File: GenModel.cpp

package info (click to toggle)
igor 1.4.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,124 kB
  • sloc: cpp: 12,453; python: 1,047; sh: 124; makefile: 32
file content (758 lines) | stat: -rw-r--r-- 35,044 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*
 * GenModel.cpp
 *
 *  Created on: 3 nov. 2014
 *      Author: Quentin Marcou
 *
 *  This source code is distributed as part of the IGoR software.
 *  IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
 *  generation, selection, mutation and all other processes.
 *   Copyright (C) 2017  Quentin Marcou
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.

 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 *      This class designs a generative model and supply all the methods to run a maximum likelihood estimate of the generative model
 */

#include "GenModel.h"

using namespace std;

GenModel::GenModel(const Model_Parms& parms, const Model_marginals& marginals, const map<size_t,shared_ptr<Counter>>& count_list): model_parms(parms) , model_marginals(marginals) , counters_list(count_list){}

GenModel::GenModel(const Model_Parms& parms, const Model_marginals& marginals):GenModel(parms , marginals , map<size_t,shared_ptr<Counter>>()){}

GenModel::GenModel(const Model_Parms& parms): GenModel(parms ,  Model_marginals(parms) , map<size_t,shared_ptr<Counter>>())  {
}

GenModel::~GenModel() {
	// TODO Auto-generated destructor stub
}


bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const  int iterations ,const std::string path, bool fast_iter , double likelihood_threshold/*=1e-25*/ , bool viterbi_like/*false*/){
	return this->infer_model(sequences , iterations , path , fast_iter , likelihood_threshold , viterbi_like , 0.001);
}

bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const  int iterations ,const std::string path, bool fast_iter/*=true*/ , double likelihood_threshold/*=1e-25*/ , double proba_threshold_factor/*=0.001*/ ){
	return this->infer_model(sequences , iterations , path , fast_iter , likelihood_threshold , false , proba_threshold_factor , INFINITY);
}

bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const  int iterations ,const string path , bool fast_iter/*=true*/ ,double likelihood_threshold/*=1e-25 by default*/ , bool viterbi_like/*=false*/ , double proba_threshold_factor/*=0.001 by default*/ , double mean_number_seq_err_thresh /*= INFINITY by default*/){

	//If viterbi like only the best scenario is of interest
	if(viterbi_like){
		cerr<<"******************************************************************"<<endl;
		cerr<<"*\t\t RUNNING \"VITERBI\" LIKE ALGORITHM \t\t *"<<endl<<"* \t(only the best scenario will be taken into account)\t *"<<endl;
		cerr<<"******************************************************************"<<endl;
		proba_threshold_factor = 1.0;
	}

	if(likelihood_threshold>1.0){
		throw invalid_argument("Likelihood threshold must be lesser or equal than one");
	}

	if(proba_threshold_factor>1.0){
		throw invalid_argument("Probability threshold ratio must be lesser or equal than one");
	}

	ofstream likelihood_file(path + "likelihoods.out");
	likelihood_file<<"iteration;mean_log_Likelihood;n_seq"<<endl;


	queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
	unordered_map<Rec_Event_name,int> index_map = model_marginals.get_index_map(model_parms,model_queue);
	unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inv_offset_map = model_marginals.get_inverse_offset_map(model_parms,model_queue);
	int iteration_accomplished = 0;
	ofstream log_file(path + string("inference_logs.txt"));
	log_file<<"iteration_n;seq_processed;seq_index;nt_sequence;n_V_aligns;n_J_aligns;seq_likelihood;seq_mean_n_errors;seq_n_scenarios;seq_best_scenario;time"<<endl;
	ofstream general_logs(path + string("inference_info.out"));
	//Dump all inference parameters to file
	chrono::system_clock::time_point begin_time = chrono::system_clock::now();
	std::time_t tt;
	tt = chrono::system_clock::to_time_t ( begin_time );

	general_logs<<"Date: "<< ctime(&tt)<<endl;
	general_logs<<"Max #iterations to be performed: "<<iterations<<endl;
	general_logs<<"Path: "<<path<<endl;
	general_logs<<"First iter fast(only best V and best J considered): "<<fast_iter<<endl;
	general_logs<<"Min Likelihood threshold: "<<likelihood_threshold<<endl;
	general_logs<<"Viterbi like (only keeps the best scenario): "<<viterbi_like<<endl;
	general_logs<<"Proba threshold ratio: "<<proba_threshold_factor<<"\t#(ratio between best scenario and current scenario needed to explore/count the scenario)"<<endl;
	general_logs<<"Mean #errors threshold: "<<mean_number_seq_err_thresh<<"\t#Needs a very good reason to be set to another value than INFINITY"<<endl;

