1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
/*
* GenModel.cpp
*
* Created on: 3 nov. 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* This class designs a generative model and supply all the methods to run a maximum likelihood estimate of the generative model
*/
#include "GenModel.h"
using namespace std;
GenModel::GenModel(const Model_Parms& parms, const Model_marginals& marginals, const map<size_t,shared_ptr<Counter>>& count_list): model_parms(parms) , model_marginals(marginals) , counters_list(count_list){}
GenModel::GenModel(const Model_Parms& parms, const Model_marginals& marginals):GenModel(parms , marginals , map<size_t,shared_ptr<Counter>>()){}
GenModel::GenModel(const Model_Parms& parms): GenModel(parms , Model_marginals(parms) , map<size_t,shared_ptr<Counter>>()) {
}
GenModel::~GenModel() {
// TODO Auto-generated destructor stub
}
bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const int iterations ,const std::string path, bool fast_iter , double likelihood_threshold/*=1e-25*/ , bool viterbi_like/*false*/){
return this->infer_model(sequences , iterations , path , fast_iter , likelihood_threshold , viterbi_like , 0.001);
}
bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const int iterations ,const std::string path, bool fast_iter/*=true*/ , double likelihood_threshold/*=1e-25*/ , double proba_threshold_factor/*=0.001*/ ){
return this->infer_model(sequences , iterations , path , fast_iter , likelihood_threshold , false , proba_threshold_factor , INFINITY);
}
bool GenModel::infer_model(const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& sequences ,const int iterations ,const string path , bool fast_iter/*=true*/ ,double likelihood_threshold/*=1e-25 by default*/ , bool viterbi_like/*=false*/ , double proba_threshold_factor/*=0.001 by default*/ , double mean_number_seq_err_thresh /*= INFINITY by default*/){
//If viterbi like only the best scenario is of interest
if(viterbi_like){
cerr<<"******************************************************************"<<endl;
cerr<<"*\t\t RUNNING \"VITERBI\" LIKE ALGORITHM \t\t *"<<endl<<"* \t(only the best scenario will be taken into account)\t *"<<endl;
cerr<<"******************************************************************"<<endl;
proba_threshold_factor = 1.0;
}
if(likelihood_threshold>1.0){
throw invalid_argument("Likelihood threshold must be lesser or equal than one");
}
if(proba_threshold_factor>1.0){
throw invalid_argument("Probability threshold ratio must be lesser or equal than one");
}
ofstream likelihood_file(path + "likelihoods.out");
likelihood_file<<"iteration;mean_log_Likelihood;n_seq"<<endl;
queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = model_marginals.get_index_map(model_parms,model_queue);
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inv_offset_map = model_marginals.get_inverse_offset_map(model_parms,model_queue);
int iteration_accomplished = 0;
ofstream log_file(path + string("inference_logs.txt"));
log_file<<"iteration_n;seq_processed;seq_index;nt_sequence;n_V_aligns;n_J_aligns;seq_likelihood;seq_mean_n_errors;seq_n_scenarios;seq_best_scenario;time"<<endl;
ofstream general_logs(path + string("inference_info.out"));
//Dump all inference parameters to file
chrono::system_clock::time_point begin_time = chrono::system_clock::now();
std::time_t tt;
tt = chrono::system_clock::to_time_t ( begin_time );
general_logs<<"Date: "<< ctime(&tt)<<endl;
general_logs<<"Max #iterations to be performed: "<<iterations<<endl;
general_logs<<"Path: "<<path<<endl;
general_logs<<"First iter fast(only best V and best J considered): "<<fast_iter<<endl;
general_logs<<"Min Likelihood threshold: "<<likelihood_threshold<<endl;
general_logs<<"Viterbi like (only keeps the best scenario): "<<viterbi_like<<endl;
general_logs<<"Proba threshold ratio: "<<proba_threshold_factor<<"\t#(ratio between best scenario and current scenario needed to explore/count the scenario)"<<endl;
general_logs<<"Mean #errors threshold: "<<mean_number_seq_err_thresh<<"\t#Needs a very good reason to be set to another value than INFINITY"<<endl;
