1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
/*
* Model_Parms.cpp
*
* Created on: 3 nov. 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* This class defines a Model_Parms object. In our framework this will be used
* to easily define the inferred model, by using a directed graph structure.
* This helps defining conditional marginals in the model.
*/
#include "Model_Parms.h"
using namespace std;
/*
* Default constructor, creates an empty Model_Parms
*/
Model_Parms::Model_Parms() {
/* this->events = *(new list <shared_ptr<Rec_Event>>()); //FIXME nonsense new
this->edges = *(new unordered_map <Rec_Event_name , Adjacency_list >());*/
}
/*
* Construct a Model_Parms from a list of event and initialize connectivities/Adjacency_lists
*/
Model_Parms::Model_Parms(list <shared_ptr<Rec_Event>> event_list){
this->events = event_list;
//this->edges = *(new unordered_map<Rec_Event_name,Adjacency_list>()); //FIXME nonsense new
size_t event_identifier = 0;
for(list<shared_ptr<Rec_Event>>::const_iterator iter = this->events.begin() ; iter != this->events.end() ; ++iter){
this->edges.emplace( (*iter)->get_name() , Adjacency_list());
(*iter)->set_event_identifier(event_identifier);
++event_identifier;
}
}
/*
* Provide a deep copy constructor of the Model_Parms object
* This method will make a copy of all the contained events and error rate as well
*/
Model_Parms::Model_Parms(const Model_Parms& other){
for(list<shared_ptr<Rec_Event>>::const_iterator iter = other.events.begin() ; iter!= other.events.end() ; ++iter){
this->events.push_back((*iter)->copy());
}
for(unordered_map <Rec_Event_name , Adjacency_list >::const_iterator iter = other.edges.begin() ; iter != other.edges.end() ; ++iter){
Adjacency_list adjacency_list;
//TODO very dirty need to be changed
for(list<shared_ptr<Rec_Event>>::const_iterator jiter = (*iter).second.children.begin() ; jiter != (*iter).second.children.end() ; ++jiter){
for(list<shared_ptr<Rec_Event>>::const_iterator kiter = this->events.begin() ; kiter != this->events.end() ; kiter++){
if((**kiter)==(**jiter)){
adjacency_list.children.push_back((*kiter));
break;
}
}
}
for(list<shared_ptr<Rec_Event>>::const_iterator jiter = (*iter).second.parents.begin() ; jiter != (*iter).second.parents.end() ; ++jiter){
for(list<shared_ptr<Rec_Event>>::const_iterator kiter = this->events.begin() ; kiter != this->events.end() ; ++kiter){
if((**kiter)==(**jiter)){
adjacency_list.parents.push_back((*kiter));
break;
}
}
}
this->edges.emplace((*iter).first,adjacency_list);
}
this->error_rate = other.error_rate->copy();
}
/*
* Provide a deep copy of the model parameters
*/
/*Model_Parms::Model_Parms(const Model_Parms& other){
this->error_rate = other.error_rate->copy();
for(unordered_map<Rec_Event_name , Adjacency_list>::const_iterator iter=other.edges.begin() ; iter != other.edges.end();iter++){
this->edges.emplace((*iter).first,*iter.)