	//Get the total number of sequences to process
	const double total_number_seqs = sequences.size(); //Use a double for float division afterwards

	/*
	 * Get the list of fixed and inferred events and output them to the log file
	 * Do it in a scope so the variables will be destroyed
	 */
	{
		list<Rec_Event_name> fixed_events_list;
		list<Rec_Event_name> inferred_events_list;
		const list<shared_ptr<Rec_Event>> model_event_list = model_parms.get_event_list();
		for(list<shared_ptr<Rec_Event>>::const_iterator iter = model_event_list.begin() ; iter!=model_event_list.end() ; ++iter){
			if(not (*iter)->is_fixed()){
				inferred_events_list.emplace_back((*iter)->get_name());
			}
			else{
				fixed_events_list.emplace_back((*iter)->get_name());
			}
		}
		general_logs<<endl;
		general_logs<<"List of updated events: ";
		for(Rec_Event_name name : inferred_events_list){
			general_logs<<name<<"\t";
		}
		general_logs<<endl;
		general_logs<<"List of fixed events: ";
		for(Rec_Event_name name : fixed_events_list){
			general_logs<<name<<"\t";
		}
		general_logs<<endl;
		general_logs<<"Error model updated: "<<model_parms.get_err_rate_p()->is_updated()<<endl;
	}

	//Write initial condition to file
	this->model_marginals.write2txt(path+string("initial_marginals.txt"),this->model_parms);
	this->model_parms.write_model_parms(path+string("initial_model.txt"));

	/*
	 * First initialization creates file streams
	 * This is to make sure that the counter copies do not create new files each time
	 */
	for(map<size_t,shared_ptr<Counter>>::const_iterator iter = counters_list.begin() ; iter!=counters_list.end() ; ++iter){
		(*iter).second->initialize_counter(model_parms,model_marginals);
	}

/*
 * Reduction using OpenMP 4.0 standards
 *
	#pragma omp declare reduction(+:Model_marginals:omp_out+=omp_in) initializer(omp_priv = omp_orig.empty_copy())
	//Note: since Error_rate is an abstract class, the following is very dirty, need to find a better solution
	#pragma omp declare reduction(+:shared_ptr<Error_rate>:add_to_err_rate(omp_out,omp_in)) initializer(omp_priv = omp_orig->copy())
*/

	//Loop over iterations
	while(iteration_accomplished!=iterations){

		//double proba_threshold_factor;
		Model_marginals new_marginals = Model_marginals(model_parms);
		shared_ptr<Error_rate> error_rate_copy = model_parms.get_err_rate_p()->copy();


		//Initialize error rate copy
		error_rate_copy->initialize(model_parms.get_events_map());


		//Initialize counters for the log file
		size_t sequences_processed = 0;

		new_marginals.debug_marg_name = "new_marginals";

		const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>* sequence_util_ptr;

		//Take only best alignments if fast_iter
		vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> fast_iter_sequences;
		if(fast_iter && iteration_accomplished==0){
			fast_iter_sequences = sequences;
			for(unordered_map<Gene_class , vector<Alignment_data>>::const_iterator gc_align_iter = std::get<2>(sequences.at(0)).begin() ; gc_align_iter != std::get<2>(sequences.at(0)).end() ; ++gc_align_iter){
				if ((*gc_align_iter).first == D_gene)continue;
				fast_iter_sequences = get_best_aligns(fast_iter_sequences,(*gc_align_iter).first);
			}
			sequence_util_ptr = &fast_iter_sequences;
		}
		else{
			sequence_util_ptr = &sequences;
		}

		cerr<<"Performing Evaluate/Inference iteration "<<iteration_accomplished+1<<endl;

		/* omp parallel declaration using OpenMP 4.0 standards
		 * #pragma omp parallel for schedule(dynamic) reduction(+:error_rate_copy,new_marginals) firstprivate(model_queue,index_map,offset_map,model_marginals_copy,events_map , processed_events , safety_set , write_index_list) //num_threads(6)
		 */