//Get the total number of sequences to process
const double total_number_seqs = sequences.size(); //Use a double for float division afterwards
/*
* Get the list of fixed and inferred events and output them to the log file
* Do it in a scope so the variables will be destroyed
*/
{
list<Rec_Event_name> fixed_events_list;
list<Rec_Event_name> inferred_events_list;
const list<shared_ptr<Rec_Event>> model_event_list = model_parms.get_event_list();
for(list<shared_ptr<Rec_Event>>::const_iterator iter = model_event_list.begin() ; iter!=model_event_list.end() ; ++iter){
if(not (*iter)->is_fixed()){
inferred_events_list.emplace_back((*iter)->get_name());
}
else{
fixed_events_list.emplace_back((*iter)->get_name());
}
}
general_logs<<endl;
general_logs<<"List of updated events: ";
for(Rec_Event_name name : inferred_events_list){
general_logs<<name<<"\t";
}
general_logs<<endl;
general_logs<<"List of fixed events: ";
for(Rec_Event_name name : fixed_events_list){
general_logs<<name<<"\t";
}
general_logs<<endl;
general_logs<<"Error model updated: "<<model_parms.get_err_rate_p()->is_updated()<<endl;
}
//Write initial condition to file
this->model_marginals.write2txt(path+string("initial_marginals.txt"),this->model_parms);
this->model_parms.write_model_parms(path+string("initial_model.txt"));
/*
* First initialization creates file streams
* This is to make sure that the counter copies do not create new files each time
*/
for(map<size_t,shared_ptr<Counter>>::const_iterator iter = counters_list.begin() ; iter!=counters_list.end() ; ++iter){
(*iter).second->initialize_counter(model_parms,model_marginals);
}
/*
* Reduction using OpenMP 4.0 standards
*
#pragma omp declare reduction(+:Model_marginals:omp_out+=omp_in) initializer(omp_priv = omp_orig.empty_copy())
//Note: since Error_rate is an abstract class, the following is very dirty, need to find a better solution
#pragma omp declare reduction(+:shared_ptr<Error_rate>:add_to_err_rate(omp_out,omp_in)) initializer(omp_priv = omp_orig->copy())
*/
//Loop over iterations
while(iteration_accomplished!=iterations){
//double proba_threshold_factor;
Model_marginals new_marginals = Model_marginals(model_parms);
shared_ptr<Error_rate> error_rate_copy = model_parms.get_err_rate_p()->copy();
//Initialize error rate copy
error_rate_copy->initialize(model_parms.get_events_map());
//Initialize counters for the log file
size_t sequences_processed = 0;
new_marginals.debug_marg_name = "new_marginals";
const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>* sequence_util_ptr;
//Take only best alignments if fast_iter
vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> fast_iter_sequences;
if(fast_iter && iteration_accomplished==0){
fast_iter_sequences = sequences;
for(unordered_map<Gene_class , vector<Alignment_data>>::const_iterator gc_align_iter = std::get<2>(sequences.at(0)).begin() ; gc_align_iter != std::get<2>(sequences.at(0)).end() ; ++gc_align_iter){
if ((*gc_align_iter).first == D_gene)continue;
fast_iter_sequences = get_best_aligns(fast_iter_sequences,(*gc_align_iter).first);
}
sequence_util_ptr = &fast_iter_sequences;
}
else{
sequence_util_ptr = &sequences;
}
cerr<<"Performing Evaluate/Inference iteration "<<iteration_accomplished+1<<endl;
/* omp parallel declaration using OpenMP 4.0 standards
* #pragma omp parallel for schedule(dynamic) reduction(+:error_rate_copy,new_marginals) firstprivate(model_queue,index_map,offset_map,model_marginals_copy,events_map , processed_events , safety_set , write_index_list) //num_threads(6)
*/
//Declare variables to use OpenMP 3.1 standards
#pragma omp parallel shared(new_marginals,error_rate_copy,sequences_processed,sequence_util_ptr,sequences) firstprivate(model_queue,proba_threshold_factor ) //num_threads(1)
{
//Make single thread copies of objects for thread safety
Model_Parms single_thread_model_parms (model_parms);
unordered_map<Rec_Event_name,int> single_thread_index_map =model_marginals.get_index_map(model_parms,model_queue);
Model_marginals single_thread_model_marginals (model_marginals);
Model_marginals single_thread_marginals (single_thread_model_parms);