}
for(list<Rec_Event*>::const_iterator iter = other.events.begin() ; iter != other.events.end() ; iter++){
this->events.emplace_back((*iter)->copy());
}
}*/
/*
* Avoid memory leaks by deleting all events
*/
Model_Parms::~Model_Parms() {
/* for(list<Rec_Event*>::iterator iter = events.begin() ; iter != events.end() ; iter++){
delete (*iter);
}
delete error_rate;*/
}
/*
* Add an event to the event list, and initialize its connectivity
*/
bool Model_Parms::add_event(shared_ptr<Rec_Event> event_point){
//this->events.push_back(event_point);
event_point->set_event_identifier(this->events.size());
this->events.emplace_back(event_point);
this->edges.emplace(event_point->get_name(), Adjacency_list());
return 1;
}
bool Model_Parms::add_event(Rec_Event* event_point){
return this->add_event(shared_ptr<Rec_Event>(event_point,null_delete<Rec_Event>()));
}
/*
* Get the list of parents of the given Rec_event
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_parents(Rec_Event* event) const{
return this->get_parents(shared_ptr<Rec_Event>(event,null_delete<Rec_Event>()));
}
list<shared_ptr<Rec_Event>> Model_Parms::get_parents(shared_ptr<Rec_Event> event) const{
return this->get_parents(event->get_name());
}
list<shared_ptr<Rec_Event>> Model_Parms::get_parents(Rec_Event_name event_name) const{
if(edges.count(event_name)<=0){
throw runtime_error("Model_Parms::get_parents(): event \"" + event_name + "\" does not exist in \"this\".");
}
return edges.at(event_name).parents;
}
/*
* Get the list of children of the given Rec_event
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_children(Rec_Event* event) const{
return this->get_children(shared_ptr<Rec_Event>(event,null_delete<Rec_Event>()));
}
list<shared_ptr<Rec_Event>> Model_Parms::get_children(shared_ptr<Rec_Event> event) const{
return this->get_children(event->get_name());
}
list<shared_ptr<Rec_Event>> Model_Parms::get_children(Rec_Event_name event_name) const{
if(edges.count(event_name)<=0){
throw runtime_error("Model_Parms::get_children(): event \"" + event_name + "\" does not exist in \"this\".");
}
return edges.at(event_name).children;
}
/**
* \overload list<shared_ptr<Rec_Event>> Model_Parms::get_ancestors(Rec_Event_name event_name) const
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_ancestors(Rec_Event* event) const{
return this->get_ancestors(shared_ptr<Rec_Event>(event,null_delete<Rec_Event>()));
}
/**
* \overload list<shared_ptr<Rec_Event>> Model_Parms::get_ancestors(Rec_Event_name event_name) const
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_ancestors(shared_ptr<Rec_Event> event) const{
return this->get_ancestors(event->get_name());
}
/**
* \brief Get all ancestors of the supplied event
* \author Q.Marcou
* \version 1.0
* \param[in] event_name The event whom we seek the ancestors
* \return The list of the event ancestors
*
* Get all ancestors of the supplied event. Ancestors are all events higher than the considered event
* in the genealogy and with link of any degree to it
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_ancestors(Rec_Event_name event_name) const{
set<shared_ptr<Rec_Event>> ancestor_set;
list<shared_ptr<Rec_Event>> exploratory_list;
list<shared_ptr<Rec_Event>> final_list;
//Get the considered event parent
if(edges.count(event_name)<=0){
throw runtime_error("Model_Parms::get_parents(): event \"" + event_name + "\" does not exist in \"this\".");
}
exploratory_list = edges.at(event_name).parents;
//Now explore all ancestors
while(not exploratory_list.empty()){
//If the ancestor is not already in the list
if(ancestor_set.count(exploratory_list.front())<=0){
final_list.emplace_back(exploratory_list.front());
ancestor_set.emplace(exploratory_list.front());
const list<shared_ptr<Rec_Event>>& parents = edges.at(exploratory_list.front()->get_name()).parents;;
exploratory_list.insert(exploratory_list.end(),parents.begin(),parents.end());
}
exploratory_list.pop_front();
}
return final_list;
}
/*
* Add a directed edge between two events
*/
bool Model_Parms::add_edge(Rec_Event* parent_point, Rec_Event* child_point){
shared_ptr<Rec_Event> parent_smart_p (parent_point,null_delete<Rec_Event>());
shared_ptr<Rec_Event> child_smart_p (child_point,null_delete<Rec_Event>());
return this->add_edge(parent_smart_p,child_smart_p);
}
/**
