}
}

void Insertion::initialize_crude_scenario_proba_bound(double& downstream_proba_bound , forward_list<double*>& updated_proba_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map){
	this->scenario_downstream_upper_bound_proba = downstream_proba_bound;
	this->updated_proba_bounds_list = updated_proba_list;
	this->event_upper_bound_proba = 0;
	shared_ptr<Rec_Event> dinuc_event_p;

	//TODO remove this and correct the way ordered realization map works
	 ordered_realization_map.clear();
	 for(unordered_map<string,Event_realization>::const_iterator iter=(*this).event_realizations.begin() ; iter != (*this).event_realizations.end() ; ++iter){
		 ordered_realization_map.emplace ((*iter).second.value_int,(*iter).second);
	 }

	switch(this->event_class){
	//TODO be careful in case there is both VDJ and VD/DJ (however this should not happen)

	case VD_genes:
		if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VD_genes,Undefined_side))){
			dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VD_genes,Undefined_side));
		}
		else if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side))){
			dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side));
		}
		break;

	case VJ_genes:
		if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VJ_genes,Undefined_side))){
			dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VJ_genes,Undefined_side));
		}
		break;

	case DJ_genes:
		if (events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,DJ_genes,Undefined_side))){
			dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,DJ_genes,Undefined_side));
		}
		else if(events_map.count(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side))){
			dinuc_event_p = events_map.at(tuple<Event_type,Gene_class,Seq_side>(Dinuclmarkov_t,VDJ_genes,Undefined_side));
		}
		break;
	default:
		throw runtime_error("Unknown Gene class for insertion in initialize_scenario_proba_bound()");
		break;
	}
	double dinuc_upper_bound_proba = dinuc_event_p->get_upper_bound_proba();
	for(map<int,double>::iterator iter = upper_bound_per_ins.begin() ; iter != upper_bound_per_ins.end() ; ++iter){
		//Compute joint upper bound of dinuc and insertion and store it as insertion upper bound
		(*iter).second*=pow(dinuc_upper_bound_proba,(*iter).first);
		if((*iter).second>this->event_upper_bound_proba){
			this->event_upper_bound_proba = (*iter).second;
		}
		//Only keep information about the dinucleotide probability to update the dinuc upperbound
		(*iter).second = pow(dinuc_upper_bound_proba,(*iter).first);
	}
	this->dinuc_updated_bound = dinuc_event_p->get_updated_ptr();
	//Remove the pointer from the list (otherwise dinuc upperbound is accounted for twice for events before insertion)
	updated_proba_list.remove(dinuc_updated_bound);

	//Apply the computed upper bound
	downstream_proba_bound*=event_upper_bound_proba;


}

 bool Insertion::has_effect_on(Seq_type seq_type) const{
	 switch(this->event_class){
	 case VD_genes:
		 if(seq_type == VJ_ins_seq or seq_type==VD_ins_seq){
			 return true;
		 }
		 else return false;
		 break;

	 case VJ_genes:
		 if(seq_type==VJ_ins_seq){
			 return true;
		 }
		 else return false;
		 break;

	 case DJ_genes:
		 if(seq_type==VJ_ins_seq or seq_type==DJ_ins_seq){
			 return true;
		 }
		 else return false;
		 break;

	 default:
		 return false;
	 }
 }

 void Insertion::iterate_initialize_Len_proba(Seq_type considered_junction ,  std::map<int,double>& length_best_proba_map ,  std::queue<std::shared_ptr<Rec_Event>>& model_queue , double& scenario_proba , const Marginal_array_p& model_parameters_point , Index_map& base_index_map , Seq_type_str_p_map& constructed_sequences , int& seq_len/*=0*/ ) const{

	if(this->has_effect_on(considered_junction)){

		base_index = base_index_map.at(this->event_index,0);

		//Insert sequence in the right constructed sequence
		Seq_type seq_type;
		switch(this->event_class){
		case VD_genes:
			seq_type = VD_ins_seq;
			break;

		case VJ_ins_seq:
			seq_type = VJ_ins_seq;
			break;

		case DJ_ins_seq:
			seq_type = DJ_ins_seq;
			break;
		}

		for(unordered_map <string, Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter!= this->event_realizations.end() ; ++iter){

	/*		//Update base index map
			for(forward_list<tuple<int,int,int>>::const_iterator jiter = memory_and_offsets.begin() ; jiter!=memory_and_offsets.end() ; ++jiter){
				//Get previous index for the considered event
				int previous_index = base_index_map.at(get<0>(*jiter),get<1>(*jiter)-1);
				//Update the index given the realization and the offset
				previous_index += iter->second.index *get<2>(*jiter);
				//Set the value
				base_index_map.set_value(get<0>(*jiter) , previous_index , get<1>(*jiter));
			}*/


			//Get the max proba for this realization (in case the event is child of another)
			double real_max_proba = 0;
			for(size_t i = 0 ; i!=this->event_marginal_size/this->size() ; ++i){
				if(model_parameters_point[base_index + (*iter).second.index + i*this->size()]>real_max_proba){
					real_max_proba = model_parameters_point[base_index + (*iter).second.index + i*this->size()];
				}
			}

			//Build an inserted sequence to let the Dinuc know about the number of insertions considered
			inserted_str.assign(iter->second.value_int , -1);
			constructed_sequences[seq_type] = &inserted_str;

			//Update the length and the probability within the recursive call
			Rec_Event::iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map ,  model_queue ,  scenario_proba*real_max_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len+(*iter).second.value_int);
		}
	}
	else{
		//Recursive call
		Rec_Event::iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map ,  model_queue ,  scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len);
	}
 }

 void Insertion::initialize_Len_proba_bound(queue<shared_ptr<Rec_Event>>& model_queue , const Marginal_array_p& model_parameters_point , Index_map& base_index_map ){
		Seq_type seq_type;
		switch(this->event_class){
		case VD_genes:
			seq_type = VD_ins_seq;
			break;

		case VJ_ins_seq:
			seq_type = VJ_ins_seq;
			break;

		case DJ_ins_seq:
			seq_type = DJ_ins_seq;
			break;
		}

		Seq_type_str_p_map constructed_sequences(6);


		junction_length_best_proba_map.clear();

		for(unordered_map <string, Event_realization>::const_iterator iter = this->event_realizations.begin() ; iter!= this->event_realizations.end() ; ++iter){
			inserted_str.assign(iter->second.value_int , -1);
			constructed_sequences[seq_type] = &inserted_str;
			double init_proba = 1.0;
			this->Rec_Event::iterate_initialize_Len_proba(seq_type,junction_length_best_proba_map,model_queue,init_proba,model_parameters_point,base_index_map,constructed_sequences);
		}

 }