		//Declare variables to use OpenMP 3.1 standards
		#pragma omp parallel shared(new_marginals,error_rate_copy,sequences_processed,sequence_util_ptr,sequences) firstprivate(model_queue,proba_threshold_factor ) //num_threads(1)
		{
			//Make single thread copies of objects for thread safety
			Model_Parms single_thread_model_parms (model_parms);
			unordered_map<Rec_Event_name,int> single_thread_index_map =model_marginals.get_index_map(model_parms,model_queue);
			Model_marginals single_thread_model_marginals (model_marginals);
			Model_marginals single_thread_marginals (single_thread_model_parms);
			shared_ptr<Error_rate> single_thread_err_rate = single_thread_model_parms.get_err_rate_p();
			unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> events_map = single_thread_model_parms.get_events_map();
			map<size_t,shared_ptr<Counter>> single_thread_counter_list;
			for(map<size_t,shared_ptr<Counter>>::const_iterator iter = this->counters_list.begin() ; iter != this->counters_list.end() ; ++iter){
				//Copy only relevant counters for this iteration
				if((not (*iter).second->is_last_iter_only()) or (iteration_accomplished == iterations-1)){
					single_thread_counter_list.emplace((*iter).first,(*iter).second->copy());
				}
			}

			single_thread_marginals.debug_marg_name = "single_thread_marginals";
			single_thread_model_marginals.debug_marg_name = "single thread model marginals";

			unordered_set<Rec_Event_name> init_processed_events;

			//Initialize Enum_fast_memory map and dual maps
			Safety_bool_map safety_set(3);
			Seq_type_str_p_map constructed_sequences(6);//6 is the number of outcomes for Seq_type
			Mismatch_vectors_map mismatches_lists(6);
			Seq_offsets_map seq_offsets(6,3);

			//Initialize downstream probas to 1
			Downstream_scenario_proba_bound_map downstream_proba_map(6);
			downstream_proba_map.init_first_layer(1.0);

			list<shared_ptr<Rec_Event>> events_list = single_thread_model_parms.get_event_list();
			Index_map index_mapp(events_list.size());

			//Initialize index_map
			for(list<shared_ptr<Rec_Event>>::iterator event_iter = events_list.begin() ; event_iter != events_list.end() ; ++event_iter){
				int event_index = (*event_iter)->get_event_identifier();
				index_mapp.request_memory_layer(event_index);
				index_mapp.set_value(event_index,single_thread_index_map.at((*event_iter)->get_name()) , 0);
				//TODO update proba bound

				//Get events probability upper bounds
				size_t event_size = single_thread_model_marginals.get_event_size((*event_iter) , single_thread_model_parms);

				(*event_iter)->set_event_marginal_size(event_size);
				(*event_iter)->set_crude_upper_bound_proba(single_thread_index_map.at((*event_iter)->get_name()) , event_size , single_thread_model_marginals.marginal_array_smart_p);

			}

			queue<shared_ptr<Rec_Event>> single_thread_model_queue = single_thread_model_parms.get_model_queue(); //single_thread_parms.get_model_queue();

			queue<shared_ptr<Rec_Event>> init_single_thread_model_queue = single_thread_model_queue;
			unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>single_thread_offset_map = model_marginals.get_offsets_map(model_parms,single_thread_model_queue);

			stack<shared_ptr<Rec_Event>> init_single_thread_stack;

			//Initialize events
			while(!init_single_thread_model_queue.empty()){
				shared_ptr<Rec_Event> first_init_event = init_single_thread_model_queue.front();
				init_single_thread_stack.push(first_init_event);
				init_single_thread_model_queue.pop();
				(*first_init_event).initialize_event(init_processed_events,events_map , single_thread_offset_map , downstream_proba_map , constructed_sequences,safety_set , single_thread_err_rate , mismatches_lists,seq_offsets , index_mapp);
				(*first_init_event).set_viterbi_run(viterbi_like);
			}

			/*
			 * Initialize the array of next event pointers
			 * This array replaces the formerly copied queue<shared_ptr<Rec_Event>> (was copied at each iterate_wrap_up call)
			 * Each event will access the pointer corresponding to its identifier address when calling iterate inside iterate_wrap_up
			 * The last event will point to null pointer enabling to call the error_rate
			 */
			shared_ptr<Next_event_ptr> next_event_ptr_arr (new Next_event_ptr[single_thread_model_parms.get_event_list().size()]);
			init_single_thread_model_queue = single_thread_model_queue;
			while(!init_single_thread_model_queue.empty()){
				shared_ptr<Rec_Event> first_init_event = init_single_thread_model_queue.front();
				init_single_thread_model_queue.pop();
				if(!init_single_thread_model_queue.empty()){
					next_event_ptr_arr.get()[first_init_event->get_event_identifier()] = init_single_thread_model_queue.front().get();
				}
				else{
					//This is the last event thus we emplace a shared null pointer
					next_event_ptr_arr.get()[first_init_event->get_event_identifier()] = NULL; //Next_event_ptr(NULL);
				}
			}