* \bug this is not checking whether the exact same edge already exists
*/
bool Model_Parms::add_edge(shared_ptr<Rec_Event> parent_point, shared_ptr<Rec_Event> child_point){
// check whether these events exist
if( edges.count(parent_point->get_name())<=0 ){
throw runtime_error("Model_Parms::add_edge(): event \"" + parent_point->get_name() + "\" does not exist in \"this\".");
}
if( edges.count(child_point->get_name())<=0 ){
throw runtime_error("Model_Parms::add_edge(): event \"" + child_point->get_name() + "\" does not exist in \"this\".");
}
//Check whether it is creating a cycle
//First check the silly self-loop cycle
if(parent_point->get_name() == child_point->get_name()){
throw runtime_error("Trying to create an edge between " + parent_point->get_name() + "and itself");
}
//Else check if the new children is an ancestor of the new parent (this would close a cycle)
list<shared_ptr<Rec_Event>> parent_ancestors = this->get_ancestors(parent_point);
for(const shared_ptr<Rec_Event> event_ptr : parent_ancestors){
if(child_point->get_name() == event_ptr->get_name()){
throw runtime_error(child_point->get_name() + " is an ancestor of " + parent_point->get_name() +
" adding an edge would create a cycle in the graph, in Model_Parms::add_edge");
}
}
this->edges.at( parent_point->get_name() ).children.push_back(child_point);
this->edges.at( child_point->get_name() ).parents.push_back(parent_point);
return 1;
}
bool Model_Parms::add_edge(Rec_Event_name parent_name, Rec_Event_name child_name){
shared_ptr<Rec_Event> parent_smart_p = this->get_event_pointer(parent_name);
shared_ptr<Rec_Event> child_smart_p = this->get_event_pointer(child_name);
return this->add_edge(parent_smart_p , child_smart_p);
}
/*
* Remove the corresponding edge if it exists
*/
bool Model_Parms::remove_edge(Rec_Event* parent_point, Rec_Event* child_point){
shared_ptr<Rec_Event> parent_smart_p (parent_point,null_delete<Rec_Event>());
shared_ptr<Rec_Event> child_smart_p (child_point,null_delete<Rec_Event>());
return this->remove_edge(parent_smart_p,child_smart_p);
}
bool Model_Parms::remove_edge(shared_ptr<Rec_Event> parent_point, shared_ptr<Rec_Event> child_point){
if(this->has_edge(parent_point,child_point)){
list<shared_ptr<Rec_Event>>::iterator iter;
//Remove the child from the parent's children list
list<shared_ptr<Rec_Event>>& children_list = this->edges.at(parent_point->get_name()).children;
for( iter = children_list.begin() ;
iter != children_list.end() ;
++iter){
//Compare the pointers and stop when finding the correct one
if((*iter) == child_point){
break;
}
}
//Erase the pointer using the iterator
children_list.erase(iter);
//Remove the parent from the child's parent list
list<shared_ptr<Rec_Event>>& parents_list = this->edges.at(child_point->get_name()).parents;
for( iter = parents_list.begin() ;
iter != parents_list.end() ;
++iter){
//Compare the pointers and stop when finding the correct one
if((*iter) == parent_point){
break;
}
}
//Erase the pointer using the iterator
parents_list.erase(iter);
return 1;
}
else{
throw runtime_error("Model_Parms::remove_edge(): edge between \"" + parent_point->get_name() + "\" and \"" + child_point->get_name() + "\" does not exist.");
}
}
bool Model_Parms::remove_edge(Rec_Event_name parent_name, Rec_Event_name child_name){
shared_ptr<Rec_Event> parent_smart_p = this->get_event_pointer(parent_name);
shared_ptr<Rec_Event> child_smart_p = this->get_event_pointer(child_name);
return this->remove_edge(parent_smart_p , child_smart_p);
}
/*
* Inverse the direction of an edge between two events
* Detects automatically the edge direction invert it
*/
void Model_Parms::invert_edge(Rec_Event* ev1_point, Rec_Event* ev2_point){
shared_ptr<Rec_Event> ev1_smart_p (ev1_point,null_delete<Rec_Event>());
shared_ptr<Rec_Event> ev2_smart_p (ev2_point,null_delete<Rec_Event>());
this->invert_edge(ev1_smart_p,ev2_smart_p);
}
void Model_Parms::invert_edge(shared_ptr<Rec_Event> ev1_point, shared_ptr<Rec_Event> ev2_point){
//First check if ev2 is a child of ev1
if(this->has_edge(ev1_point,ev2_point)){
//Invert the edge
this->remove_edge(ev1_point,ev2_point);
try{
this->add_edge(ev2_point,ev1_point);
}
catch(exception& e){
//add_edge checks for cycle creation since 13/04/2017