shared_ptr<Error_rate> single_thread_err_rate = single_thread_model_parms.get_err_rate_p();
unordered_map<tuple<Event_type,Gene_class,Seq_side>, shared_ptr<Rec_Event>> events_map = single_thread_model_parms.get_events_map();
map<size_t,shared_ptr<Counter>> single_thread_counter_list;
for(map<size_t,shared_ptr<Counter>>::const_iterator iter = this->counters_list.begin() ; iter != this->counters_list.end() ; ++iter){
//Copy only relevant counters for this iteration
if((not (*iter).second->is_last_iter_only()) or (iteration_accomplished == iterations-1)){
single_thread_counter_list.emplace((*iter).first,(*iter).second->copy());
}
}
single_thread_marginals.debug_marg_name = "single_thread_marginals";
single_thread_model_marginals.debug_marg_name = "single thread model marginals";
unordered_set<Rec_Event_name> init_processed_events;
//Initialize Enum_fast_memory map and dual maps
Safety_bool_map safety_set(3);
Seq_type_str_p_map constructed_sequences(6);//6 is the number of outcomes for Seq_type
Mismatch_vectors_map mismatches_lists(6);
Seq_offsets_map seq_offsets(6,3);
//Initialize downstream probas to 1
Downstream_scenario_proba_bound_map downstream_proba_map(6);
downstream_proba_map.init_first_layer(1.0);
list<shared_ptr<Rec_Event>> events_list = single_thread_model_parms.get_event_list();
Index_map index_mapp(events_list.size());
//Initialize index_map
for(list<shared_ptr<Rec_Event>>::iterator event_iter = events_list.begin() ; event_iter != events_list.end() ; ++event_iter){
int event_index = (*event_iter)->get_event_identifier();
index_mapp.request_memory_layer(event_index);
index_mapp.set_value(event_index,single_thread_index_map.at((*event_iter)->get_name()) , 0);
//TODO update proba bound
//Get events probability upper bounds
size_t event_size = single_thread_model_marginals.get_event_size((*event_iter) , single_thread_model_parms);
(*event_iter)->set_event_marginal_size(event_size);
(*event_iter)->set_crude_upper_bound_proba(single_thread_index_map.at((*event_iter)->get_name()) , event_size , single_thread_model_marginals.marginal_array_smart_p);
}
queue<shared_ptr<Rec_Event>> single_thread_model_queue = single_thread_model_parms.get_model_queue(); //single_thread_parms.get_model_queue();
queue<shared_ptr<Rec_Event>> init_single_thread_model_queue = single_thread_model_queue;
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>single_thread_offset_map = model_marginals.get_offsets_map(model_parms,single_thread_model_queue);
stack<shared_ptr<Rec_Event>> init_single_thread_stack;
//Initialize events
while(!init_single_thread_model_queue.empty()){
shared_ptr<Rec_Event> first_init_event = init_single_thread_model_queue.front();
init_single_thread_stack.push(first_init_event);
init_single_thread_model_queue.pop();
(*first_init_event).initialize_event(init_processed_events,events_map , single_thread_offset_map , downstream_proba_map , constructed_sequences,safety_set , single_thread_err_rate , mismatches_lists,seq_offsets , index_mapp);
(*first_init_event).set_viterbi_run(viterbi_like);
}
/*
* Initialize the array of next event pointers
* This array replaces the formerly copied queue<shared_ptr<Rec_Event>> (was copied at each iterate_wrap_up call)
* Each event will access the pointer corresponding to its identifier address when calling iterate inside iterate_wrap_up
* The last event will point to null pointer enabling to call the error_rate
*/
shared_ptr<Next_event_ptr> next_event_ptr_arr (new Next_event_ptr[single_thread_model_parms.get_event_list().size()]);
init_single_thread_model_queue = single_thread_model_queue;
while(!init_single_thread_model_queue.empty()){
shared_ptr<Rec_Event> first_init_event = init_single_thread_model_queue.front();
init_single_thread_model_queue.pop();
if(!init_single_thread_model_queue.empty()){
next_event_ptr_arr.get()[first_init_event->get_event_identifier()] = init_single_thread_model_queue.front().get();
}
else{
//This is the last event thus we emplace a shared null pointer
next_event_ptr_arr.get()[first_init_event->get_event_identifier()] = NULL; //Next_event_ptr(NULL);
