File: GenModel.h

package info (click to toggle)
igor 1.4.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,124 kB
  • sloc: cpp: 12,453; python: 1,047; sh: 124; makefile: 32
file content (192 lines) | stat: -rw-r--r-- 8,818 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * GenModel.h
 *
 *  Created on: 3 nov. 2014
 *      Author: Quentin Marcou
 *
 *  This source code is distributed as part of the IGoR software.
 *  IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
 *  generation, selection, mutation and all other processes.
 *   Copyright (C) 2017  Quentin Marcou
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.

 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 *
 *      This class designs a generative model and supply all the methods to run a maximum likelihood estimate of the generative model
 */

#ifndef GENMODEL_H_
#define GENMODEL_H_

#include "Model_Parms.h"
#include "Rec_Event.h"
#include "Counter.h"
#include "Model_marginals.h"
#include "Errorrate.h"
#include "Utils.h"
#include <list>
#include <map>
#include <string>
#include <random>
#include <chrono>
#include <fstream>
#include <omp.h>
#include <stdexcept>
#include <stack>
#include <memory>

//Make typedef for the function pointers
typedef void (*gen_seq_trans)(size_t , std::pair<std::string , std::queue<std::queue<int>>>,std::shared_ptr<void>);

/**
 * Hardcode a data structure for the function extracting CDR3s in generated sequences
 */
struct gen_CDR3_data{
	std::map<int,std::tuple<std::string,size_t,size_t,std::string>> v_anchors;
	size_t v_event_queue_position;
	std::map<int,std::tuple<std::string,size_t,size_t,std::string>> j_anchors;
	size_t j_event_queue_position;
	std::shared_ptr<std::ostream> output_stream;
	//Some config booleans
	bool output_nt_CDR3 = true;
	bool output_anchors_found = true;
	bool output_inframe  = true;
	//FIXME
	//For now do not output aa CDR3 stats
	bool output_aa_CDR3 = false;
	bool output_productive = false;


	gen_CDR3_data(const std::unordered_map<std::string,size_t>& v_anchors_indices , const std::unordered_map < std::string, Event_realization >& v_reals, size_t v_event_pos,
			const std::unordered_map<std::string,size_t>& j_anchors_indices , const std::unordered_map < std::string, Event_realization >& j_reals, size_t j_event_pos,
			std::shared_ptr<std::ostream> output_stream_ptr = std::shared_ptr<std::ostream>(&std::cout,null_delete<std::ostream>())): v_event_queue_position(v_event_pos) , j_event_queue_position(j_event_pos) , output_stream(output_stream_ptr){


		//First get all V anchors
		this->v_anchors.clear();
		for(const std::pair<std::string,Event_realization> v_real : v_reals){
			size_t v_anchor_index;
			if(v_anchors_indices.count(v_real.second.name)>0){
				v_anchor_index = v_anchors_indices.at(v_real.second.name);
				v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),v_real.second.value_str.substr(v_anchor_index,3)));
			}
			else{
				v_anchor_index = 0;
				v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),""));
			}
			/*try{
				v_anchor_index = v_anchors_indices.at(v_real.name);
			}
			catch (std::exception& e) {
				std::cerr<<"Could not find "<<v_real.name<<" in the V genes anchors map"<<std::endl;
				throw e;
			}*/
			//v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),v_real.second.value_str.substr(v_anchor_index,3)));
		}

		//Now get all J anchors
		this->j_anchors.clear();
		for(const std::pair<std::string,Event_realization> j_real : j_reals){
			size_t j_anchor_index;
			/*try{
				j_anchor_index = j_anchors_indices.at(j_real.name);
			}
			catch (std::exception& e) {
				std::cerr<<"Could not find "<<j_real.name<<" in the J genes anchors map"<<std::endl;
				throw e;
			}*/
			if(j_anchors_indices.count(j_real.second.name)>0){
				j_anchor_index = j_anchors_indices.at(j_real.second.name);
				j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),j_real.second.value_str.substr(j_anchor_index,3)));
			}
			else{
				j_anchor_index = std::string::npos;
				j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),""));
			}
			//j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),j_real.second.value_str.substr(j_anchor_index,3)));
		}

