1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
|
/*
* Model_marginals.cpp
*
* Created on: 3 nov. 2014
* Author: Quentin Marcou
*
* This source code is distributed as part of the IGoR software.
* IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
* generation, selection, mutation and all other processes.
* Copyright (C) 2017 Quentin Marcou
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Model_marginals.h"
using namespace std;
Model_marginals::Model_marginals() {
marginal_array_smart_p = NULL;
marginal_arr_size = -1;
}
Model_marginals::Model_marginals(const Model_Parms& model_parms) {
marginal_arr_size = compute_size(model_parms);
if(marginal_arr_size == 0){
throw runtime_error("provided Model_parms imply empty marginals in Model_marginals::Model_marginals(const Model_Parms& model_parms)");
}
marginal_array_smart_p = Marginal_array_p(new long double[marginal_arr_size]);
this->null_initialize();
}
/*
* Provides a deep copy of the object
*/
Model_marginals::Model_marginals(const Model_marginals& other):marginal_array_smart_p(Marginal_array_p(new long double[other.marginal_arr_size])), marginal_arr_size(other.marginal_arr_size) {
for(size_t i=0 ; i!=marginal_arr_size ; ++i){
marginal_array_smart_p[i] = other.marginal_array_smart_p[i];
}
}
Model_marginals::Model_marginals(size_t arr_size):marginal_arr_size(arr_size){
marginal_array_smart_p = Marginal_array_p(new long double[marginal_arr_size]);
this->null_initialize();
}
Model_marginals Model_marginals::empty_copy(){
Model_marginals null_copy (this->marginal_arr_size);
null_copy.debug_marg_name = "null tmp copy";
return null_copy;
}
Model_marginals& Model_marginals::invert_edge(Rec_Event_name ev1_name , Rec_Event_name ev2_name , Model_Parms& model_parms){
shared_ptr<Rec_Event> parent_ptr;
shared_ptr<Rec_Event> child_ptr;
/*
* Note here we touch the limit of the design of this code...
* There is no good way of checking that those marginals and those parms are related...
* TODO partially redesign?
*/
if(model_parms.has_edge(ev1_name,ev2_name)){
parent_ptr = model_parms.get_event_pointer(ev1_name);
child_ptr = model_parms.get_event_pointer(ev2_name);
}
else if(model_parms.has_edge(ev2_name,ev1_name)){
parent_ptr = model_parms.get_event_pointer(ev2_name);
child_ptr = model_parms.get_event_pointer(ev1_name);
}
else{
throw runtime_error("Model_marginals::invert_edge() : the edge between \"" + ev1_name + "\" and \"" + ev2_name + "\" does not exist");
}
const unordered_map<Rec_Event_name,int> orig_marginals_index_map = this->get_index_map(model_parms);
const unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> orig_marginals_inverse_offset_map = this->get_inverse_offset_map(model_parms);
/*
* Make sure inverting the edge will not create a cycle by testing on a copy
*/
Model_Parms model_parms_test_copy( model_parms);
try{
model_parms_test_copy.invert_edge(ev1_name,ev2_name);
}
catch(exception& e){
cerr<<"Exception caught trying to invert an edge on a test model parms in Model_marginals::invert_edge, the operation is most likely creating a cycle, throwing exception now..."<<endl;
throw(e);
}
/*
* First recompute the marginals for the event losing a parent
* To do so we marginalize the joint probability of this event and the former parent over the former parent realizations
* This simply requires to marginalize the probability of the former parent over all events that are not parents of the former child
*/
list<shared_ptr<Rec_Event>> child_parents = model_parms.get_parents(child_ptr);
set<Rec_Event_name> child_kept_dependencies;
for(const shared_ptr<Rec_Event> event_ptr : child_parents){
child_kept_dependencies.emplace(event_ptr->get_name());
}
child_kept_dependencies.emplace(child_ptr->get_name()); //Add the child in order to get an array of the correct size directly
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> marginalized_parent_probabilities = compute_event_marginal_probability(parent_ptr->get_name(),child_kept_dependencies,model_parms);
/*cout<<"Model_marginals::invert_edge()"<<endl;
size_t tmp_size = 1;
for(pair<Rec_Event_name,size_t> tmp : marginalized_parent_probabilities.first){
cout<<tmp.first<<",";
tmp_size*=tmp.second;
}
cout<<endl<<"Marginalized_parent_probabilities:"<<endl;
for(size_t i=0 ; i!=tmp_size ; ++i){
cout<<marginalized_parent_probabilities.second.get()[i]<<",";
}
cout<<endl;*/
size_t joint_array_size = this->get_event_size(child_ptr,model_parms);
size_t new_array_size = joint_array_size/parent_ptr->size();
shared_ptr<long double> joint_child_array(new long double [joint_array_size]);
shared_ptr<long double> new_child_array(new long double [new_array_size]);
int child_index = orig_marginals_index_map.at(child_ptr->get_name());
//Init the joint proba array
for(size_t i=0 ; i!= joint_array_size ; ++i){
joint_child_array.get()[i] = this->marginal_array_smart_p[child_index+i];
}
//Get the array ordering
//First copy a list containing the inverse offsets and sort it
list<pair<shared_ptr<const Rec_Event>,int>> sorted_inv_offset_list = orig_marginals_inverse_offset_map.at(child_ptr->get_name());
sorted_inv_offset_list.sort(inverse_offset_comparator());
//Create the ordering list
list<pair<Rec_Event_name,size_t>> child_dependencies_order_list;
child_dependencies_order_list.emplace_back(child_ptr->get_name() , child_ptr->size());
//Now add dimensions in the correct order
for(const pair<shared_ptr<const Rec_Event>,int>& inv_offset : sorted_inv_offset_list){
child_dependencies_order_list.emplace_back(inv_offset.first->get_name(),inv_offset.first->size());
}
//Align the arrays
align_marginal_array(child_dependencies_order_list,marginalized_parent_probabilities);
//Multiply to get the joint
for(size_t i=0 ; i!= joint_array_size ; ++i){
joint_child_array.get()[i] *= marginalized_parent_probabilities.second.get()[i];
}
//Now move the former parent as the last dimension and marginalize over it
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> tmp_pair = make_pair(child_dependencies_order_list,joint_child_array);
swap_events_order(parent_ptr->get_name() , child_dependencies_order_list.back().first , tmp_pair);
for(size_t i=0 ; i!=new_array_size ; ++i){
new_child_array.get()[i] = 0.0;
}
for(size_t j=0 ; j!=joint_array_size ; ++j){
new_child_array.get()[j%new_array_size] += joint_child_array.get()[j];
}
/*cout<<"Marginalized joint child:"<<endl;
for(size_t j=0 ; j!=new_array_size ; ++j){
cout<<new_child_array.get()[j]<<",";
}
cout<<endl;*/
/*
* Now we recompute the marginals of the event gaining a parent
* To do so we need to marginalize the former child distribution over all unshared parents except the former parent
* Multiply by the the former parent proba to get the joint
* Divide by the former child distribution marginalized over all unshared parents (including the former parent) for the bayesian inversion
*/
list<shared_ptr<Rec_Event>> parent_parents = model_parms.get_parents(parent_ptr);
set<Rec_Event_name> parent_kept_dependencies;
for(const shared_ptr<Rec_Event> event_ptr : parent_parents){
parent_kept_dependencies.emplace(event_ptr->get_name());
}
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> marginalized_child_probabilities = compute_event_marginal_probability(child_ptr->get_name(),parent_kept_dependencies,model_parms);
//By removing the dependence on the former parent we lose one dimension and we thus add it by hand
//Compute the total size
size_t new_child_array_size = parent_ptr->size();
for(pair<Rec_Event_name,size_t> ev_name_size : marginalized_child_probabilities.first){
new_child_array_size*= ev_name_size.second;
}