}
}
//Initialize error rate
single_thread_err_rate->initialize(events_map);
single_thread_err_rate->set_viterbi_run(viterbi_like);
//Initialize Counters
for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
(*iter).second->initialize_counter(single_thread_model_parms , single_thread_marginals);
}
#pragma omp single nowait
{
cerr<<"Initializing probability bounds..."<<endl;
}
//Compute upper proba bounds for downstream scenarios for each event
double downstream_proba_bound = 1 ;
forward_list<double*> updated_proba_list ;
while(!init_single_thread_stack.empty()){
shared_ptr<Rec_Event> last_proba_init_event = init_single_thread_stack.top();
queue<shared_ptr<Rec_Event>> tmp_init_proba_single_thread_model_queue = single_thread_model_queue;
init_single_thread_stack.pop();
while(tmp_init_proba_single_thread_model_queue.front()!=last_proba_init_event){
tmp_init_proba_single_thread_model_queue.pop();
}
tmp_init_proba_single_thread_model_queue.pop();
last_proba_init_event->initialize_crude_scenario_proba_bound(downstream_proba_bound , updated_proba_list , events_map);
last_proba_init_event->initialize_Len_proba_bound(tmp_init_proba_single_thread_model_queue,single_thread_model_marginals.marginal_array_smart_p,index_mapp);
/*#pragma omp single nowait
{
cerr<<last_proba_init_event->get_name()<<" initialized"<<endl;
}*/
}
#pragma omp single nowait
{
cerr<<"Initialization of probability bounds over."<<endl;
}
//Now let all the events in the need of it get their own updated copy of the marginals
init_single_thread_model_queue = single_thread_model_queue;
while(!init_single_thread_model_queue.empty()){
init_single_thread_model_queue.front()->update_event_internal_probas(single_thread_model_marginals.marginal_array_smart_p,index_map);
init_single_thread_model_queue.pop();
}
chrono::system_clock::time_point single_seq_begin;
chrono::duration<double> seq_time;
//Loop over sequences in parallel, using the number of threads declared previously when declaring the parallel section
//Use dynamic scheduling to avoid loss of time due to synchronization
#pragma omp for schedule(dynamic) nowait
for(vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>::const_iterator seq_it = (*sequence_util_ptr).begin() ; seq_it < (*sequence_util_ptr).end() ; ++seq_it){
single_seq_begin = chrono::system_clock::now();
//Make a copy of the queue that can be modified in iterate
queue<shared_ptr<Rec_Event>> model_queue_copy(single_thread_model_queue);
//Get the first event from the queue
shared_ptr<Rec_Event> first_event = model_queue_copy.front();
model_queue_copy.pop();
//Initialize single seq marginals
Model_marginals single_seq_marginals = single_thread_model_marginals.empty_copy();
double init_proba = 1;
//double init_tmp_err_w_proba = 1;
double max_proba_scenario = likelihood_threshold/proba_threshold_factor;
Int_Str int_sequence = nt2int(get<1>(*seq_it));
//cout<<int_sequence<<endl;
single_seq_marginals.debug_marg_name = "single_seq_marginals";
/*
* Call iterate on the first event
* The method will be called recursively for each event, this is equivalent to a nested loop and enumerates all possible scenarios
* The weight of each recombination scenario is added to the single_seq_marginals on the fly
*/
try{
first_event->iterate(init_proba , downstream_proba_map , get<1>(*seq_it) , int_sequence , index_mapp , single_thread_offset_map , next_event_ptr_arr , single_seq_marginals.marginal_array_smart_p , single_thread_model_marginals.marginal_array_smart_p , get<2>(*seq_it) , constructed_sequences , seq_offsets , single_thread_err_rate , single_thread_counter_list , events_map , safety_set , mismatches_lists , max_proba_scenario , proba_threshold_factor);
}
catch(exception& except){
general_logs<<"Exception caught calling iterate() on sequence:"<<endl;
general_logs<<get<1>(*seq_it)<<" with index "<<get<0>(*seq_it)<<endl;
general_logs<<"Exception caught after "<<single_thread_err_rate->debug_number_scenarios<<" scenarios explored"<<endl;
general_logs<<endl;
general_logs<<"Throwing exception now..."<<endl<<endl;