cerr<<"Exception caught trying to invert an edge between " + ev1_point->get_name() +" and " + ev2_point->get_name() +" in Model_Parms::invert_edge , this is most likely creating a cycle, throwing exception now..."<<endl;
throw e;
}
}
//Otherwise check if ev2 is a parent of ev1
else if(this->has_edge(ev2_point,ev1_point)){
//Invert the edge
this->remove_edge(ev2_point,ev1_point);
try{
this->add_edge(ev1_point,ev2_point);
}
catch(exception& e){
//add_edge checks for cycle creation since 13/04/2017
cerr<<"Exception caught trying to invert an edge between " + ev1_point->get_name() +" and " + ev2_point->get_name() +" in Model_Parms::invert_edge , this is most likely creating a cycle, throwing exception now..."<<endl;
throw e;
}
}
else{
//else: the edge do not exist and throw an exception
throw runtime_error("In Model_Parms::invert_edge(): no edge exist between \""
+ ev1_point->get_name() +"\" and \"" + ev1_point->get_name() + "\" events in any direction");
}
}
void Model_Parms::invert_edge(Rec_Event_name ev1_name, Rec_Event_name ev2_name){
shared_ptr<Rec_Event> ev1_smart_p = this->get_event_pointer(ev1_name);
shared_ptr<Rec_Event> ev2_smart_p = this->get_event_pointer(ev2_name);
return this->invert_edge(ev1_smart_p , ev2_smart_p);
}
/*
* Check if the model parms contain a given directed edge
*
* Note: assuming the edge has been correctly constructed it will test the existence in only one of the adjacency list
*/
bool Model_Parms::has_edge(Rec_Event* parent_point, Rec_Event* child_point) const{
shared_ptr<Rec_Event> parent_smart_p (parent_point,null_delete<Rec_Event>());
shared_ptr<Rec_Event> child_smart_p (child_point,null_delete<Rec_Event>());
return this->has_edge(parent_smart_p,child_smart_p);
}
bool Model_Parms::has_edge(shared_ptr<Rec_Event> parent_point, shared_ptr<Rec_Event> child_point) const{
return this->has_edge(parent_point->get_name(),child_point->get_name());
}
bool Model_Parms::has_edge(Rec_Event_name parent_name, Rec_Event_name child_name) const{
bool other_event_found = false;
const Adjacency_list& adjacency_list = this->edges.at(parent_name);
for(shared_ptr<Rec_Event> ev_ptr : adjacency_list.children){
if(ev_ptr->get_name() == child_name){
other_event_found = true;
}
}
return other_event_found;
}
/*
* This method returns all the roots of the tree (events with no parents).
*/
list<shared_ptr<Rec_Event>> Model_Parms::get_roots() const{
list<shared_ptr<Rec_Event>> root_list = list<shared_ptr<Rec_Event>> (); //FIXME nonsense new
for ( list <shared_ptr<Rec_Event>>::const_iterator iter = this->events.begin(); iter != this->events.end(); ++iter){
if (this->edges.at( (*iter)->get_name() ).parents.empty()){
root_list.push_back(*iter);
}
}
// root events are sorted for easier manipulation
root_list.sort(Event_comparator());
return root_list;
}
/*
* This method output the queue (order in which events are processed) according to the structure of the model
* This queue is used both for the order of iteration and the design of the marginal array.
*/
queue<shared_ptr<Rec_Event>> Model_Parms::get_model_queue() const{
list<shared_ptr<Rec_Event>> model_roots = this->get_roots();
list<shared_ptr<Rec_Event>> events_copy_list = this->events;
queue<shared_ptr<Rec_Event>> model_queue = queue<shared_ptr<Rec_Event>> ();
//if all events are root they are independent and thus the queue is sorted only by priority
if(events_copy_list.size() == model_roots.size()){
//root list is already sorted by priority
for(list<shared_ptr<Rec_Event>>::const_iterator iter=model_roots.begin(); iter!=model_roots.end(); ++iter){
model_queue.push(*iter);
}
return model_queue;
}
//The root with highest priority is the first event
events_copy_list.remove(*(model_roots.begin()));
model_queue.push(*(model_roots.begin()));
//Keep track of the events already added to the queue
unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>* processed_events_point = new unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>;
(*processed_events_point).insert(make_pair( (*model_roots.begin())->get_name() , *(model_roots.begin()) ));
model_roots.pop_front();
events_copy_list.sort(Event_comparator());
list<shared_ptr<Rec_Event>>::iterator iter = events_copy_list.begin();
while(!events_copy_list.empty()){
//Before an event is processed his parents must have been processed, this overrides the priority!