			//Initialize error rate
			single_thread_err_rate->initialize(events_map);
			single_thread_err_rate->set_viterbi_run(viterbi_like);


			//Initialize Counters
			for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
				(*iter).second->initialize_counter(single_thread_model_parms , single_thread_marginals);
			}
			#pragma omp single nowait
			{
				cerr<<"Initializing probability bounds..."<<endl;
			}
			//Compute upper proba bounds for downstream scenarios for each event
			double downstream_proba_bound = 1 ;
			forward_list<double*> updated_proba_list ;
			while(!init_single_thread_stack.empty()){
				shared_ptr<Rec_Event> last_proba_init_event = init_single_thread_stack.top();
				queue<shared_ptr<Rec_Event>> tmp_init_proba_single_thread_model_queue = single_thread_model_queue;
				init_single_thread_stack.pop();
				while(tmp_init_proba_single_thread_model_queue.front()!=last_proba_init_event){
					tmp_init_proba_single_thread_model_queue.pop();
				}
				tmp_init_proba_single_thread_model_queue.pop();
				last_proba_init_event->initialize_crude_scenario_proba_bound(downstream_proba_bound , updated_proba_list , events_map);

				last_proba_init_event->initialize_Len_proba_bound(tmp_init_proba_single_thread_model_queue,single_thread_model_marginals.marginal_array_smart_p,index_mapp);
				/*#pragma omp single nowait
				{
					cerr<<last_proba_init_event->get_name()<<" initialized"<<endl;
				}*/
			}
			#pragma omp single nowait
			{
				cerr<<"Initialization of probability bounds over."<<endl;
			}

			//Now let all the events in the need of it get their own updated copy of the marginals
			init_single_thread_model_queue = single_thread_model_queue;
			while(!init_single_thread_model_queue.empty()){
				init_single_thread_model_queue.front()->update_event_internal_probas(single_thread_model_marginals.marginal_array_smart_p,index_map);
				init_single_thread_model_queue.pop();
			}

			chrono::system_clock::time_point single_seq_begin;
			chrono::duration<double> seq_time;




			//Loop over sequences in parallel, using the number of threads declared previously when declaring the parallel section
			//Use dynamic scheduling to avoid loss of time due to synchronization

			#pragma omp for schedule(dynamic) nowait
			for(vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>::const_iterator seq_it = (*sequence_util_ptr).begin() ; seq_it < (*sequence_util_ptr).end() ; ++seq_it){

				single_seq_begin = chrono::system_clock::now();

				//Make a copy of the queue that can be modified in iterate
				queue<shared_ptr<Rec_Event>> model_queue_copy(single_thread_model_queue);

				//Get the first event from the queue
				shared_ptr<Rec_Event> first_event = model_queue_copy.front();
				model_queue_copy.pop();


				//Initialize single seq marginals
				Model_marginals single_seq_marginals = single_thread_model_marginals.empty_copy();
				double init_proba = 1;
				//double init_tmp_err_w_proba = 1;
				double max_proba_scenario = likelihood_threshold/proba_threshold_factor;

				Int_Str int_sequence = nt2int(get<1>(*seq_it));

				//cout<<int_sequence<<endl;

				single_seq_marginals.debug_marg_name = "single_seq_marginals";

				/*
				 * Call iterate on the first event
				 * The method will be called recursively for each event, this is equivalent to a nested loop and enumerates all possible scenarios
				 * The weight of each recombination scenario is added to the single_seq_marginals on the fly
				 */
				try{

					first_event->iterate(init_proba , downstream_proba_map , get<1>(*seq_it) , int_sequence , index_mapp , single_thread_offset_map , next_event_ptr_arr , single_seq_marginals.marginal_array_smart_p , single_thread_model_marginals.marginal_array_smart_p , get<2>(*seq_it) , constructed_sequences , seq_offsets , single_thread_err_rate , single_thread_counter_list , events_map , safety_set , mismatches_lists , max_proba_scenario , proba_threshold_factor);

				}

				catch(exception& except){
					general_logs<<"Exception caught calling iterate() on sequence:"<<endl;
					general_logs<<get<1>(*seq_it)<<" with index "<<get<0>(*seq_it)<<endl;
					general_logs<<"Exception caught after "<<single_thread_err_rate->debug_number_scenarios<<" scenarios explored"<<endl;
					general_logs<<endl;
					general_logs<<"Throwing exception now..."<<endl<<endl;
					general_logs<<except.what()<<endl;
					throw;
				}