general_logs<<except.what()<<endl;
throw;
}
//Normalize the weights on the single_seq_marginal so that each sequence has the same weight when merged to the single_thread_marginals
single_thread_err_rate->norm_weights_by_seq_likelihood(single_seq_marginals.marginal_array_smart_p,single_seq_marginals.get_length());
seq_time = chrono::system_clock::now() - single_seq_begin;
#pragma omp critical(dump_seq_info)
{
++sequences_processed;
//Output useful infos in the log file
//log_file<<iteration_accomplished<<";"<<sequences_processed<<";"<<(*seq_it).first<<";"<<(*seq_it).second.at(V_gene).size()<<";"<<(*seq_it).second.at(D_gene).size()<<";"<<(*seq_it).second.at(J_gene).size()<<";"<<single_thread_err_rate->get_seq_probability()<<";"<<single_thread_err_rate->get_seq_likelihood()<<";"<<single_thread_err_rate->debug_number_scenarios<<";"<<max_proba_scenario<<endl;
log_file<<iteration_accomplished<<";"<<sequences_processed<<";"<<get<0>(*seq_it)<<";"<<get<1>(*seq_it)<<";"<<get<2>(*seq_it).at(V_gene).size()<<";"<<get<2>(*seq_it).at(J_gene).size()<<";"<<single_thread_err_rate->get_seq_likelihood()<<";"<<single_thread_err_rate->get_seq_mean_error_number()<<";"<<single_thread_err_rate->debug_number_scenarios<<";"<<max_proba_scenario<<";"<<seq_time.count()<<endl;
}
for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
iter->second->count_sequence(single_thread_err_rate->get_seq_likelihood() , single_seq_marginals , single_thread_model_parms);
#pragma omp critical(dump_counters)
{
(*iter).second->dump_sequence_data(get<0>(*seq_it) , iteration_accomplished);
}
}
if(single_thread_err_rate->get_seq_mean_error_number()<=mean_number_seq_err_thresh){
//Add weighed errors to the normalized error counter
single_thread_err_rate->add_to_norm_counter();
//Add the single_seq_marginals to the single thread marginals
single_thread_marginals+=single_seq_marginals;
}
else{
//Erase seq specific counters so that it won't contribute to the error rate
single_thread_err_rate->clean_seq_counters();
}
#pragma omp critical (update_progress_bar)
{
if(sequences_processed%100 == 0){
//Output current progress to cerr
show_progress_bar(cerr,sequences_processed/total_number_seqs, "Iteration "+ to_string(iteration_accomplished+1), 50);
}
}
}
//Merge single thread error_rates and marginals
#pragma omp critical(merge_marginals_and_er)
{
new_marginals+=single_thread_marginals;
add_to_err_rate(error_rate_copy.get(),single_thread_err_rate.get());
for(map<size_t,shared_ptr<Counter>>::iterator iter = single_thread_counter_list.begin() ; iter!=single_thread_counter_list.end() ; ++iter){
counters_list.at((*iter).first)->add_to_counter((*iter).second);
}
}
}
for(map<size_t,shared_ptr<Counter>>::const_iterator iter = counters_list.begin() ; iter!=counters_list.end() ; ++iter){
(*iter).second->dump_data_summary(iteration_accomplished);
}
likelihood_file<<iteration_accomplished+1<<";"<<error_rate_copy->get_model_likelihood()/error_rate_copy->get_number_non_zero_likelihood_seqs()<<";"<<error_rate_copy->get_number_non_zero_likelihood_seqs()<<endl;
error_rate_copy->update();
this->model_parms.set_error_ratep(error_rate_copy);
new_marginals.normalize(inv_offset_map , index_map , model_queue);
new_marginals.copy_fixed_events_marginals(this->model_marginals,this->model_parms,index_map);
this->model_marginals = new_marginals;
++iteration_accomplished;
this->model_marginals.write2txt(path+string("iteration_")+to_string(iteration_accomplished)+string(".txt"),this->model_parms);
this->model_parms.write_model_parms(path+string("iteration_")+to_string(iteration_accomplished)+string("_parms.txt"));
//Close current iteration progress bar
close_progress_bar(cerr, "Iteration " + to_string(iteration_accomplished), 50);
}
//Create a copy of the last iteration results with identifiable name
this->model_marginals.write2txt(path+string("final_marginals.txt"),this->model_parms);
this->model_parms.write_model_parms(path+string("final_parms.txt"));
return 0;
}
/**
* \deprecated This function used to store generated sequences in memory, and quickly overloaded it for large number of generated sequences.