list<shared_ptr<Rec_Event>> event_parents = this->edges.at( (*iter)->get_name() ).parents;
bool parents_processed = 1;
for(list<shared_ptr<Rec_Event>>::const_iterator jiter = event_parents.begin() ; jiter != event_parents.end() ; ++jiter){
if((*processed_events_point).count( (*jiter)->get_name() ) ==0 ) {parents_processed=0;}
}
//If all parents have not been processed, tries the next highest priority event
if(!parents_processed){
++iter;
continue;
}
model_queue.push(*iter);
(*processed_events_point).insert(make_pair( (*iter)->get_name() , (*iter) ));
events_copy_list.erase(iter);
events_copy_list.sort(Event_comparator()); //TODO again check this sort function
iter = events_copy_list.begin();
}
delete processed_events_point;
return model_queue;
}
shared_ptr<Rec_Event> Model_Parms::get_event_pointer(const string& event_str , bool by_nickname) const{
//TODO find something better, might be a bottleneck
for (list<shared_ptr<Rec_Event>>::const_iterator iter = this->events.begin() ; iter != this->events.end() ; ++iter){
if(by_nickname){
if ((*iter)->get_nickname() == event_str){return (*iter);}
}
else{
if ((*iter)->get_name() == event_str){return (*iter);}
}
}
if(by_nickname){
throw runtime_error("Event pointer not found in Model_Parms::get_event_pointer for nickname:" + event_str);
}
else{
throw runtime_error("Event pointer not found in Model_Parms::get_event_pointer for name:" + event_str);
}
}
shared_ptr<Rec_Event> Model_Parms::get_event_pointer(const Rec_Event_name& event_name) const{
return this->get_event_pointer(event_name,false);
}
void Model_Parms::update_edge_event_name(Rec_Event_name former_name , Rec_Event_name new_name){
if(former_name != new_name){
Adjacency_list adjacency_list = this->edges.at(former_name);
this->edges.emplace(new_name , adjacency_list);
this->edges.erase(former_name);
}
}
const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> Model_Parms::get_events_map() const{
unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> events_map;
for(list<shared_ptr<Rec_Event>>::const_iterator iter = this->events.begin() ; iter != this->events.end() ; ++iter ){
events_map.emplace(tuple<Event_type,Gene_class,Seq_side>( (*iter)->get_type() , (*iter)->get_class() , (*iter)->get_side() ) , (*iter));
}
return events_map;
}
unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> Model_Parms::get_events_map() {
unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> events_map;
for(list<shared_ptr<Rec_Event>>::const_iterator iter = this->events.begin() ; iter != this->events.end() ; ++iter ){
events_map.emplace(tuple<Event_type,Gene_class,Seq_side>( (*iter)->get_type() , (*iter)->get_class() , (*iter)->get_side() ) , (*iter));
}
return events_map;
}
void Model_Parms::write_model_parms(string filename){
ofstream outfile(filename);
outfile<<"@Event_list"<<endl;
for(list<shared_ptr<Rec_Event>>::const_iterator iter=events.begin() ; iter != events.end() ; ++iter){
(*iter)->write2txt(outfile);
}
outfile<<"@Edges"<<endl;
for(list<shared_ptr<Rec_Event>>::const_iterator iter=events.begin() ; iter != events.end() ; ++iter){
list<shared_ptr<Rec_Event>> children = edges[(*iter)->get_name()].children;
for(list<shared_ptr<Rec_Event>>::const_iterator jiter=children.begin() ; jiter!=children.end() ; ++jiter){
outfile<<"%"<<(*iter)->get_name()<<";"<<(*jiter)->get_name()<<endl;
}
}
outfile<<"@ErrorRate"<<endl;
error_rate->write2txt(outfile);
}
void Model_Parms::read_model_parms(string filename){
ifstream infile(filename);
if(!infile){
//Throw exception
throw runtime_error("File not found : \""+filename + "\"");
}
string line_str;
getline(infile,line_str);
if(line_str == string("@Event_list")){
getline(infile,line_str);
while(line_str[0] == '#'){
size_t semicolon_index = line_str.find(";",0);
string event = line_str.substr(1,semicolon_index-1);
size_t next_semicolon_index = line_str.find(";",semicolon_index+1);