shared_ptr<long double> marginalized_child_proba_expanded_arr(new long double [new_child_array_size]);
for(size_t i=0 ; i!=new_child_array_size ; ++i){
marginalized_child_proba_expanded_arr.get()[i] = marginalized_child_probabilities.second.get()[i%(new_child_array_size/parent_ptr->size())];
}
marginalized_child_probabilities.first.emplace_back(parent_ptr->get_name() , parent_ptr->size());
marginalized_child_probabilities.second = marginalized_child_proba_expanded_arr;
/*cout<<"Marginalized child expanded: "<<endl;
for(size_t i=0 ; i!=new_child_array_size ; ++i){
cout<<marginalized_child_proba_expanded_arr.get()[i]<<",";
}
cout<<endl;
cout<<"Sanity check on the marginalized child expanded pointer transfer:"<<endl;
for(size_t i=0 ; i!=new_child_array_size ; ++i){
cout<<marginalized_child_probabilities.second.get()[i]<<",";
}
cout<<endl;*/
//Now compute the marginal distribution keeping the parent dependence
parent_kept_dependencies.emplace(parent_ptr->get_name());
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> marginalized_child_g_parent_probabilities = compute_event_marginal_probability(child_ptr->get_name(),parent_kept_dependencies,model_parms);
/*cout<<"Marginalized child given parent: "<<endl;
size_t tmp_sizzze = 1;
for(auto zz : marginalized_child_g_parent_probabilities.first){
tmp_sizzze*=zz.second;
}
for(size_t i=0 ; i!=tmp_sizzze ; ++i){
cout<<marginalized_child_g_parent_probabilities.second.get()[i]<<",";
}
cout<<endl;*/
//Now extract the former marginal values and expand the dimension with the former child
shared_ptr<long double> new_parent_array (new long double [new_child_array_size]);
int parent_index = orig_marginals_index_map.at(parent_ptr->get_name());
//cout<<"New parent array:"<<endl;
for(size_t i=0 ; i!=new_child_array_size ; ++i){
new_parent_array.get()[i] = this->marginal_array_smart_p.get()[parent_index + i%(new_child_array_size/child_ptr->size())];
//cout<<new_parent_array.get()[i]<<",";
}
//cout<<endl;
//Get the corresponding order list
//First copy a list containing the inverse offsets and sort it
sorted_inv_offset_list = orig_marginals_inverse_offset_map.at(parent_ptr->get_name());
sorted_inv_offset_list.sort(inverse_offset_comparator());
//Create the ordering list
list<pair<Rec_Event_name,size_t>> parents_dependencies_order_list;
parents_dependencies_order_list.emplace_back(parent_ptr->get_name() , parent_ptr->size());
//Now add dimensions in the correct order
for(const pair<shared_ptr<const Rec_Event>,int>& inv_offset : sorted_inv_offset_list){
parents_dependencies_order_list.emplace_back(inv_offset.first->get_name(),inv_offset.first->size());
}
//And add the extra dimension
parents_dependencies_order_list.emplace_back(child_ptr->get_name() , child_ptr->size());
//Order everything (according to the new ordering in model parms)
model_parms.invert_edge(ev1_name,ev2_name);
const unordered_map<Rec_Event_name,int> new_marginals_index_map = this->get_index_map(model_parms);
const unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> new_marginals_inverse_offset_map = this->get_inverse_offset_map(model_parms);
//Create the ordering list to do so
list<pair<Rec_Event_name,size_t>> final_new_child_ordering_list;
final_new_child_ordering_list.emplace_back(parent_ptr->get_name() , parent_ptr->size());
//Now add dimensions in the correct order
for(const pair<shared_ptr<const Rec_Event>,int>& inv_offset : sorted_inv_offset_list){
final_new_child_ordering_list.emplace_back(inv_offset.first->get_name(),inv_offset.first->size());
}
final_new_child_ordering_list.emplace_back(child_ptr->get_name() , child_ptr->size());
//Align everything
align_marginal_array(final_new_child_ordering_list,marginalized_child_g_parent_probabilities);
align_marginal_array(final_new_child_ordering_list,marginalized_child_probabilities);
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> tmp_pair_parent = make_pair(parents_dependencies_order_list,new_parent_array);
align_marginal_array(final_new_child_ordering_list,tmp_pair_parent);
/* cout<<"Sanity test:"<<endl;
size_t bobby = 1;
for(auto zzz: marginalized_child_g_parent_probabilities.first){
cout<<zzz.first<<",";
bobby*=zzz.second;
}
cout<<endl;
for(size_t i=0 ; i!= bobby ; ++i){
cout<<marginalized_child_g_parent_probabilities.second.get()[i]<<",";
}
cout<<endl;
bobby = 1;
for(auto zzz: marginalized_child_probabilities.first){
cout<<zzz.first<<",";
bobby*=zzz.second;
}
cout<<endl;
for(size_t i=0 ; i!= bobby ; ++i){
cout<<marginalized_child_probabilities.second.get()[i]<<",";
}
cout<<endl;
bobby = 1;
for(auto zzz: tmp_pair_parent.first){
cout<<zzz.first<<",";
bobby*=zzz.second;
}
cout<<endl;
for(size_t i=0 ; i!= bobby ; ++i){
cout<<tmp_pair_parent.second.get()[i]<<",";
}
cout<<endl;
*/
//Finally compute the new marginal values
//cout<<"New parent array final:"<<endl;
for(size_t i=0 ; i!=new_child_array_size ; ++i){
if(marginalized_child_probabilities.second.get()[i]!=0){
new_parent_array.get()[i] *= marginalized_child_g_parent_probabilities.second.get()[i]/marginalized_child_probabilities.second.get()[i];
}
else{
new_parent_array.get()[i] = 0.0;
}
//cout<<new_parent_array.get()[i]<<",";
}
//cout<<endl;
//Create a full new marginal array and copy the values in the right place
unique_ptr<long double []> new_marginal_array (new long double[ this->compute_size(model_parms)]);
for(const shared_ptr<Rec_Event> event_ptr : model_parms.get_event_list()){
if( (event_ptr->get_name() != ev1_name) and (event_ptr->get_name() != ev2_name)){
size_t tmp_event_size = this->get_event_size(event_ptr,model_parms);
int former_event_index = orig_marginals_index_map.at(event_ptr->get_name());
int new_event_index = new_marginals_index_map.at(event_ptr->get_name());
for(size_t i=0 ; i!=tmp_event_size ; ++i){
new_marginal_array[new_event_index+i] = this->marginal_array_smart_p[former_event_index+i];
}
}
}
//Now copy the new parent values
int new_parent_index = new_marginals_index_map.at(child_ptr->get_name());
for(size_t i=0 ; i!=new_array_size ; ++i){
new_marginal_array[new_parent_index+i] = new_child_array.get()[i];
}
//And finally copy the new child values
int new_child_index = new_marginals_index_map.at(parent_ptr->get_name());
for(size_t i=0 ; i!=new_child_array_size ; ++i){
new_marginal_array[new_child_index+i] = new_parent_array.get()[i];
}
//Set the array and update the array size
this->marginal_arr_size = this->compute_size(model_parms);
this->marginal_array_smart_p.swap(new_marginal_array);
return *this;
}
size_t Model_marginals::compute_size(const Model_Parms& model_parms){
list<shared_ptr<Rec_Event>> events = model_parms.get_event_list();
unordered_map<Rec_Event_name,Adjacency_list> edges = model_parms.get_edges();
size_t array_size = 0;
for(list<shared_ptr<Rec_Event>>::const_iterator iter = events.begin() ; iter!= events.end() ; ++iter){
int event_size = this->get_event_size((*iter),model_parms);
array_size+=event_size;
}
return array_size;
}
/*
*
*/
size_t Model_marginals::get_event_size(shared_ptr<const Rec_Event> event_p , const Model_Parms& model_parms ) const{
size_t event_size = event_p->size();
list<shared_ptr<Rec_Event>> parents_list = model_parms.get_edges().at( event_p->get_name() ).parents;
for(list<shared_ptr<Rec_Event>>::const_iterator jiter = parents_list.begin() ; jiter!=parents_list.end();++jiter){
event_size*=(*(*jiter)).size();
}
return event_size;
}
/*
* Compute the event marginal probability distribution (free of dependencies)
* \bug /!\ This function assumes the marginals are normalized /!\
* FIXME make sure the marginals are normalized? otherwise defined up to a multiplicative constant??