*/
forward_list<pair<string,queue<queue<int>>>> GenModel::generate_sequences(int number_seq , bool generate_errors){
queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = this->model_marginals.get_index_map(this->model_parms,model_queue);
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>> offset_map = this->model_marginals.get_offsets_map(this->model_parms,model_queue);
//Create seed for random generator
//create a seed from timer
typedef std::chrono::high_resolution_clock myclock;
myclock::time_point time = myclock::now();
myclock::duration dur = myclock::time_point::max() - time;
//Get a random seed
uint64_t random_seed = draw_random_64bits_seed();
//Instantiate random number generator
mt19937_64 generator = mt19937_64(random_seed);
forward_list<pair<string,queue<queue<int>>>> sequence_list = forward_list<pair<string,queue<queue<int>>>>();
for(int seq = 0 ; seq != number_seq ; ++seq){
pair<string,queue<queue<int>>> sequence = this->generate_unique_sequence(model_queue , index_map ,offset_map , generator);
if(generate_errors){
sequence.second.push(this->model_parms.get_err_rate_p()->generate_errors(sequence.first,generator));
}
sequence_list.push_front(sequence);
if(seq%1000 == 0){
//Output current progress to cerr
show_progress_bar(cerr,seq/(double) number_seq, "Sequence generation", 50);
}
}
close_progress_bar(cerr, "Sequence generation", 50);
return sequence_list;
}
/*
* Generate sequences in a memory efficient way
*/
void GenModel::generate_sequences(int number_seq,bool generate_errors , string filename_ind_seq , string filename_ind_real,list<pair<gen_seq_trans,shared_ptr<void>>> transform_func_and_data /*= list<pair<gen_seq_trans,shared_ptr<void>>>()*/ , bool output_only_func /*= false*/, int seed /* =-1*/ ){
ofstream outfile_ind_seq;
ofstream outfile_ind_real;
if(not output_only_func){
outfile_ind_seq.open(filename_ind_seq);
outfile_ind_real.open(filename_ind_real);
}
string folder_path = filename_ind_seq.substr(0,filename_ind_seq.rfind("/")+1); //Get the file path
ofstream generation_infos_file(folder_path + "generation_info.out",fstream::out | fstream::app); //Opens the file in append mode
//Create a header for the files
queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
if(not output_only_func){
outfile_ind_seq<<"seq_index;nt_sequence"<<endl;
outfile_ind_real<<"seq_index";
while(!model_queue.empty()){
outfile_ind_real<<";"<<model_queue.front()->get_name();
model_queue.pop();
}
outfile_ind_real<<";Errors"<<endl;
}
model_queue = this->model_parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = this->model_marginals.get_index_map(this->model_parms,model_queue);
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>> offset_map = this->model_marginals.get_offsets_map(this->model_parms,model_queue);
//Create seed for random generator
//create a seed from timer if no seed was provided
uint64_t random_seed;
if(seed<0){
//Get a random seed
random_seed = draw_random_64bits_seed();
}else{
random_seed = seed;
}
clog<<"Seed: "<<random_seed<<endl;
//Instantiate random number generator
mt19937_64 generator = mt19937_64(random_seed);
chrono::system_clock::time_point begin_time = chrono::system_clock::now();
std::time_t tt;
tt = chrono::system_clock::to_time_t ( begin_time );
generation_infos_file<<endl<<"================================================================"<<endl;
generation_infos_file<<"Generated sequences in file: "<<filename_ind_seq<<endl;
generation_infos_file<<"Generated sequences realizations in file: "<<filename_ind_real<<endl;
generation_infos_file<<"Date: "<< ctime(&tt)<<endl;
generation_infos_file<<"Number of sequences = "<<number_seq<<endl;
generation_infos_file<<"Generated with errors = "<<generate_errors<<endl;
generation_infos_file<<"Seed = "<<random_seed<<endl;
//Update events internal probas (e.g for dinucleotide ambiguous nucleotides)
