1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
* GenModel.h
*
* Created on: 3 nov. 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*
* This class designs a generative model and supply all the methods to run a maximum likelihood estimate of the generative model
*/
#ifndef GENMODEL_H_
#define GENMODEL_H_
#include "Model_Parms.h"
#include "Rec_Event.h"
#include "Counter.h"
#include "Model_marginals.h"
#include "Errorrate.h"
#include "Utils.h"
#include <list>
#include <map>
#include <string>
#include <random>
#include <chrono>
#include <fstream>
#include <omp.h>
#include <stdexcept>
#include <stack>
#include <memory>
//Make typedef for the function pointers
typedef void (*gen_seq_trans)(size_t , std::pair<std::string , std::queue<std::queue<int>>>,std::shared_ptr<void>);
/**
* Hardcode a data structure for the function extracting CDR3s in generated sequences
*/
struct gen_CDR3_data{
std::map<int,std::tuple<std::string,size_t,size_t,std::string>> v_anchors;
size_t v_event_queue_position;
std::map<int,std::tuple<std::string,size_t,size_t,std::string>> j_anchors;
size_t j_event_queue_position;
std::shared_ptr<std::ostream> output_stream;
//Some config booleans
bool output_nt_CDR3 = true;
bool output_anchors_found = true;
bool output_inframe = true;
//FIXME
//For now do not output aa CDR3 stats
bool output_aa_CDR3 = false;
bool output_productive = false;
gen_CDR3_data(const std::unordered_map<std::string,size_t>& v_anchors_indices , const std::unordered_map < std::string, Event_realization >& v_reals, size_t v_event_pos,
const std::unordered_map<std::string,size_t>& j_anchors_indices , const std::unordered_map < std::string, Event_realization >& j_reals, size_t j_event_pos,
std::shared_ptr<std::ostream> output_stream_ptr = std::shared_ptr<std::ostream>(&std::cout,null_delete<std::ostream>())): v_event_queue_position(v_event_pos) , j_event_queue_position(j_event_pos) , output_stream(output_stream_ptr){
//First get all V anchors
this->v_anchors.clear();
for(const std::pair<std::string,Event_realization> v_real : v_reals){
size_t v_anchor_index;
if(v_anchors_indices.count(v_real.second.name)>0){
v_anchor_index = v_anchors_indices.at(v_real.second.name);
v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),v_real.second.value_str.substr(v_anchor_index,3)));
}
else{
v_anchor_index = 0;
v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),""));
}
/*try{
v_anchor_index = v_anchors_indices.at(v_real.name);
}
catch (std::exception& e) {
std::cerr<<"Could not find "<<v_real.name<<" in the V genes anchors map"<<std::endl;
throw e;
}*/
//v_anchors.emplace(v_real.second.index,std::make_tuple(v_real.second.name,v_anchor_index,v_real.second.value_str.size(),v_real.second.value_str.substr(v_anchor_index,3)));
}
//Now get all J anchors
this->j_anchors.clear();
for(const std::pair<std::string,Event_realization> j_real : j_reals){
size_t j_anchor_index;
/*try{
j_anchor_index = j_anchors_indices.at(j_real.name);
}
catch (std::exception& e) {
std::cerr<<"Could not find "<<j_real.name<<" in the J genes anchors map"<<std::endl;
throw e;
}*/
if(j_anchors_indices.count(j_real.second.name)>0){
j_anchor_index = j_anchors_indices.at(j_real.second.name);
j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),j_real.second.value_str.substr(j_anchor_index,3)));
}
else{
j_anchor_index = std::string::npos;
j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),""));
}
//j_anchors.emplace(j_real.second.index,std::make_tuple(j_real.second.name,j_anchor_index,j_real.second.value_str.size(),j_real.second.value_str.substr(j_anchor_index,3)));
}
//Write output file header
*output_stream.get()<<"seq_index";
if(output_nt_CDR3){
*output_stream.get()<<",nt_CDR3";
}
if(output_anchors_found){
*output_stream.get()<<",anchors_found";
}
if(output_inframe){
*output_stream.get()<<",is_inframe";
}
if(output_aa_CDR3){
*output_stream.get()<<",aa_CDR3";
}
if(output_productive){
*output_stream.get()<<",is_productive";
}
*output_stream.get()<<std::endl;
}
};
/**
* \class GenModel GenModel.h
* \brief High level V(D)J generative model.
* \author Q.Marcou
* \version 1.0
*
* Highest level class to model the V(D)J recombination and subsequent processes.
* It contains the model's graph structure (Model_Parms), the associated probability distribution (Model_Marginals).
* The GenModel class provides high level functions to perform inference / sequence annotation as well as generating random sequences from the model.
*/
class GenModel {
public:
GenModel(const Model_Parms&);
GenModel(const Model_Parms& , const Model_marginals&);
GenModel(const Model_Parms& , const Model_marginals& , const std::map<size_t,std::shared_ptr<Counter>>&);
//TODO: add all the necessary constructors: with just model_parms, with model_parms and marginals
virtual ~GenModel();
bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const int iterations ,const std::string path, bool fast_iter , double likelihood_threshold=1e-25 , bool viterbi_like=false);
bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const int iterations ,const std::string path, bool fast_iter=true , double likelihood_threshold=1e-25 , double proba_threshold_factor=0.001 );
bool infer_model(const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>& sequences ,const int iterations ,const std::string path, bool fast_iter , double likelihood_threshold , bool viterbi_like , double proba_threshold_factor , double mean_number_seq_err_thresh = INFINITY);
std::forward_list<std::pair<std::string , std::queue<std::queue<int>>>> generate_sequences (int,bool);
void generate_sequences(int,bool,std::string,std::string,std::list<std::pair<gen_seq_trans,std::shared_ptr<void>>> = std::list<std::pair<gen_seq_trans,std::shared_ptr<void>>>(),bool output_only_func = false , int=-1);
bool load_genmodel();
bool write2txt ();
bool readtxt ();
void write_seq2txt(std::string,std::forward_list<std::string>);
void write_seq_real2txt(std::string , std::string , std::forward_list<std::pair<std::string , std::queue<std::queue<int>>>>);
//write alignments, load alignments
private:
Model_Parms model_parms;
Model_marginals model_marginals;
std::map<size_t,std::shared_ptr<Counter>> counters_list;//Size_t is a unique identifier for the Counter(useful for adding them up)
std::pair<std::string , std::queue<std::queue<int>>> generate_unique_sequence(std::queue<std::shared_ptr<Rec_Event>> , std::unordered_map<Rec_Event_name,int> , const std::unordered_map<Rec_Event_name,std::vector<std::pair<std::shared_ptr<const Rec_Event>,int>>>& , std::mt19937_64& , bool =true);
Model_marginals compute_marginals(std::list<std::string> sequences);
Model_marginals compute_seq_marginals (std::string sequence);
Model_marginals compute_seq_marginals (std::string sequence , std::list<std::list<std::string> > allowed_scenarios );
};
std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>> get_best_aligns (const std::vector<std::tuple<int,std::string,std::unordered_map<Gene_class , std::vector<Alignment_data>>>>&, Gene_class);
void output_CDR3_gen_data(size_t , std::pair<std::string , std::queue<std::queue<int>>> seq_and_real , std::shared_ptr<void> func_data);
#endif /* GENMODEL_H_ */
|