				//Normalize the weights on the single_seq_marginal so that each sequence has the same weight when merged to the single_thread_marginals
				single_thread_err_rate->norm_weights_by_seq_likelihood(single_seq_marginals.marginal_array_smart_p,single_seq_marginals.get_length());
				seq_time = chrono::system_clock::now() - single_seq_begin;
				#pragma omp critical(dump_seq_info)
				{
					++sequences_processed;
					//Output useful infos in the log file
					//log_file<<iteration_accomplished<<";"<<sequences_processed<<";"<<(*seq_it).first<<";"<<(*seq_it).second.at(V_gene).size()<<";"<<(*seq_it).second.at(D_gene).size()<<";"<<(*seq_it).second.at(J_gene).size()<<";"<<single_thread_err_rate->get_seq_probability()<<";"<<single_thread_err_rate->get_seq_likelihood()<<";"<<single_thread_err_rate->debug_number_scenarios<<";"<<max_proba_scenario<<endl;
					log_file<<iteration_accomplished<<";"<<sequences_processed<<";"<<get<0>(*seq_it)<<";"<<get<1>(*seq_it)<<";"<<get<2>(*seq_it).at(V_gene).size()<<";"<<get<2>(*seq_it).at(J_gene).size()<<";"<<single_thread_err_rate->get_seq_likelihood()<<";"<<single_thread_err_rate->get_seq_mean_error_number()<<";"<<single_thread_err_rate->debug_number_scenarios<<";"<<max_proba_scenario<<";"<<seq_time.count()<<endl;
				}
				for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
					iter->second->count_sequence(single_thread_err_rate->get_seq_likelihood() , single_seq_marginals , single_thread_model_parms);
					#pragma omp critical(dump_counters)
					{
						(*iter).second->dump_sequence_data(get<0>(*seq_it) , iteration_accomplished);
					}
				}


				if(single_thread_err_rate->get_seq_mean_error_number()<=mean_number_seq_err_thresh){
					//Add weighed errors to the normalized error counter
					single_thread_err_rate->add_to_norm_counter();

					//Add the single_seq_marginals to the single thread marginals
					single_thread_marginals+=single_seq_marginals;
				}
				else{
					//Erase seq specific counters so that it won't contribute to the error rate
					single_thread_err_rate->clean_seq_counters();
				}

				#pragma omp critical (update_progress_bar)
				{
					if(sequences_processed%100 == 0){
						//Output current progress to cerr
						show_progress_bar(cerr,sequences_processed/total_number_seqs, "Iteration "+ to_string(iteration_accomplished+1), 50);
					}
				}

			}


			//Merge single thread error_rates and marginals
			#pragma omp critical(merge_marginals_and_er)
			{
				new_marginals+=single_thread_marginals;
				add_to_err_rate(error_rate_copy.get(),single_thread_err_rate.get());
				for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
					counters_list.at((*iter).first)->add_to_counter((*iter).second);
				}
			}


		}


		for(map<size_t,shared_ptr<Counter>>::const_iterator iter = counters_list.begin() ; iter!=counters_list.end() ; ++iter){
			(*iter).second->dump_data_summary(iteration_accomplished);
		}

		likelihood_file<<iteration_accomplished+1<<";"<<error_rate_copy->get_model_likelihood()/error_rate_copy->get_number_non_zero_likelihood_seqs()<<";"<<error_rate_copy->get_number_non_zero_likelihood_seqs()<<endl;
		error_rate_copy->update();
		this->model_parms.set_error_ratep(error_rate_copy);
		new_marginals.normalize(inv_offset_map , index_map , model_queue);
		new_marginals.copy_fixed_events_marginals(this->model_marginals,this->model_parms,index_map);
		this->model_marginals = new_marginals;
		++iteration_accomplished;

		this->model_marginals.write2txt(path+string("iteration_")+to_string(iteration_accomplished)+string(".txt"),this->model_parms);
		this->model_parms.write_model_parms(path+string("iteration_")+to_string(iteration_accomplished)+string("_parms.txt"));

		//Close current iteration progress bar
		close_progress_bar(cerr, "Iteration " + to_string(iteration_accomplished), 50);

