1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
* Rec_Event.cpp
*
* Created on: 3 nov. 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Rec_Event.h"
#include "Counter.h"
using namespace std;
//std::ofstream log_file(std::string("/media/quentin/419a9e2c-2635-471b-baa0-58a693d04d87/data/tcr_murugan/one_seq_comp/logs.txt"));
Rec_Event::Rec_Event(Gene_class gene , Seq_side side ): priority(0) , event_class(gene) , event_side(side) , name("Undefined_event_name") ,len_min(INT16_MAX) , len_max(INT16_MIN) , type(Undefined_t), event_index(INT16_MIN) , updated(false),fixed(false) , current_realizations_index_vec(vector<int>()) , scenario_downstream_upper_bound_proba(-1),event_upper_bound_proba(-1),scenario_upper_bound_proba(-1),current_realization_index(nullptr){} //FIXME why does this exist? anyway fix initilization
Rec_Event::Rec_Event(Gene_class gene , Seq_side side , unordered_map<string , Event_realization>& realizations): Rec_Event(gene,side) {
this->event_realizations = realizations;
}
Rec_Event::Rec_Event(): Rec_Event( Undefined_gene , Undefined_side ) {}
//TODO see this later
/*
Rec_Event::Rec_Event(list<Event_realization> realizations_list){
for(list<Event_realization>::const_iterator iter = realizations_list.begin() ; iter!=realizations_list.end() ; iter++){
this->add_realization((*iter));
}
}
Rec_Event::Rec_Event(list<Event_realization> realization_list, int new_priority ) : Rec_Event(realization_list) {
this->priority = new_priority;
}
*/
Rec_Event::~Rec_Event() {
// TODO Auto-generated destructor stub
}
bool Rec_Event::operator ==(const Rec_Event& other)const {
if(this->get_type() != other.get_type()) return 0;
if( this->event_class != other.event_class) return 0;
if( this->event_side != other.event_side) return 0;
if( this->priority != other.priority) return 0;
if( this->event_realizations.size() != other.event_realizations.size()) return 0;
for(unordered_map< string,Event_realization >::const_iterator iter = this->event_realizations.begin() ; iter != this->event_realizations.end() ; ++iter){
if(other.event_realizations.count((*iter).first) != 1 ) return 0;
}
return 1;
}
void Rec_Event::update_event_name(){
this->name = string() + this->type +string("_")+ this->event_class + string("_") + this->event_side + string("_prio") + to_string(priority) + string("_size") + to_string(this->size());
}
void Rec_Event::add_realization(const Event_realization& realization){
this->event_realizations.insert( make_pair ((realization).name,(realization)) );
this->update_event_name();
}
bool Rec_Event::set_priority(int new_priority){
this->priority = new_priority;
this->update_event_name();
return 1;
}
int Rec_Event::size()const{
return event_realizations.size();
}
void Rec_Event::set_event_identifier(size_t identifier){
this->event_index = identifier;
}
int Rec_Event::get_event_identifier() const {
return event_index;
}
void Rec_Event::iterate_wrap_up(double& scenario_proba , Downstream_scenario_proba_bound_map& downstream_proba_map , const std::string& sequence , const Int_Str& int_sequence , Index_map& index_map , const std::unordered_map<Rec_Event_name,std::vector<std::pair<std::shared_ptr<const Rec_Event>,int>>>& offset_map , std::shared_ptr<Next_event_ptr>& next_event_ptr_arr , Marginal_array_p& updated_marginal_array_p , const Marginal_array_p& model_parameters_point ,const std::unordered_map<Gene_class , std::vector<Alignment_data>>& allowed_realizations , Seq_type_str_p_map& constructed_sequences , Seq_offsets_map& seq_offsets , std::shared_ptr<Error_rate>& error_rate_p , map<size_t,shared_ptr<Counter>>& counters_list ,const std::unordered_map<std::tuple<Event_type,Gene_class,Seq_side>, std::shared_ptr<Rec_Event>>& events_map , Safety_bool_map& safety_set , Mismatch_vectors_map& mismatches_lists , double& seq_max_prob_scenario , double& proba_threshold_factor){
/* if(seq_offsets.count(make_pair(J_gene_seq, Three_prime))!=0){
int offset3=seq_offsets.at(make_pair(J_gene_seq, Three_prime));
int offset5=seq_offsets.at(make_pair(J_gene_seq, Five_prime));
if(offset5==0){
cout<<"problem"<<endl;
}
if(offset3==0){
cout<<"big_problem"<<endl;
}