*
* Compute the event marginal probability by recursion
*
* should return a list of offsets (maybe it would be better to return the event sizes) and corresponding events
*/
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> Model_marginals::compute_event_marginal_probability(Rec_Event_name event_name , const Model_Parms& model_parms ) const{
return this->compute_event_marginal_probability(event_name , set<Rec_Event_name>() ,model_parms);
}
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> Model_marginals::compute_event_marginal_probability(Rec_Event_name event_name , const set<Rec_Event_name>& kept_dependencies_list , const Model_Parms& model_parms ) const{
const unordered_map<Rec_Event_name,int> index_map = this->get_index_map(model_parms);
const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>> offset_map = this->get_offsets_map(model_parms);
const unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map = this->get_inverse_offset_map(model_parms);
return this->compute_event_marginal_probability(event_name,kept_dependencies_list,model_parms,index_map,offset_map,inverse_offset_map);
}
/**
* This piece of code is quite dirty, i strongly apologize for it
*/
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> Model_marginals::compute_event_marginal_probability(
Rec_Event_name event_name ,
const set<Rec_Event_name>& kept_dependencies_list ,
const Model_Parms& model_parms ,const unordered_map<Rec_Event_name,int>& index_map ,
const unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>>& offset_map ,
const unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>>& inverse_offset_map) const{
//First get the event pointer, size and index
shared_ptr<Rec_Event> event_ptr = model_parms.get_event_pointer(event_name);
size_t event_size = event_ptr->size();
size_t event_index = index_map.at(event_name);
//Compute the total new array size and instantiate the corresponding array
size_t new_array_size = event_size;
for(Rec_Event_name ev_name : kept_dependencies_list){
if(ev_name != event_name){
new_array_size*= model_parms.get_event_pointer(ev_name)->size();
}
}
shared_ptr<long double> marginal_proba_ptr (new long double [new_array_size]);
//Initialize a dependencies list to hold array dimensions names
list<pair<Rec_Event_name,size_t>> dependencies_order_list;
//Get the list of the event's parents
const list<shared_ptr<Rec_Event>> parents_list = model_parms.get_parents(event_name);
/* cout<<"Model_marginals::compute_event_marginal_probability()"<<endl;
cout<<"Marginalized event: "<<event_name<<endl<<"Kept dependencies: ";
for(Rec_Event_name ev_name : kept_dependencies_list){
cout<<ev_name<<",";
}
cout<<endl;*/
//Now compute the marginal probabilities of the event realizations
if(parents_list.empty()){
/*
* If the event has no parents then the probabilities contained on the array are already the marginal probabilities
* This condition must be met recursively by reaching a root of the graph (this is ensured by the acyclicity of the graph)
* However the array still needs to be copied several times to match the kept dependencies format
*/
//Simply copy the values in the array (the number of times required by the kept dependencies)
for(size_t i = 0 ; i!=new_array_size ; ++i){
marginal_proba_ptr.get()[i] = this->marginal_array_smart_p[event_index+(i%event_size)];
}
//Emplace Event order
dependencies_order_list.emplace_back(event_name,event_size);
for(Rec_Event_name ev_name : kept_dependencies_list){
if(ev_name != event_name){
dependencies_order_list.emplace_back(ev_name , model_parms.get_event_pointer(ev_name)->size());
}
}
}
else{
//Compute event marginal array size(including kept dependencies) and create an array on which we compute the joint probabilities
size_t marginal_event_size = event_size;
//Make a copy of the kept dependencies and remove the parents and the event itself from it in order to avoid duplicate dimensions
set<Rec_Event_name> tmp_kept_dependencies_utility = kept_dependencies_list;
/*
* Here we get the list of dimensions in the correct order with respect to the existing marginals
* We use the inverse offset map for it and the fact that the event itself is always the first dimension
*/
//Add the event itself as a first array dimension (since it always is the first dimension according to the offset map construction)
dependencies_order_list.emplace_back(event_name,event_size);
//Remove potential appearance of the event in the kept dependencies
if(tmp_kept_dependencies_utility.count(event_name)>0){
tmp_kept_dependencies_utility.erase(event_name);
}
//Create a list containing all parents if they are not already in the kept dependencies (avoid duplicates)
//Use the inverse offset map to know the correct dimension ordering
//Disclaimer: this is going to be quite ugly and should be rewritten //TODO
//First copy a list containing the inverse offsets and sort it
list<pair<shared_ptr<const Rec_Event>,int>> sorted_inv_offset_list = inverse_offset_map.at(event_name);
sorted_inv_offset_list.sort(inverse_offset_comparator());
/*cout<<"Inverse offset list: ";
for(const pair<shared_ptr<const Rec_Event>,int>& inv_offset : sorted_inv_offset_list){
cout<<"("<<inv_offset.first->get_name()<<","<<inv_offset.second<<");";
}
cout<<endl;*/
//Now add dimensions in the correct order
for(const pair<shared_ptr<const Rec_Event>,int>& inv_offset : sorted_inv_offset_list){
dependencies_order_list.emplace_back(inv_offset.first->get_name(),inv_offset.first->size());
marginal_event_size*=inv_offset.first->size();
if(tmp_kept_dependencies_utility.count(inv_offset.first->get_name())>0){
tmp_kept_dependencies_utility.erase(inv_offset.first->get_name());
}
}
//Now append kept dependencies that are not parents or the event itself as extra dimensions
for(Rec_Event_name kept_dep_name : tmp_kept_dependencies_utility){
dependencies_order_list.emplace_back(kept_dep_name,model_parms.get_event_pointer(kept_dep_name)->size());
marginal_event_size*=model_parms.get_event_pointer(kept_dep_name)->size();
}
// Instantiate a large array to record the full joint proba with kept dependencies
shared_ptr<long double> joint_proba_array (new long double [marginal_event_size]);
//Compute the joint probabilities
//First copy the conditionals from the marginals (again this assumes we have the dimensions in the right order, extra kept dependencies are just copies)
size_t event_original_marginal_array_size = this->get_event_size(model_parms.get_event_pointer(event_name),model_parms);
for(size_t i=0 ; i!=marginal_event_size ; ++i){
joint_proba_array.get()[i] = this->marginal_array_smart_p[event_index+i%event_original_marginal_array_size]; //THIS IS ASSUMING AN ORDER FOR THE MARGINALS, NEED TO MAKE SURE IT IS CORRECT
//cout<<joint_proba_array.get()[i]<<",";
}
//cout<<endl;