queue<shared_ptr<Rec_Event>> model_queue_copy = model_queue;
while(not model_queue_copy.empty()){
model_queue_copy.front()->update_event_internal_probas(this->model_marginals.marginal_array_smart_p , index_map);
model_queue_copy.pop();
}
for(size_t seq = 0 ; seq != number_seq ; ++seq){
pair<string,queue<queue<int>>> sequence = this->generate_unique_sequence(model_queue , index_map ,offset_map , generator,false);
if(generate_errors){
sequence.second.push(this->model_parms.get_err_rate_p()->generate_errors(sequence.first,generator));
}
for(pair<gen_seq_trans,shared_ptr<void>> func_data_pair : transform_func_and_data){
func_data_pair.first(seq,sequence,func_data_pair.second);
}
if(not output_only_func){
outfile_ind_seq<<seq<<";"<<sequence.first<<endl;
outfile_ind_real<<seq;
queue<queue<int>>& realizations = sequence.second;
while(!realizations.empty()){
outfile_ind_real<<";";
queue<int> event_real = realizations.front();
outfile_ind_real<<"(";
while(!event_real.empty()){
outfile_ind_real<<event_real.front();
event_real.pop();
if(!event_real.empty()){
outfile_ind_real<<",";
}
}
outfile_ind_real<<")";
realizations.pop();
}
outfile_ind_real<<endl;
}
if(seq%1000 == 0){
//Output current progress to cerr
show_progress_bar(cerr,seq/(double) number_seq, "Sequence generation", 50);
}
}
close_progress_bar(cerr, "Sequence generation", 50);
return;
}
pair<string,queue<queue<int>>> GenModel::generate_unique_sequence(queue<shared_ptr<Rec_Event>> model_queue , unordered_map<Rec_Event_name,int> index_map , const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event> , int>>>& offset_map , mt19937_64& generator , bool update_event_internal_proba /*= true*/ ){
if(update_event_internal_proba){
queue<shared_ptr<Rec_Event>> model_queue_copy = model_queue;
while(not model_queue_copy.empty()){
model_queue_copy.front()->update_event_internal_probas(this->model_marginals.marginal_array_smart_p , index_map);
model_queue_copy.pop();
}
}
unordered_map<Seq_type,string>* constructed_sequences_p = new unordered_map<Seq_type,string>;
unordered_map<Seq_type,string> constructed_sequences = *constructed_sequences_p;
queue<queue<int>> realizations ;
while(! model_queue.empty()){
realizations.push(model_queue.front()->draw_random_realization((this->model_marginals.marginal_array_smart_p) , index_map , offset_map , constructed_sequences , generator));
model_queue.pop();
}
//CAT strings
string reconstructed_seq = constructed_sequences[V_gene_seq] + constructed_sequences[VJ_ins_seq] + constructed_sequences[VD_ins_seq] + constructed_sequences[D_gene_seq] + constructed_sequences[DJ_ins_seq] + constructed_sequences[J_gene_seq];
delete constructed_sequences_p;
return make_pair(reconstructed_seq,realizations);
}
void GenModel::write_seq2txt(string filename , forward_list<string> sequences){
ofstream outfile (filename);
for(forward_list<string>::const_iterator seq = sequences.begin() ; seq != sequences.end() ; ++seq){
outfile<<(*seq)<<endl;
}
}
void GenModel::write_seq_real2txt(string filename_ind_seq , string filename_ind_real , forward_list<pair<string,queue<queue<int>>>> seq_and_realizations){
ofstream outfile_ind_seq(filename_ind_seq);
ofstream outfile_ind_real(filename_ind_real);
//Create a header for the files
outfile_ind_seq<<"seq_index;nt_sequence"<<endl;
queue<shared_ptr<Rec_Event>> model_queue = this->model_parms.get_model_queue();
outfile_ind_real<<"Index";
while(!model_queue.empty()){
outfile_ind_real<<";"<<model_queue.front()->get_name();
model_queue.pop();
}
outfile_ind_real<<endl;
size_t index = 0;
for(forward_list<pair<string,queue<queue<int>>>>::const_iterator iter = seq_and_realizations.begin() ; iter != seq_and_realizations.end() ; iter++){
outfile_ind_seq<<index<<";"<<(*iter).first<<endl;
outfile_ind_real<<index;
queue<queue<int>> realizations = (*iter).second;