	}
	//Create a copy of the last iteration results with identifiable name
	this->model_marginals.write2txt(path+string("final_marginals.txt"),this->model_parms);
	this->model_parms.write_model_parms(path+string("final_parms.txt"));

	return 0;
}
/**
 * \deprecated This function used to store generated sequences in memory, and quickly overloaded it for large number of generated sequences.
 */
forward_list<pair<string,queue<queue<int>>>> GenModel::generate_sequences(int number_seq , bool generate_errors){

	queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
	unordered_map<Rec_Event_name,int> index_map = this->model_marginals.get_index_map(this->model_parms,model_queue);
	unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>> offset_map = this->model_marginals.get_offsets_map(this->model_parms,model_queue);

	//Create seed for random generator
	//create a seed from timer
	typedef std::chrono::high_resolution_clock myclock;
	myclock::time_point time = myclock::now();
	myclock::duration dur = myclock::time_point::max() - time;

	//Get a random seed
	uint64_t random_seed = draw_random_64bits_seed();
	//Instantiate random number generator
	mt19937_64 generator =  mt19937_64(random_seed);
	forward_list<pair<string,queue<queue<int>>>> sequence_list =  forward_list<pair<string,queue<queue<int>>>>();

	for(int seq = 0 ; seq != number_seq ; ++seq){
		pair<string,queue<queue<int>>> sequence = this->generate_unique_sequence(model_queue , index_map ,offset_map , generator);
		if(generate_errors){
			sequence.second.push(this->model_parms.get_err_rate_p()->generate_errors(sequence.first,generator));
		}
		sequence_list.push_front(sequence);
		if(seq%1000 == 0){
			//Output current progress to cerr
			show_progress_bar(cerr,seq/(double) number_seq, "Sequence generation", 50);
		}
	}
	close_progress_bar(cerr, "Sequence generation", 50);

	return sequence_list;

}
/*
 * Generate sequences in a memory efficient way
 */
void GenModel::generate_sequences(int number_seq,bool generate_errors , string filename_ind_seq , string filename_ind_real,list<pair<gen_seq_trans,shared_ptr<void>>> transform_func_and_data /*= list<pair<gen_seq_trans,shared_ptr<void>>>()*/ , bool output_only_func /*= false*/, int seed /* =-1*/ ){
	ofstream outfile_ind_seq;
	ofstream outfile_ind_real;
	if(not output_only_func){
		outfile_ind_seq.open(filename_ind_seq);
		outfile_ind_real.open(filename_ind_real);
	}
	string folder_path = filename_ind_seq.substr(0,filename_ind_seq.rfind("/")+1); //Get the file path
	ofstream generation_infos_file(folder_path + "generation_info.out",fstream::out | fstream::app); //Opens the file in append mode




	//Create a header for the files
	queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
	if(not output_only_func){
		outfile_ind_seq<<"seq_index;nt_sequence"<<endl;
		outfile_ind_real<<"seq_index";
		while(!model_queue.empty()){
			outfile_ind_real<<";"<<model_queue.front()->get_name();
			model_queue.pop();
		}
		outfile_ind_real<<";Errors"<<endl;
	}
	model_queue = this->model_parms.get_model_queue();
	unordered_map<Rec_Event_name,int> index_map = this->model_marginals.get_index_map(this->model_parms,model_queue);
	unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>> offset_map = this->model_marginals.get_offsets_map(this->model_parms,model_queue);

	//Create seed for random generator
	//create a seed from timer if no seed was provided
	uint64_t random_seed;
	if(seed<0){
		//Get a random seed
		random_seed = draw_random_64bits_seed();
	}else{
		random_seed = seed;
	}
	clog<<"Seed: "<<random_seed<<endl;
	//Instantiate random number generator
	mt19937_64 generator =  mt19937_64(random_seed);


	chrono::system_clock::time_point begin_time = chrono::system_clock::now();
	std::time_t tt;
	tt = chrono::system_clock::to_time_t ( begin_time );

	generation_infos_file<<endl<<"================================================================"<<endl;
	generation_infos_file<<"Generated sequences in file: "<<filename_ind_seq<<endl;
	generation_infos_file<<"Generated sequences realizations in file: "<<filename_ind_real<<endl;
	generation_infos_file<<"Date: "<< ctime(&tt)<<endl;
	generation_infos_file<<"Number of sequences = "<<number_seq<<endl;
	generation_infos_file<<"Generated with errors = "<<generate_errors<<endl;
	generation_infos_file<<"Seed  = "<<random_seed<<endl;