string event_class_str = line_str.substr(semicolon_index+1,(next_semicolon_index - semicolon_index - 1));
Gene_class event_class;
try{
event_class = str2GeneClass(event_class_str);
}
catch(exception& e){
throw runtime_error("Unknown Gene_class\""+event_class_str +"\" in model file: \"" + filename + "\"");
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
string event_side_str = line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index - 1));
Seq_side event_side;
try{
event_side = str2SeqSide(event_side_str);
}
catch(exception& e){
throw runtime_error("Unknown Seq_side\""+event_side_str +"\" in file: \"" + filename + "\"");
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
int priority;
string nickname;
if(next_semicolon_index==string::npos){
//For retro-compatibility purposes
priority = stoi(line_str.substr(semicolon_index+1,string::npos));
}
else{
//Read the nickname along with the priority
priority = stoi(line_str.substr(semicolon_index+1,next_semicolon_index-1));
nickname = line_str.substr(next_semicolon_index+1,string::npos);
}
cerr<<event<<" read"<<endl;
if(event == string("Insertion")){
unordered_map<string,Event_realization> event_realizations = unordered_map<string,Event_realization> ();
getline(infile,line_str);
while(line_str[0]=='%'){
semicolon_index = line_str.find(";",0);
int value_int = stoi(line_str.substr(1,semicolon_index));
int index = stoi(line_str.substr(semicolon_index+1,string::npos));
event_realizations.emplace(pair<string,Event_realization>(to_string(value_int) , Event_realization(to_string(value_int) , value_int , "",Int_Str() , index)));
getline(infile,line_str);
}
//TODO check this for enum writing
//Insertion new_event = Insertion(event_class , event_side , event_realizations);
shared_ptr<Insertion> new_event_p = shared_ptr<Insertion> (new Insertion(event_class , event_realizations));
new_event_p->set_priority(priority);
new_event_p->set_nickname(nickname);
this->add_event(new_event_p);
}
else if(event == string("Deletion")){
unordered_map<string,Event_realization> event_realizations = unordered_map<string,Event_realization> ();
getline(infile,line_str);
while(line_str[0]=='%'){
semicolon_index = line_str.find(";",0);
int value_int = stoi(line_str.substr(1,semicolon_index));
int index = stoi(line_str.substr(semicolon_index+1,string::npos));
event_realizations.emplace(pair<string,Event_realization>(to_string(value_int) , Event_realization(to_string(value_int) , value_int , "",Int_Str() , index))) ;
getline(infile,line_str);
}
//TODO check this for enum writing
//Deletion new_event = Deletion(event_class , event_side , event_realizations);
shared_ptr<Deletion> new_event_p =shared_ptr<Deletion> (new Deletion(event_class , event_side , event_realizations));
new_event_p->set_priority(priority);
new_event_p->set_nickname(nickname);
this->add_event(new_event_p);
}
else if(event == string("GeneChoice")){
unordered_map<string,Event_realization> event_realizations = unordered_map<string,Event_realization> (); //FIXME nonsense new
getline(infile,line_str);
while(line_str[0]=='%'){
semicolon_index = line_str.find(";",0);
string name = line_str.substr(1,semicolon_index-1);
next_semicolon_index = line_str.find(";",semicolon_index+1);
string value_str = line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1) );
string test = line_str.substr(next_semicolon_index+1,string::npos);
int index = stoi(line_str.substr(next_semicolon_index+1,string::npos));
event_realizations.emplace(pair<string,Event_realization>(name,Event_realization(name , INT16_MAX , value_str , nt2int(value_str) , index)));
getline(infile,line_str);
}
//TODO check this for enum writing
//Gene_choice new_event = Gene_choice(event_class , event_side , event_realizations);
shared_ptr<Gene_choice> new_event_p = shared_ptr<Gene_choice> (new Gene_choice(event_class , event_realizations));//TODO construct event before and use add realization instead?