//For each parent multiply by the marginal probability to obtain the joint
/*
* Here we call recursively the compute_event_marginal_probability function on every parent
* We append the full list of parents (necessary if some joint ancestors exist, or if one parent is ancestor of the other) to the ket dependencies
* We also append the event itself: although it cannot be an ancestor of the parents (acyclic graph) it will force to output an array of the correct size
* Note that this might result in very big arrays if the graph is big, and might turn out to be inefficient //TODO compute overlap with ancestors and reexpand after marginalization
*/
set<Rec_Event_name> new_kept_dependencies_list = kept_dependencies_list;
if(new_kept_dependencies_list.count(event_name)==0){
new_kept_dependencies_list.emplace(event_name);
}
for(shared_ptr<Rec_Event> parent_event : parents_list){
if(new_kept_dependencies_list.count(parent_event->get_name())==0){
new_kept_dependencies_list.emplace(parent_event->get_name());
}
}
for(shared_ptr<Rec_Event> parent_event : parents_list){
//Compute the marginal parent proba
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> parent_marginal_proba = compute_event_marginal_probability(parent_event->get_name(),new_kept_dependencies_list,model_parms,index_map,offset_map,inverse_offset_map);
/*cout<<"Marginalized parent order: ";
for(auto zzzz : parent_marginal_proba.first){
cout<<zzzz.first<<",";
}
cout<<endl;
cout<<"Marginalized parent order array: "<<endl;
for(size_t i=0 ; i!=marginal_event_size ; ++i){
cout<<parent_marginal_proba.second.get()[i]<<",";
}
cout<<endl;*/
//Now align the obtained marginals to the reference joint marginals
align_marginal_array(dependencies_order_list,parent_marginal_proba);
/*cout<<"Marginalized parent name: "<<parent_event->get_name()<<endl;
cout<<"Marginalized parent reorder: ";
for(auto zzzz : parent_marginal_proba.first){
cout<<zzzz.first<<",";
}
cout<<endl;
cout<<"Marginalized parent reorder array: "<<endl;
double test_sum = 0.0;
for(size_t i=0 ; i!=marginal_event_size ; ++i){
cout<<parent_marginal_proba.second.get()[i]<<",";
test_sum+=parent_marginal_proba.second.get()[i];
}
cout<<endl<<"Marginalized parent sum : ";
cout<<test_sum<<endl;
cout<<"original parent marginal: "<<endl;
for(size_t i=0 ; i!=this->get_event_size(parent_event,model_parms) ; ++i){
cout<<this->marginal_array_smart_p[index_map.at(parent_event->get_name())+i]<<",";
}
cout<<endl;*/
//Once aligned simply multiply term by term to obtain the joint
for(size_t i=0 ; i!=marginal_event_size ; ++i){
joint_proba_array.get()[i] *= parent_marginal_proba.second.get()[i]; //THIS IS ASSUMING AN ORDER FOR THE MARGINALS? NEED TO MAKE SURE IT IS CORRECT
//cout<<joint_proba_array.get()[i]<<",";
}
//cout<<endl;
}
/*double joint_sum = 0.0;
cout<<"Joint proba array: "<<endl;
for(size_t i=0 ; i!=marginal_event_size ; ++i){
cout<<joint_proba_array.get()[i]<<',';
joint_sum+=joint_proba_array.get()[i];
}
cout<<endl;
cout<<"JOINT PROBA SUM: "<<joint_sum<<endl;*/
//Now compute the final marginalized array
//Initialize the array
for(size_t i =0 ; i!= new_array_size ; ++i){
marginal_proba_ptr.get()[i] = 0.0;
}
//Now re-organize the joint in order to have all necessary dimensions before marginalized ones
list<pair<Rec_Event_name,size_t>> final_dimensions_order_list;
final_dimensions_order_list.emplace_back(event_name,event_size);//Put the considered event in first position
for(Rec_Event_name ev_name : kept_dependencies_list){
if(ev_name != event_name){
final_dimensions_order_list.emplace_back(ev_name , model_parms.get_event_pointer(ev_name)->size());
}
}
pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>> tmp_pair = make_pair(dependencies_order_list,joint_proba_array);
align_marginal_array(final_dimensions_order_list,tmp_pair);
//Now reassign the correct pointer since i has been changed in the function and make_pair made a copy of teh smart pointer
joint_proba_array = tmp_pair.second;
dependencies_order_list = tmp_pair.first;
/*cout<<"Joint proba array reorder: "<<endl;
for(size_t i=0 ; i!=marginal_event_size ; ++i){
cout<<joint_proba_array.get()[i]<<',';
}
cout<<endl;*/
//Now from the joint compute the marginal joint probability (sum all extra dimensions)
for(size_t i =0 ; i!= marginal_event_size ; ++i){
marginal_proba_ptr.get()[i%new_array_size]+=joint_proba_array.get()[i];
}
//And finally get the conditional
shared_ptr<long double> summed_joint_arr (new long double [new_array_size/event_size]);
for(size_t i=0 ; i!= new_array_size/event_size ; ++i){
summed_joint_arr.get()[i] = 0.0;
}
//compute the sum over dependencies
for(size_t i =0 ; i!= new_array_size ; ++i){
summed_joint_arr.get()[i/event_size]+=marginal_proba_ptr.get()[i];
}
//renormalize to get the conditional
for(size_t i =0 ; i!= new_array_size ; ++i){
if(summed_joint_arr.get()[i/event_size]!=0){
marginal_proba_ptr.get()[i]/=summed_joint_arr.get()[i/event_size];
}
else{
marginal_proba_ptr.get()[i] = 0.0;
}
}
/*cout<<"Final dimension order list: ";
for(auto zzzz : final_dimensions_order_list){
cout<<zzzz.first<<",";
}
cout<<endl;
cout<<"Dependencies order list: ";
for(auto zzzz : dependencies_order_list){
cout<<zzzz.first<<",";
}
cout<<endl;*/
dependencies_order_list = final_dimensions_order_list;
}
return make_pair(dependencies_order_list,marginal_proba_ptr);
}
/*
* Just a utility function to recursively
*/
Model_marginals::~Model_marginals() {
//cout<<debug_marg_name<<endl;
//delete [] this->marginal_array_p;
//cout<<"test"<<endl;
}
Model_marginals& Model_marginals::operator=(const Model_marginals& other){
//delete [] this->marginal_array_p;
this->marginal_arr_size = other.marginal_arr_size;
this->marginal_array_smart_p = Marginal_array_p(new long double [this->marginal_arr_size]);
for(size_t i=0 ; i!=marginal_arr_size ; ++i){
marginal_array_smart_p[i] = other.marginal_array_smart_p[i];
}
return *this;
}
Model_marginals& Model_marginals::operator +=(Model_marginals marginals){
if(this->marginal_arr_size != marginals.marginal_arr_size){
throw invalid_argument("Model_marginals must have the same size in : Model_marginals::operator+=");
}
else{
for(size_t i = 0 ; i!= this->marginal_arr_size ; ++i){
this->marginal_array_smart_p[i]+=marginals.marginal_array_smart_p[i];
}
}
return *this;
}
Model_marginals& Model_marginals::operator -=(Model_marginals marginals){
if(this->marginal_arr_size != marginals.marginal_arr_size){
throw invalid_argument("Model_marginals must have the same size in : Model_marginals::operator+=");
}
else{
for(size_t i = 0 ; i!= this->marginal_arr_size ; ++i){
this->marginal_array_smart_p[i]-=marginals.marginal_array_smart_p[i];
}
}
return *this;
}
Model_marginals Model_marginals::operator +(Model_marginals marginals){
Model_marginals temp = *this;
return temp+=marginals;