	//Update events internal probas (e.g for dinucleotide ambiguous nucleotides)
	queue<shared_ptr<Rec_Event>> model_queue_copy = model_queue;
	while(not model_queue_copy.empty()){
		model_queue_copy.front()->update_event_internal_probas(this->model_marginals.marginal_array_smart_p , index_map);
		model_queue_copy.pop();
	}

	for(size_t seq = 0 ; seq != number_seq ; ++seq){
		pair<string,queue<queue<int>>> sequence = this->generate_unique_sequence(model_queue , index_map ,offset_map , generator,false);
		if(generate_errors){
			sequence.second.push(this->model_parms.get_err_rate_p()->generate_errors(sequence.first,generator));
		}

		for(pair<gen_seq_trans,shared_ptr<void>> func_data_pair : transform_func_and_data){
			func_data_pair.first(seq,sequence,func_data_pair.second);
		}

		if(not output_only_func){
			outfile_ind_seq<<seq<<";"<<sequence.first<<endl;
			outfile_ind_real<<seq;
			queue<queue<int>>& realizations = sequence.second;
			while(!realizations.empty()){
				outfile_ind_real<<";";
				queue<int> event_real = realizations.front();
				outfile_ind_real<<"(";
				while(!event_real.empty()){
					outfile_ind_real<<event_real.front();
					event_real.pop();
					if(!event_real.empty()){
						outfile_ind_real<<",";
					}
				}
				outfile_ind_real<<")";
				realizations.pop();
			}
			outfile_ind_real<<endl;
		}

		if(seq%1000 == 0){
			//Output current progress to cerr
			show_progress_bar(cerr,seq/(double) number_seq, "Sequence generation", 50);
		}


	}
	close_progress_bar(cerr, "Sequence generation", 50);
	return;
}

pair<string,queue<queue<int>>> GenModel::generate_unique_sequence(queue<shared_ptr<Rec_Event>> model_queue , unordered_map<Rec_Event_name,int> index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>>& offset_map , mt19937_64& generator , bool update_event_internal_proba /*= true*/ ){
	if(update_event_internal_proba){
		queue<shared_ptr<Rec_Event>> model_queue_copy = model_queue;
		while(not model_queue_copy.empty()){
			model_queue_copy.front()->update_event_internal_probas(this->model_marginals.marginal_array_smart_p , index_map);
			model_queue_copy.pop();
		}
	}


	unordered_map<Seq_type,string>* constructed_sequences_p = new unordered_map<Seq_type,string>;
	unordered_map<Seq_type,string> constructed_sequences = *constructed_sequences_p;
	queue<queue<int>> realizations ;
	while(! model_queue.empty()){
		realizations.push(model_queue.front()->draw_random_realization((this->model_marginals.marginal_array_smart_p) , index_map , offset_map , constructed_sequences ,  generator));
		model_queue.pop();
	}
	//CAT strings
	string reconstructed_seq = constructed_sequences[V_gene_seq] + constructed_sequences[VJ_ins_seq] + constructed_sequences[VD_ins_seq] + constructed_sequences[D_gene_seq] + constructed_sequences[DJ_ins_seq] + constructed_sequences[J_gene_seq];
	delete constructed_sequences_p;
	return make_pair(reconstructed_seq,realizations);
}

void GenModel::write_seq2txt(string filename , forward_list<string> sequences){
	ofstream outfile (filename);
	for(forward_list<string>::const_iterator seq = sequences.begin() ; seq != sequences.end() ; ++seq){
		outfile<<(*seq)<<endl;
	}
}

void GenModel::write_seq_real2txt(string filename_ind_seq , string filename_ind_real , forward_list<pair<string,queue<queue<int>>>> seq_and_realizations){
	ofstream outfile_ind_seq(filename_ind_seq);
	ofstream outfile_ind_real(filename_ind_real);

	//Create a header for the files
	outfile_ind_seq<<"seq_index;nt_sequence"<<endl;
	queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
	outfile_ind_real<<"Index";
	while(!model_queue.empty()){
		outfile_ind_real<<";"<<model_queue.front()->get_name();
		model_queue.pop();
	}
	outfile_ind_real<<endl;

	size_t index = 0;
	for(forward_list<pair<string,queue<queue<int>>>>::const_iterator iter = seq_and_realizations.begin() ; iter != seq_and_realizations.end() ; iter++){
		outfile_ind_seq<<index<<";"<<(*iter).first<<endl;
		outfile_ind_real<<index;
		queue<queue<int>> realizations = (*iter).second;
		while(!realizations.empty()){
			outfile_ind_real<<";";
			queue<int> event_real = realizations.front();
			outfile_ind_real<<"(";
			while(!event_real.empty()){
				outfile_ind_real<<event_real.front();
				event_real.pop();
				if(!event_real.empty()){
					outfile_ind_real<<",";
				}
			}
			outfile_ind_real<<")";
			realizations.pop();
		}
		outfile_ind_real<<endl;
		index++;
	}