new_event_p->set_priority(priority);
new_event_p->set_nickname(nickname);
this->add_event(new_event_p);
}
else if(event== string("DinucMarkov")){
shared_ptr<Dinucl_markov> new_event_p = shared_ptr<Dinucl_markov> (new Dinucl_markov(event_class));
new_event_p->set_priority(priority);
new_event_p->set_nickname(nickname);
this->add_event(new_event_p);
getline(infile,line_str);
while(line_str[0]=='%'){
getline(infile,line_str);
}
}
else{
throw runtime_error(event + " event is not implemented (thrown by Model_Parms::read_model_parms");
}
}
}
else{
throw runtime_error("Unknown format for model_parms file");
}
if(line_str == string("@Edges")){
getline(infile,line_str);
while(line_str[0] == '%'){
size_t semicolon_index = line_str.find(";",0);
string parent_name = line_str.substr(1,semicolon_index-1);
string child_name = line_str.substr(semicolon_index+1 , string::npos);
edges[parent_name].children.emplace_back(get_event_pointer(child_name));
edges[child_name].parents.emplace_back(get_event_pointer(parent_name));
getline(infile , line_str);
}
}
else{
throw runtime_error("Unknown format for model file: " + filename);
}
if(line_str == string("@ErrorRate")){
getline(infile,line_str);
size_t semicolon_index = line_str.find(";");
string errrate = line_str.substr(0,semicolon_index);
if(errrate == string("#SingleErrorRate")){
getline(infile,line_str);
shared_ptr<Single_error_rate> err_rate_p = shared_ptr<Single_error_rate> (new Single_error_rate(stod(line_str)));
this->error_rate = err_rate_p;
}
else if(errrate == string("#Hypermutationglobalerrorrate")){
//Get the general attributes for the hypermutation model (size,learn_on,apply_on)
size_t next_semicolon_index = line_str.find(";",semicolon_index+1);
size_t mutation_Nmer_size = stoi(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
Gene_class learn_on;
try{
learn_on = str2GeneClass(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
}
catch(exception& e){
throw runtime_error("Unknown Gene_class\""+ line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)) +"\" for Hypermutationglobalerrorrate in model file: " + filename);
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
Gene_class apply_on;
try{
apply_on = str2GeneClass(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
}
catch(exception& e){
throw runtime_error("Unknown Gene_class\""+ line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)) +"\" for Hypermutationglobalerrorrate in model file: " + filename);
}
//Get the global rate
getline(infile,line_str);
double R = stod(line_str);
//Get the contributions
getline(infile,line_str);
semicolon_index = 0;
next_semicolon_index = line_str.find(";");
vector<double> ei_contributions ;
while( semicolon_index!=string::npos ){
if(semicolon_index==0){
ei_contributions.push_back(stod(line_str.substr(semicolon_index , (next_semicolon_index - semicolon_index ))));
}
else{
ei_contributions.push_back(stod(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1))));
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
}
shared_ptr<Hypermutation_global_errorrate> err_rate_p = shared_ptr<Hypermutation_global_errorrate> (new Hypermutation_global_errorrate(mutation_Nmer_size, learn_on , apply_on , R , ei_contributions));
this->set_error_ratep(err_rate_p);
}
else if(errrate == string("#HypermutationfullNmererrorrate")){
//Get the general attributes for the hypermutation model (size,learn_on,apply_on)
size_t next_semicolon_index = line_str.find(";",semicolon_index+1);
size_t mutation_Nmer_size = stoi(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
Gene_class learn_on;
try{
learn_on = str2GeneClass(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
}
catch(exception& e){
throw runtime_error("Unknown Gene_class\""+ line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)) +"\" for Hypermutationglobalerrorrate in model file: " + filename);
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
Gene_class apply_on;
try{
apply_on = str2GeneClass(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)));
}
catch(exception& e){
throw runtime_error("Unknown Gene_class\""+ line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1)) +"\" for Hypermutationglobalerrorrate in model file: " + filename);
}
//Get the mutation probas
getline(infile,line_str);
semicolon_index = 0;
next_semicolon_index = line_str.find(";");
vector<double> mutation_probas ;
while( semicolon_index!=string::npos ){
if(semicolon_index==0){
mutation_probas.push_back(stod(line_str.substr(semicolon_index , (next_semicolon_index - semicolon_index ))));
}
else{
mutation_probas.push_back(stod(line_str.substr(semicolon_index+1 , (next_semicolon_index - semicolon_index -1))));
}
semicolon_index = next_semicolon_index;
next_semicolon_index = line_str.find(";",semicolon_index+1);
}
shared_ptr<Hypermutation_full_Nmer_errorrate> err_rate_p = shared_ptr<Hypermutation_full_Nmer_errorrate> (new Hypermutation_full_Nmer_errorrate(mutation_Nmer_size, learn_on , apply_on , mutation_probas));
this->set_error_ratep(err_rate_p);
}
else{
throw runtime_error("Unknown Error_rate type\""+ errrate + "\" in model file: " + filename);
}
}
else{
throw runtime_error("Unknown format for model file: " + filename);
}
}
void Model_Parms::set_fixed_all_events(bool fix_bool_status){
for(list<shared_ptr<Rec_Event>>::iterator iter = events.begin() ; iter != events.end() ; ++iter){
(*iter)->fix(fix_bool_status);
}
}
|