}
Model_marginals Model_marginals::operator -(Model_marginals marginals){
Model_marginals temp = *this;
return temp-=marginals;
}
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> Model_marginals::get_inverse_offset_map(const Model_Parms& model_parms) const{
queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
return get_inverse_offset_map(model_parms,model_queue);
}
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> Model_marginals::get_inverse_offset_map(const Model_Parms& model_parms, queue<shared_ptr<Rec_Event>> model_queue) const{
//Stack to keep track of the events processed and their order
stack<shared_ptr<Rec_Event>>* model_stack_p = new stack<shared_ptr<Rec_Event>>;
stack<shared_ptr<Rec_Event>> model_stack = *model_stack_p;
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> invert_offset_map = unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> ();
while(! model_queue.empty()){
if(!model_stack.empty()){
shared_ptr<Rec_Event> current_event_point = model_queue.front();
//We look for all events upstream (parents)
unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>* related_events_map_p = new unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>; //stores all the related events
unordered_map<Rec_Event_name,shared_ptr<Rec_Event>> related_events_map = *related_events_map_p;
if(!model_parms.get_parents( current_event_point ).empty()){
list<shared_ptr<Rec_Event>> event_parents = model_parms.get_parents(current_event_point);
for(list<shared_ptr<Rec_Event>>::const_iterator iter=event_parents.begin() ; iter!= event_parents.end() ; ++iter){
related_events_map.insert(make_pair((*iter)->get_name(),*iter));
}
}
//Copy model stack to have a modifiable copy
//TODO model stack might be more complicated than a simple list
stack<shared_ptr<Rec_Event>> model_stack_copy = model_stack;
invert_offset_map.emplace(current_event_point->get_name(), list<pair< shared_ptr<const Rec_Event>,int>>() );
int offset = (*current_event_point).size();
while(!model_stack_copy.empty()){
if(related_events_map.count(model_stack_copy.top()->get_name())>0){
invert_offset_map.at(current_event_point->get_name()).push_back(make_pair(model_stack_copy.top(),offset));
offset*= (*model_stack_copy.top()).size();
}
model_stack_copy.pop();
}
delete related_events_map_p;
}
model_stack.push(model_queue.front());
model_queue.pop();
}
delete model_stack_p;
return invert_offset_map;
}
/*
* This method gives a map of offsets according to each event.
* Every time a given event is chosen it will influence the position
* where the marginals for event downstream have to be added.
* E.g: the choice of a V (say V3) gene will influence the position on the array where p(ins|V) must be written
* regardless of the number of insertions.
*/
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>> Model_marginals::get_offsets_map(const Model_Parms& model_parms) const{
queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
return get_offsets_map(model_parms,model_queue);
}
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>> Model_marginals::get_offsets_map(const Model_Parms& model_parms,queue<shared_ptr<Rec_Event>> model_queue) const{
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> invert_offset_map = get_inverse_offset_map(model_parms,model_queue);
// Inversion of the map
unordered_map<Rec_Event_name,vector<pair<shared_ptr<const Rec_Event>,int>>> offset_map;// = *(new unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>>);
for(unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>>::const_iterator iter = invert_offset_map.begin() ; iter != invert_offset_map.end() ; ++iter){
for(list<pair<shared_ptr<const Rec_Event>,int>>::const_iterator jiter = (*iter).second.begin() ; jiter != (*iter).second.end() ; ++jiter ){
/*if(offset_map.count( (*jiter).first->get_name() ) == 0){
offset_map.emplace( (*jiter).first->get_name() , *(new list<pair<shared_ptr<const Rec_Event>,int>>) );
}*/
offset_map[ (*jiter).first->get_name() ].push_back(make_pair( model_parms.get_event_pointer( (*iter).first ),(*jiter).second));
}
}
return offset_map;
}
unordered_map<Rec_Event_name,int> Model_marginals::get_index_map(const Model_Parms& model_parms) const{
queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
return get_index_map( model_parms , model_queue);
}
unordered_map<Rec_Event_name,int> Model_marginals::get_index_map(const Model_Parms& model_parms , queue<shared_ptr<Rec_Event>> model_queue) const{
int index = 0;
stack<shared_ptr<Rec_Event>>* model_stack_p = new stack<shared_ptr<Rec_Event>>;
stack<shared_ptr<Rec_Event>> model_stack = *model_stack_p;
unordered_map<Rec_Event_name,int> index_map = unordered_map<Rec_Event_name,int> ();
while(! model_queue.empty()){
//The index added in the map have been computed at the previous iteration (is 0 if first event in the queue)
index_map.insert(make_pair(model_queue.front()->get_name(),index));
shared_ptr<Rec_Event> current_event_point = model_queue.front();
int event_size = current_event_point->size();
/*if(!model_stack.empty()){
//We look for all events upstream (parents)
unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>* related_events_map_p = new unordered_map<Rec_Event_name,shared_ptr<Rec_Event>>; //stores all the related events
unordered_map<Rec_Event_name,shared_ptr<Rec_Event>> related_events_map = *related_events_map_p;
if(!model_parms.get_parents( current_event_point ).empty()){
list<shared_ptr<Rec_Event>> event_parents = model_parms.get_parents(current_event_point);
for(list<shared_ptr<Rec_Event>>::const_iterator iter=event_parents.end() ; iter!= event_parents.end() ; iter++){
related_events_map.insert(make_pair((*iter)->get_name(),*iter));
}
}
//Copy model stack to have a modifiable copy
//TODO model stack might be more complicated than a simple list
stack<shared_ptr<Rec_Event>> model_stack_copy = model_stack;
//Compute the event size: total size needed on the array to store informations on an event and the ones that it depends on
while(!model_stack_copy.empty()){
if(related_events_map.count(model_stack_copy.top()->get_name())!=0){
event_size *= model_stack_copy.top()->size();
}
model_stack_copy.pop();
}
delete related_events_map_p;
}*/
list<shared_ptr<Rec_Event>> parents_list = model_parms.get_parents(current_event_point);
if(!parents_list.empty()){
for(list<shared_ptr<Rec_Event>>::const_iterator iter = parents_list.begin() ; iter != parents_list.end() ; ++iter ){
event_size*=(*iter)->size();
}
}
//This gives the pointer for the beginning of the next event(thus it will be inserted in the map at the next iteration)
index+=event_size;
model_stack.push(model_queue.front());
model_queue.pop();
}
delete model_stack_p;
return index_map;
}
/*
* This method normalizes the marginal array so that each probability sums to 1.