}

/*
 * Extract the best alignment for each sequence for a given gene class (used for the fast iter)
 */
vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> get_best_aligns (const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& all_aligns, Gene_class gc){

	vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> all_aligns_copy (all_aligns);
	for(vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>::iterator seq_iter = all_aligns_copy.begin() ; seq_iter!=all_aligns_copy.end() ; ++seq_iter){
		vector<Alignment_data>& align_vect = get<2>((*seq_iter)).at(gc); //TODO add exception

		//Get align best score
		double best_score = -1;
		for(vector<Alignment_data>::const_iterator align_iter = align_vect.begin() ; align_iter!=align_vect.end() ; ++align_iter){
			if((*align_iter).score>best_score){best_score=(*align_iter).score;}
		}

		vector<Alignment_data> new_align_vect ;
		for(vector<Alignment_data>::const_iterator align_iter = align_vect.begin() ; align_iter!=align_vect.end() ; ++align_iter){
			if((*align_iter).score==best_score){new_align_vect.push_back((*align_iter));}
		}

		align_vect = new_align_vect;
	}

	return all_aligns_copy;
}
/**
 * FIXME for now the handling of non given anchors is very bad
 */
void output_CDR3_gen_data(size_t seq_index, std::pair<std::string , std::queue<std::queue<int>>> seq_and_real ,std::shared_ptr<void> func_data){
	gen_CDR3_data* func_data_cast = static_cast<gen_CDR3_data*>(func_data.get());


	tuple<string,size_t,size_t,string>* v_gene_anchors;
	tuple<string,size_t,size_t,string>* j_gene_anchors;

	size_t i = 0;
	while( (i!=max(func_data_cast->v_event_queue_position,func_data_cast->j_event_queue_position)+1)
			and (not seq_and_real.second.empty())){
		if(i== func_data_cast->v_event_queue_position){
			v_gene_anchors = &func_data_cast->v_anchors.at(seq_and_real.second.front().front());
			//There should be only one realization for v gene choice
		}
		else if(i== func_data_cast->j_event_queue_position){
			j_gene_anchors = &func_data_cast->j_anchors.at(seq_and_real.second.front().front());
		}
		seq_and_real.second.pop();
		++i;
	}

	//Compute the index of the last letter of the J anchor
	size_t tmp_index = seq_and_real.first.size() - get<2>(*j_gene_anchors) + get<1>(*j_gene_anchors) +2;
	size_t tmp_v_index = get<1>(*v_gene_anchors);
	string nt_cdr3_seq = seq_and_real.first.substr(tmp_v_index, tmp_index - tmp_v_index +1);


/*	if( (nt_cdr3_seq.substr(0,3) == get<3>(*v_gene_anchors)) and (nt_cdr3_seq.substr(nt_cdr3_seq.size()-3,3) == get<3>(*j_gene_anchors))){
		func_data_cast->output_file<<nt_cdr3_seq<<",,"<<true<<",";
		if(nt_cdr3_seq.size()%3==0){
			func_data_cast->output_file<<true<<","<<endl;
		}
		else{
			func_data_cast->output_file<<false<<","<<endl;
		}
	}
	else{
		func_data_cast->output_file<<",,,"<<false<<","<<false<<","<<false<<endl;
	}
*/
	*func_data_cast->output_stream<<seq_index;
	if(func_data_cast->output_nt_CDR3){
		*func_data_cast->output_stream<<","<<nt_cdr3_seq;
	}
	if(func_data_cast->output_anchors_found){
		bool anchors_found = (nt_cdr3_seq.substr(0,3) == get<3>(*v_gene_anchors)) and (nt_cdr3_seq.substr(nt_cdr3_seq.size()-3,3) == get<3>(*j_gene_anchors));
		*func_data_cast->output_stream<<","<<anchors_found;
	}
	if(func_data_cast->output_inframe){
		bool is_inframe = nt_cdr3_seq.size()%3==0;
		*func_data_cast->output_stream<<","<<is_inframe;
	}
	if(func_data_cast->output_aa_CDR3){
		//FIXME
		*func_data_cast->output_stream<<","<<"";
	}
	if(func_data_cast->output_productive){
		//FIXME
		*func_data_cast->output_stream<<","<<"";
	}
	*func_data_cast->output_stream<<endl;
}