while(!realizations.empty()){
outfile_ind_real<<";";
queue<int> event_real = realizations.front();
outfile_ind_real<<"(";
while(!event_real.empty()){
outfile_ind_real<<event_real.front();
event_real.pop();
if(!event_real.empty()){
outfile_ind_real<<",";
}
}
outfile_ind_real<<")";
realizations.pop();
}
outfile_ind_real<<endl;
index++;
}
}
/*
* Extract the best alignment for each sequence for a given gene class (used for the fast iter)
*/
vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> get_best_aligns (const vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>& all_aligns, Gene_class gc){
vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>> all_aligns_copy (all_aligns);
for(vector<tuple<int,string,unordered_map<Gene_class , vector<Alignment_data>>>>::iterator seq_iter = all_aligns_copy.begin() ; seq_iter!=all_aligns_copy.end() ; ++seq_iter){
vector<Alignment_data>& align_vect = get<2>((*seq_iter)).at(gc); //TODO add exception
//Get align best score
double best_score = -1;
for(vector<Alignment_data>::const_iterator align_iter = align_vect.begin() ; align_iter!=align_vect.end() ; ++align_iter){
if((*align_iter).score>best_score){best_score=(*align_iter).score;}
}
vector<Alignment_data> new_align_vect ;
for(vector<Alignment_data>::const_iterator align_iter = align_vect.begin() ; align_iter!=align_vect.end() ; ++align_iter){
if((*align_iter).score==best_score){new_align_vect.push_back((*align_iter));}
}
align_vect = new_align_vect;
}
return all_aligns_copy;
}
/**
* FIXME for now the handling of non given anchors is very bad
*/
void output_CDR3_gen_data(size_t seq_index, std::pair<std::string , std::queue<std::queue<int>>> seq_and_real ,std::shared_ptr<void> func_data){
gen_CDR3_data* func_data_cast = static_cast<gen_CDR3_data*>(func_data.get());
tuple<string,size_t,size_t,string>* v_gene_anchors;
tuple<string,size_t,size_t,string>* j_gene_anchors;
size_t i = 0;
while( (i!=max(func_data_cast->v_event_queue_position,func_data_cast->j_event_queue_position)+1)
and (not seq_and_real.second.empty())){
if(i== func_data_cast->v_event_queue_position){
v_gene_anchors = &func_data_cast->v_anchors.at(seq_and_real.second.front().front());
//There should be only one realization for v gene choice
}
else if(i== func_data_cast->j_event_queue_position){
j_gene_anchors = &func_data_cast->j_anchors.at(seq_and_real.second.front().front());
}
seq_and_real.second.pop();
++i;
}
//Compute the index of the last letter of the J anchor
size_t tmp_index = seq_and_real.first.size() - get<2>(*j_gene_anchors) + get<1>(*j_gene_anchors) +2;
size_t tmp_v_index = get<1>(*v_gene_anchors);
string nt_cdr3_seq = seq_and_real.first.substr(tmp_v_index, tmp_index - tmp_v_index +1);
/* if( (nt_cdr3_seq.substr(0,3) == get<3>(*v_gene_anchors)) and (nt_cdr3_seq.substr(nt_cdr3_seq.size()-3,3) == get<3>(*j_gene_anchors))){
func_data_cast->output_file<<nt_cdr3_seq<<",,"<<true<<",";
if(nt_cdr3_seq.size()%3==0){
func_data_cast->output_file<<true<<","<<endl;
}
else{
func_data_cast->output_file<<false<<","<<endl;
}
}
else{
func_data_cast->output_file<<",,,"<<false<<","<<false<<","<<false<<endl;
}
*/
*func_data_cast->output_stream<<seq_index;
if(func_data_cast->output_nt_CDR3){
*func_data_cast->output_stream<<","<<nt_cdr3_seq;
}
if(func_data_cast->output_anchors_found){
bool anchors_found = (nt_cdr3_seq.substr(0,3) == get<3>(*v_gene_anchors)) and (nt_cdr3_seq.substr(nt_cdr3_seq.size()-3,3) == get<3>(*j_gene_anchors));
*func_data_cast->output_stream<<","<<anchors_found;
}
if(func_data_cast->output_inframe){
bool is_inframe = nt_cdr3_seq.size()%3==0;
*func_data_cast->output_stream<<","<<is_inframe;
}
if(func_data_cast->output_aa_CDR3){
//FIXME
*func_data_cast->output_stream<<","<<"";
}
if(func_data_cast->output_productive){
//FIXME
*func_data_cast->output_stream<<","<<"";
}
*func_data_cast->output_stream<<endl;
}
|