*/
void Model_marginals::normalize(unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map , unordered_map<Rec_Event_name,int> index_map , queue<shared_ptr<Rec_Event>> model_queue){
while (! model_queue.empty()){
shared_ptr<Rec_Event> current_event_point = model_queue.front();
list<pair< shared_ptr<const Rec_Event>,int>> related_events;
if(inverse_offset_map.count(current_event_point->get_name()) == 0){
related_events = list<pair<shared_ptr<const Rec_Event> , int >> (); //TODO change this to prevent memory leak
}
else{
related_events = inverse_offset_map.at(current_event_point->get_name());
}
//TODO if list not empty
iterate_normalize(current_event_point,related_events,index_map.at(current_event_point->get_name()) , 0 );
//delete &related_events;
model_queue.pop();
}
}
void Model_marginals::iterate_normalize(shared_ptr<const Rec_Event> current_event_point, list<pair<shared_ptr<const Rec_Event>,int>>& related_events, int index , int current_offset){
if(related_events.empty()) {
/*double sum_marginals = 0;
for(int iter =0 ; iter != current_event_point->size() ; iter++){
sum_marginals+= this->marginal_array_p[index + current_offset + iter];
}
if(sum_marginals!=0){
for(int iter =0 ; iter != current_event_point->size() ; iter++){
this->marginal_array_p[index + current_offset + iter] /= sum_marginals;
}
}*/
current_event_point->ind_normalize(this->marginal_array_smart_p,index + current_offset);
return;
}
else{
pair<shared_ptr<const Rec_Event>,int> processed_event = related_events.front();
size_t processed_event_size = processed_event.first->size();
int offset = processed_event.second;
list<pair<shared_ptr<const Rec_Event>,int>> related_events_copy = related_events;
related_events_copy.pop_front();
for (size_t iter=0 ; iter!= processed_event_size ; ++iter){
int new_offset = current_offset+iter*offset;
iterate_normalize(current_event_point , related_events_copy , index ,new_offset); //TODO might be something fishy here
}
}
}
void Model_marginals::copy_fixed_events_marginals(const Model_marginals& source_marginals, const Model_Parms& parms,const unordered_map<Rec_Event_name,int>& index_map){
list<shared_ptr<Rec_Event>> events = parms.get_event_list();
for(list<shared_ptr<Rec_Event>>::const_iterator iter = events.begin() ; iter!=events.end() ; ++iter ){
if((*iter)->is_fixed()){
size_t event_size = this->get_event_size((*iter),parms);
size_t first_index = index_map.at((*iter)->get_name());
for(size_t i = first_index ; i!=first_index+event_size ; ++i){
this->marginal_array_smart_p[i] = source_marginals.marginal_array_smart_p[i];
}
}
}
}
/*
* This method initializes the marginal array with uniform probability for each event.
*
*/
void Model_marginals::uniform_initialize(const Model_Parms& parms){
list<shared_ptr<Rec_Event>> events = parms.get_event_list();
queue<shared_ptr<Rec_Event>> model_queue = parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = get_index_map(parms,model_queue);
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map = get_inverse_offset_map(parms,model_queue);
for(size_t i=0 ; i!= compute_size(parms) ; ++i){
marginal_array_smart_p[i]=1;
}
this->normalize(inverse_offset_map , index_map , model_queue);
}
void Model_marginals::null_initialize(){
for(size_t i=0 ; i!= marginal_arr_size ; ++i){
marginal_array_smart_p[i]=0;
}
}
void Model_marginals::random_initialize(const Model_Parms& parms){
//Create seed for random generator
//create a seed from timer
typedef std::chrono::high_resolution_clock myclock;
myclock::time_point time = myclock::now();
myclock::duration dur = myclock::time_point::max() - time;
//Get a random seed
uint64_t random_seed = draw_random_64bits_seed();
//Instantiate random number generator
mt19937_64 generator = mt19937_64(random_seed);
uniform_real_distribution<double> distribution(0.0,1.0);
for(size_t i = 0 ; i != this->marginal_arr_size ; ++i){
marginal_array_smart_p[i] = distribution(generator);
}
list<shared_ptr<Rec_Event>> events = parms.get_event_list();
queue<shared_ptr<Rec_Event>> model_queue = parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = get_index_map(parms,model_queue);
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map = get_inverse_offset_map(parms,model_queue);
this->normalize(inverse_offset_map , index_map , model_queue);
}
void Model_marginals::flatten(shared_ptr<const Rec_Event> event,const Model_Parms& parms){
queue<shared_ptr<Rec_Event>> model_queue = parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = get_index_map(parms,model_queue);
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map = get_inverse_offset_map(parms,model_queue);
size_t event_size = this->get_event_size(event,parms);
int base_index = index_map.at(event->get_name());
//Set all values to 1 on the marginal array
for(int i = base_index ; i!=base_index+event_size;++i){
this->marginal_array_smart_p[i]=1;
}
this->normalize(inverse_offset_map,index_map,model_queue);
}
/**
* Sets the realization probability to the given value
* Note that the value will be set for all conditional dependences
*
* //TODO recode this in order to be able to set several realizations probas at the same time
* //FIXME if the supplied new value is 1.0 there will be a zero division issue (this could be fixed by fixing all others to 0 instead of trying to set the supplied one to 1)
*/
void Model_marginals::set_realization_proba(string realization_name ,shared_ptr<const Rec_Event> event_ptr ,double new_value ,const Model_Parms& model_parms){
if( (new_value<0) or (new_value>1) ){
throw runtime_error("Invalid new probability value \"" + to_string(new_value) +"\" in Model_marginals::set_realization_proba()");
}
//First get the index_map and event marginal size
const unordered_map<Rec_Event_name,int> index_map = this->get_index_map(model_parms);
size_t marginal_event_size = this->get_event_size(event_ptr,model_parms);
size_t event_size = event_ptr->size();
//Get the realization index
if(event_ptr->get_realizations_map().count(realization_name)<=0){
throw runtime_error("Unknown realization \"" + realization_name
+ "\" for event " + event_ptr->get_name() + " in Model_marginals::set_realization_proba");
}
const Event_realization event_real = event_ptr->get_realizations_map().at(realization_name);
const size_t& real_index = event_real.index;
const size_t& event_index = index_map.at(event_ptr->get_name());
//Get the summed probabilities for all othe realizations for every conditioning
double* summed_probas = new double[marginal_event_size/event_size];
for(size_t i=0 ; i!=marginal_event_size ; ++i){
if(i%event_size != real_index){
summed_probas[i/event_size]+=this->marginal_array_smart_p[event_index+i];
}
}
//Now compute the new value to set before normalization
for(size_t i=0 ; i!=marginal_event_size/event_size ; ++i){
summed_probas[i] *= new_value/(1-new_value);
}
//Finally set the value
for(size_t i=0 ; i!=marginal_event_size/event_size ; ++i){