		//Write output file header
		*output_stream.get()<<"seq_index";
		if(output_nt_CDR3){
			*output_stream.get()<<",nt_CDR3";
		}
		if(output_anchors_found){
			*output_stream.get()<<",anchors_found";
		}
		if(output_inframe){
			*output_stream.get()<<",is_inframe";
		}
		if(output_aa_CDR3){
			*output_stream.get()<<",aa_CDR3";
		}
		if(output_productive){
			*output_stream.get()<<",is_productive";
		}
		*output_stream.get()<<std::endl;
	}
};

/**
 * \class GenModel GenModel.h
 * \brief High level V(D)J generative model.
 * \author Q.Marcou
 * \version 1.0
 *
 * Highest level class to model the V(D)J recombination and subsequent processes.
 * It contains the model's graph structure (Model_Parms), the associated probability distribution (Model_Marginals).
 * The GenModel class provides high level functions to perform inference / sequence annotation as well as generating random sequences from the model.
 */
class GenModel {
public:
	GenModel(const Model_Parms&);
	GenModel(const Model_Parms& , const Model_marginals&);
	GenModel(const Model_Parms& , const Model_marginals& , const std::map<size_t,std::shared_ptr<Counter>>&);
	//TODO: add all the necessary constructors: with just model_parms, with model_parms and marginals
	virtual ~GenModel();

	bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const  int iterations ,const std::string path, bool fast_iter , double likelihood_threshold=1e-25 , bool viterbi_like=false);
	bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const  int iterations ,const std::string path, bool fast_iter=true , double likelihood_threshold=1e-25 , double proba_threshold_factor=0.001 );
	bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const  int iterations ,const std::string path, bool fast_iter , double likelihood_threshold , bool viterbi_like , double proba_threshold_factor , double mean_number_seq_err_thresh = INFINITY);

	std::forward_list<std::pair<std::string , std::queue<std::queue<int>>>> generate_sequences (int,bool);
	void generate_sequences(int,bool,std::string,std::string,std::list<std::pair<gen_seq_trans,std::shared_ptr<void>>> = std::list<std::pair<gen_seq_trans,std::shared_ptr<void>>>(),bool output_only_func = false , int=-1);
	bool load_genmodel();
	bool write2txt ();
	bool readtxt ();
	void write_seq2txt(std::string,std::forward_list<std::string>);
	void write_seq_real2txt(std::string , std::string , std::forward_list<std::pair<std::string , std::queue<std::queue<int>>>>);

	//write alignments, load alignments

private:
	Model_Parms model_parms;
	Model_marginals model_marginals;
	std::map<size_t,std::shared_ptr<Counter>> counters_list;//Size_t is a unique identifier for the Counter(useful for adding them up)
	std::pair<std::string , std::queue<std::queue<int>>> generate_unique_sequence(std::queue<std::shared_ptr<Rec_Event>> , std::unordered_map<Rec_Event_name,int> , const std::unordered_map<Rec_Event_name,std::vector<std::pair<std::shared_ptr<const Rec_Event>,int>>>& , std::mt19937_64& , bool =true);
	Model_marginals compute_marginals(std::list<std::string> sequences);
	Model_marginals compute_seq_marginals (std::string sequence);
	Model_marginals compute_seq_marginals (std::string sequence , std::list<std::list<std::string> > allowed_scenarios );

};

std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>> get_best_aligns (const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>&, Gene_class);



void output_CDR3_gen_data(size_t , std::pair<std::string , std::queue<std::queue<int>>> seq_and_real , std::shared_ptr<void> func_data);



#endif /* GENMODEL_H_ */