}*/
if(next_event_ptr_arr.get()[this->event_index]){ //Tests whether the next event pointer is null
//Recursive call to iterate
//TODO consider adding a threshold for too low probability events(if necessary)
next_event_ptr_arr.get()[this->event_index]->iterate(scenario_proba , downstream_proba_map , sequence , int_sequence , index_map , offset_map , next_event_ptr_arr , updated_marginal_array_p , model_parameters_point , allowed_realizations , constructed_sequences , seq_offsets , error_rate_p , counters_list , events_map , safety_set , mismatches_lists , seq_max_prob_scenario , proba_threshold_factor);
}
else{
long double scenario_error_w_proba = error_rate_p->compare_sequences_error_prob( scenario_proba , sequence , constructed_sequences , seq_offsets , events_map , mismatches_lists , seq_max_prob_scenario , proba_threshold_factor);
//TODO add a monitor of the likelihood at each iteration
//TODO implement sequence comparison in the error rate class
//log_file<<scenario_error_w_proba<<endl;
//Add the full recombination scenario probability to the marginals
/*for(forward_list<int*>::const_iterator iter = write_index_list.begin() ; iter!=write_index_list.end() ; iter++){
updated_marginal_array_p[*(*iter)] += scenario_error_w_proba;
if(((*iter)==2865) & (!constructed_sequences.at(VD_ins_seq).empty())){
cout<<"error"<<endl;
}
if(((*iter)==2896) & (!constructed_sequences.at(DJ_ins_seq).empty())){
cout<<"error"<<endl;
}
}*/
if(scenario_error_w_proba>=seq_max_prob_scenario*proba_threshold_factor){
if(scenario_error_w_proba>seq_max_prob_scenario){seq_max_prob_scenario=scenario_error_w_proba;}
for(std::map<size_t,std::shared_ptr<Counter>>::iterator iter = counters_list.begin() ; iter != counters_list.end() ; ++iter){
(*iter).second->count_scenario(scenario_error_w_proba ,scenario_proba , sequence , constructed_sequences , seq_offsets , events_map , mismatches_lists );
}
for(std::unordered_map<std::tuple<Event_type,Gene_class,Seq_side>, std::shared_ptr<Rec_Event>>::const_iterator iter = events_map.begin() ; iter != events_map.end() ; iter++){
if(!(*iter).second->is_fixed()){
(*iter).second->add_to_marginals(scenario_error_w_proba , updated_marginal_array_p);
}
}
}
}
}
void Rec_Event::initialize_event( unordered_set<Rec_Event_name>& processed_events , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map , Downstream_scenario_proba_bound_map& downstream_proba_map , Seq_type_str_p_map& constructed_sequences , Safety_bool_map& safety_set , shared_ptr<Error_rate> error_rate_p , Mismatch_vectors_map& mismatches_list , Seq_offsets_map& seq_offsets , Index_map& index_map){
//No action performed on the event by default if the method is not overloaded
//Need to call Rec_Event::initialize_event() to apply these common actions when the method is overloaded
current_realizations_index_vec.push_back(-1);
if(offset_map.count(this->get_name()) != 0){
const vector<pair<shared_ptr<const Rec_Event>,int>>& offset_vector = offset_map.at(this->get_name());
for(vector<pair<shared_ptr<const Rec_Event>,int>>::const_iterator iter = offset_vector.begin() ; iter != offset_vector.end() ; ++iter){
//Request memory layer
int event_identitfier = (*iter).first->get_event_identifier();
index_map.request_memory_layer(event_identitfier);
memory_and_offsets.emplace_front( event_identitfier , index_map.get_current_memory_layer(event_identitfier) , (*iter).second);
}
}
downstream_proba_map.get_all_current_memory_layer(current_downstream_proba_memory_layers);
processed_events.emplace(this->name);
return;
}
void Rec_Event::ind_normalize(Marginal_array_p& marginal_array_p , size_t base_index) const{
long double sum_marginals = 0;
for(int i =0 ; i != this->size() ; ++i){
sum_marginals+= marginal_array_p[base_index + i];
}
if(sum_marginals!=0){
for(int i =0 ; i != this->size() ; ++i){
marginal_array_p[base_index + i] /= sum_marginals;
}
}
}
void Rec_Event::set_crude_upper_bound_proba( size_t base_index , size_t event_size , Marginal_array_p& marginal_array_p){
double max_proba = 0;
for(size_t i = 0 ; i!= event_size ; ++i){
if(marginal_array_p[base_index + i] > max_proba){