this->marginal_array_smart_p[event_index+i*event_size+real_index] = summed_probas[i];
}
//Delete the array
delete [] summed_probas;
//Now renormalize the marginals
auto inverse_offset_map = this->get_inverse_offset_map(model_parms);
list<pair< shared_ptr<const Rec_Event>,int>> related_events;
if(inverse_offset_map.count(event_ptr->get_name()) == 0){
related_events = list<pair<shared_ptr<const Rec_Event> , int >> (); //TODO change this to prevent memory leak
}
else{
related_events = inverse_offset_map.at(event_ptr->get_name());
}
this->iterate_normalize(event_ptr,related_events,event_index , 0 );
return;
}
void Model_marginals::write2txt(string filename , const Model_Parms& model_parms){
ofstream outfile(filename);
queue<shared_ptr<Rec_Event>> model_queue = model_parms.get_model_queue();
unordered_map<Rec_Event_name,int> rank_map;
list<shared_ptr<Rec_Event>> processed_events;
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inv_offset_map = get_inverse_offset_map(model_parms , model_queue);
unordered_map<Rec_Event_name,int> index_map = get_index_map(model_parms,model_queue);
//Write into the file according to the model queue order
while(!model_queue.empty()){
shared_ptr<Rec_Event> current_event_p = model_queue.front();
outfile<<"@"<<current_event_p->get_nickname()<<endl;
outfile<<"$Dim[";
//if(!processed_events.empty()){
list<pair<shared_ptr<const Rec_Event>,int>> inv_offset_list = inv_offset_map[current_event_p->get_name()];
if(!inv_offset_list.empty()){
inv_offset_list.sort(offset_comp());
for(list<pair<shared_ptr<const Rec_Event>,int>>::const_iterator jiter=inv_offset_list.begin() ; jiter != inv_offset_list.end() ; ++jiter){
outfile<<(*jiter).first->size()<<",";
}
}
//}
outfile<<current_event_p->size()<<"]"<<endl;
list<string> empty_str_list = list<string>();
write2txt_iteration(inv_offset_list.begin() , inv_offset_list.end() , index_map[current_event_p->get_name()] , outfile , current_event_p , empty_str_list);
model_queue.pop();
}
}
void Model_marginals::write2txt_iteration(list<pair<shared_ptr<const Rec_Event>,int>>::const_iterator iter,const list<pair<shared_ptr<const Rec_Event>,int>>::const_iterator iter_end,int index,ofstream& outfile , shared_ptr<Rec_Event> current_event_p , list<string>& header){
if(iter!=iter_end){
for(int i = 0 ; i != (*iter).first->size() ; ++i){
list<string> header_copy = header;
header_copy.push_back(string("[")+(*iter).first->get_nickname()+string(",")+to_string(i)+string("]"));
int new_index = index + i*(*iter).second;
list<pair<shared_ptr<const Rec_Event>,int>>::const_iterator iter_copy = iter;
++iter_copy;
write2txt_iteration(iter_copy , iter_end , new_index , outfile , current_event_p , header_copy);
}
}
else{
outfile<<"#";
if(!header.empty()){
outfile<<header.front();
list<string>::const_iterator base_jiter = header.begin();
++base_jiter;
for(list<string>::const_iterator jiter = base_jiter ; jiter != header.end() ; ++jiter){
outfile<<","<<(*jiter);
}
}
outfile<<endl;
outfile<<"%"<<marginal_array_smart_p[index];
for(int j=1 ; j < current_event_p->size() ; ++j){
outfile<<","<<marginal_array_smart_p[index+j];
}
outfile<<endl;
}
}
void Model_marginals::txt2marginals(string filename, const Model_Parms& parms){
ifstream testfilestream(filename);
if(!testfilestream){
throw runtime_error("Unknown file: "+filename);
}
string line_str;
//First count the marginals' size
int size_counter = 0;
while(getline(testfilestream,line_str)){
if(line_str[0]=='%'){
size_t semicolon_index = line_str.find(",");
++size_counter;
while(semicolon_index!=string::npos){
size_t next_comma_index = line_str.find(",", (semicolon_index+1) );
semicolon_index = next_comma_index;
++size_counter;
}
}
}
size_t current_marginals_size = this->compute_size(parms);
if(size_counter!=current_marginals_size){
throw runtime_error("Marginals contained in file \"" +filename+ "\" and supplied Model_Parms do not match in size. Make sure the Bayesian Network structure/event realizations and the marginals are coherent.");
}
//Now read the actual marginals values
ifstream infile(filename);
int index = 0;
while(getline(infile,line_str)){
if(line_str[0]=='%'){
size_t semicolon_index = line_str.find(",");
this->marginal_array_smart_p[index] = stod(line_str.substr(1,(semicolon_index)));
++index;
while(semicolon_index!=string::npos){
size_t next_comma_index = line_str.find(",", (semicolon_index+1) );
this->marginal_array_smart_p[index] = stod(line_str.substr( (semicolon_index+1) , (next_comma_index - semicolon_index -1) ));
semicolon_index = next_comma_index;
++index;
}
}
}
//this->marginal_arr_size = index;
//Make sure marginals are normalized (deals with problem of float precision output from the text file)
queue<shared_ptr<Rec_Event>> model_queue = parms.get_model_queue();
unordered_map<Rec_Event_name,int> index_map = get_index_map(parms,model_queue);
unordered_map<Rec_Event_name,list<pair<shared_ptr<const Rec_Event>,int>>> inverse_offset_map = get_inverse_offset_map(parms,model_queue);
this->normalize(inverse_offset_map , index_map , model_queue);
}
/**
* A utility function to swap the order of the events on a marginal array (used to marginalize and invert edges)
* This is used to further align the marginals and combine them
*/
void swap_events_order(const Rec_Event_name event_1 ,const Rec_Event_name event_2 , pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>>& swapped_marginals){
//First get the positions of the events
size_t event_1_position = 0;
bool event_1_found = false;
list<pair<Rec_Event_name,size_t>>::iterator event_1_iterator;
size_t event_2_position = 0;
bool event_2_found = false;
list<pair<Rec_Event_name,size_t>>::iterator event_2_iterator;
//////////////////////////////////////
/*cout<<"swap_events_order()"<<endl;
cout<<event_1<<endl;
cout<<event_2<<endl;
size_t tmp_size = 1;
for(pair<Rec_Event_name,size_t> tmp : swapped_marginals.first){
cout<<tmp.first<<",";
tmp_size*=tmp.second;
}
cout<<endl;
for(size_t i=0 ; i!=tmp_size ; ++i){
cout<<swapped_marginals.second.get()[i]<<",";
}
cout<<endl;*/
/////////////////////////////////////
for(list<pair<Rec_Event_name,size_t>>::iterator iter = swapped_marginals.first.begin() ; iter!=swapped_marginals.first.end() ; ++iter){
if(iter->first == event_1){
event_1_found = true;
}
if(iter->first == event_2){
event_2_found = true;
}
if(not event_1_found){
++event_1_position;
}
if(not event_2_found){
++event_2_position;
}
}
//Make sure both events were found
if(not (event_1_found and event_2_found)){
throw runtime_error(event_1 + " and " + event_2 + " not found on the array, in swap_events_order()");
}
//In case event 1 and 2 were the same events, no change
if(event_1_position == event_2_position){return;}
//Then swap neighbors with the first event until it reaches the correct position
int increment_factor = (event_1_position < event_2_position)*2 -1;
size_t initial_event_1_position = event_1_position;
while(event_1_position != event_2_position){