max_proba = marginal_array_p[base_index + i];
}
}
this->event_upper_bound_proba = max_proba;
}
void Rec_Event::set_upper_bound_proba(double proba){
this->event_upper_bound_proba = proba;
}
/**
* Does nothing since in general events will not need to perform any operation on the marginal probabilities
*/
void Rec_Event::update_event_internal_probas(const Marginal_array_p& marginal_array , const unordered_map<Rec_Event_name,int>& index_map){
//Do nothing
}
/*
* This method initialize the scenario probability upper bound for each event
* The point is to compute the upper bound probability (given the model) of the scenario for each event
* This allows to discard scenarios with too low probability at early stages
*/
void Rec_Event::initialize_crude_scenario_proba_bound(double& downstream_proba_bound , forward_list<double*>& updated_proba_list , const unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>>& events_map){
this->scenario_downstream_upper_bound_proba = downstream_proba_bound;
this->updated_proba_bounds_list = updated_proba_list;
if(!this->is_updated()){
downstream_proba_bound*=this->event_upper_bound_proba;
}
else{
throw logic_error("Updated events should overload Rec_event::initialize_scenario_proba_bound()");
}
}
/*
* Description??
*/
double* Rec_Event::get_updated_ptr(){
throw logic_error("Updated events should overload Rec_event::get_updated_ptr()");
}
/*
* Updates the value of scenario_upper_bound_proba according to the error weighted scenario and the upper bound of downstream scenarios
*/
void Rec_Event::compute_crude_upper_bound_scenario_proba( double& tmp_err_w_proba ) {
scenario_upper_bound_proba = tmp_err_w_proba * scenario_downstream_upper_bound_proba;
for (forward_list<double*>::const_iterator iter = updated_proba_bounds_list.begin() ; iter != updated_proba_bounds_list.end() ; ++iter){
scenario_upper_bound_proba*=(*(*iter));
}
}
void Rec_Event::iterate_initialize_Len_proba(Seq_type considered_junction , std::map<int,double>& length_best_proba_map , std::queue<std::shared_ptr<Rec_Event>>& model_queue , double& scenario_proba , const Marginal_array_p& model_parameters_point , Index_map& base_index_map , Seq_type_str_p_map& constructed_sequences ) const{
int seq_len = 0;
this->iterate_initialize_Len_proba(considered_junction , length_best_proba_map , model_queue , scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len);
}
/*
* Called when iterating over all possible scenarios during initialization
* Fills up the length-max_proba_bound for a given junction , and links the call to iterate_initialize_len_proba for two events
*
* TODO constructed sequences should not be used but it is useful to compute the dinucl contribution
*/
void Rec_Event::iterate_initialize_Len_proba_wrap_up(Seq_type considered_junction , std::map<int,double>& length_best_proba_map , std::queue<std::shared_ptr<Rec_Event>> model_queue , double scenario_proba , const Marginal_array_p& model_parameters_point , Index_map& base_index_map , Seq_type_str_p_map& constructed_sequences , int seq_len ) const {
if(not model_queue.empty()){
std::shared_ptr<Rec_Event> next_event_p = model_queue.front();
model_queue.pop();
//TODO fix this and find a way not to loop over all events
//if(next_event_p->has_effect_on(considered_junction)){
// Explore realizations of this event
next_event_p->iterate_initialize_Len_proba(considered_junction , length_best_proba_map , model_queue , scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len);
//}
//else{
// If this event has no effect on the junction skip it using a recursive call
//next_event_p->iterate_initialize_Len_proba_wrap_up(considered_junction , length_best_proba_map , model_queue , scenario_proba , model_parameters_point , base_index_map , constructed_sequences , seq_len);
//}
}
else{
// When all events with an effect on the junction have been processed update the length-proba map
if(length_best_proba_map.count(seq_len)>0){
if(scenario_proba>length_best_proba_map.at(seq_len)){
//Keep the best proba for each length
length_best_proba_map.at(seq_len) = scenario_proba;
}
}
else{
length_best_proba_map[seq_len] = scenario_proba;
}
}
}
|