for(list<pair<Rec_Event_name,size_t>>::iterator iter = swapped_marginals.first.begin() ; iter!=swapped_marginals.first.end() ; ++iter){
if(iter->first == event_1){
event_1_iterator = iter;
break;
}
}
list<pair<Rec_Event_name,size_t>>::iterator next_event_iter = event_2_iterator;
if(increment_factor==-1){
--next_event_iter;
}
else if(increment_factor==1){
++next_event_iter;
}
else{
throw runtime_error("issue in swap event order");
}
//swap_neighboring_events_order(event_1 , (event_1_iterator+increment_factor)->first , swapped_marginals);
swap_neighboring_events_order(event_1 , next_event_iter->first , swapped_marginals);
event_1_position+=increment_factor;
}
//Adjust event_2_position since during the last move it has been swapped with event_1
event_2_position-=increment_factor;
//Then swap down the second one
increment_factor*=(-1); //Now change the swapping direction
while(event_2_position != initial_event_1_position){
for(list<pair<Rec_Event_name,size_t>>::iterator iter = swapped_marginals.first.begin() ; iter!=swapped_marginals.first.end() ; ++iter){
if(iter->first == event_2){
event_2_iterator = iter;
break;
}
}
list<pair<Rec_Event_name,size_t>>::iterator next_event_iter = event_1_iterator;
if(increment_factor==-1){
--next_event_iter;
}
else if(increment_factor==1){
++next_event_iter;
}
else{
throw runtime_error("issue in swap event order");
}
//swap_neighboring_events_order(event_1 , (event_2_iterator+increment_factor)->first , swapped_marginals);
swap_neighboring_events_order(event_2 , next_event_iter->first , swapped_marginals);
event_2_position+=increment_factor;
}
/*cout<<"swap_events_order() suite"<<endl;
cout<<"Swapped version"<<endl;
cout<<event_2<<endl;
tmp_size = 1;
for(pair<Rec_Event_name,size_t> tmp : swapped_marginals.first){
cout<<tmp.first<<",";
tmp_size*=tmp.second;
}
cout<<endl;
for(size_t i=0 ; i!=tmp_size ; ++i){
cout<<swapped_marginals.second.get()[i]<<",";
}
cout<<endl;*/
}
/**
* \bug Will invalidate iterators to the swapped marginals
*/
void swap_neighboring_events_order(const Rec_Event_name event_1 ,const Rec_Event_name event_2 , pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>>& swapped_marginals){
size_t event_1_offset;
size_t event_1_new_offset;
bool event_1_found = false;
list<pair<Rec_Event_name,size_t>>::iterator event_1_iterator;
size_t event_2_offset;
size_t event_2_new_offset;
bool event_2_found = false;
list<pair<Rec_Event_name,size_t>>::iterator event_2_iterator;
size_t current_offset = 1;
/*cout<<"swap_neighboring_events_order : "<<endl;
cout<<event_1<<endl;
cout<<event_2<<endl;
size_t tmp_size = 1;
for(pair<Rec_Event_name,size_t> tmp : swapped_marginals.first){
cout<<tmp.first<<",";
tmp_size*=tmp.second;
}
cout<<endl;
for(size_t i=0 ; i!=tmp_size ; ++i){
cout<<swapped_marginals.second.get()[i]<<",";
}
cout<<endl;*/
for(list<pair<Rec_Event_name,size_t>>::iterator iter = swapped_marginals.first.begin() ; iter!=swapped_marginals.first.end() ; ++iter){
if( iter->first == event_1 and not event_2_found){
event_1_offset = current_offset;
event_1_iterator = iter;
event_1_found = true;
//Update the current offset accordingly
//current_offset*=iter->second;
}
else if( iter->first == event_2 and not event_1_found){
event_2_offset = current_offset;
event_2_iterator = iter;
event_2_found = true;
//Update the current offset accordingly
//current_offset*=iter->second;
}
current_offset*=iter->second;//Need to get the total array size, thus loop over all realizations
//cout<<iter->first<<",";
}
//cout<<endl;
if(event_1_found){
//Event 1 is first on the array, event_2 should be right after
event_2_iterator = event_1_iterator;
++event_2_iterator;
if(event_2_iterator->first != event_2){
throw runtime_error(event_1 + " and " + event_2 + " are not neighbors, in swap_neighboring_events_order()");
}
event_1_new_offset =event_1_offset*event_2_iterator->second;
event_2_offset = event_1_offset*event_1_iterator->second;
event_2_new_offset = event_1_offset;
}
else if(event_2_found){
//Event 2 is first on the array, event_1 should be right after
event_1_iterator = event_2_iterator;
++event_1_iterator;
if(event_1_iterator->first != event_1){
throw runtime_error(event_1 + " and " + event_2 + " are not neighbors, in swap_neighboring_events_order()");
}
event_2_new_offset =event_2_offset*event_1_iterator->second;
event_1_offset = event_2_offset*event_2_iterator->second;
event_1_new_offset = event_2_offset;
}
else{
//Throw exception if none of the two events were found
throw runtime_error(event_1 + " and " + event_2 + " not found on the array, in swap_neighboring_events_order()");
}
shared_ptr<long double> new_array_ptr(new long double [current_offset]); //Current offset is the total size of the array after looping over all events
for(size_t i=0 ; i!=current_offset ; ++i){ //Current offset has been used to compute the total size of the array
if(event_1_found){
//event 1 used to have
}
size_t small_offset = min(event_1_new_offset,event_2_new_offset);
size_t big_offset = max(event_1_new_offset*event_1_iterator->second,event_2_new_offset*event_2_iterator->second);
/*
* Now invert the marginals
* (i/former_offset)%size corresponds to the realization index
* i%small offset are all lower dependencies that need to be copied in the same order (lower dimensions)
* big offset denotes the offset of stuff depending on the two events (higher dimensions)
*
*/
new_array_ptr.get()[ (i/big_offset)*big_offset +
((i/event_1_offset)%event_1_iterator->second)*event_1_new_offset +
((i/event_2_offset)%event_2_iterator->second)*event_2_new_offset +
i%small_offset ] = swapped_marginals.second.get()[i];
}
//The STL does not provide a function to swap two elements positions
//Instead i'll insert the two elements in the swapped order after the 2 elements in the right order
//I will then delete the two unswapped elements
/* if(event_1_found){
/* //swapped_marginals.first.insert(event_2_iterator+1,event_1_iterator,event_2_iterator+1);
//swapped_marginals.first.erase(event_1_iterator,event_2_iterator+1);
list<pair<Rec_Event_name,size_t>>::iterator tmp_iter = event_2_iterator;
++tmp_iter;
swapped_marginals.first.insert(tmp_iter,event_1_iterator,tmp_iter);
swapped_marginals.first.erase(event_1_iterator,tmp_iter);
}
else if(event_2_found){
//swapped_marginals.first.insert(event_1_iterator+1,event_2_iterator,event_1_iterator+1);
//swapped_marginals.first.erase(event_2_iterator,event_1_iterator+1);
list<pair<Rec_Event_name,size_t>>::iterator tmp_iter = event_1_iterator;
++tmp_iter;
swapped_marginals.first.insert(tmp_iter,event_2_iterator,tmp_iter);
swapped_marginals.first.erase(event_2_iterator,tmp_iter);
}
*/
//Now swap the neighboring events in the list
std::swap(*event_1_iterator,*event_2_iterator);
//Reassign the swapped array
swapped_marginals.second = new_array_ptr;
/*cout<<"swap_neighboring_events_order swapped : "<<endl;
tmp_size = 1;
for(pair<Rec_Event_name,size_t> tmp : swapped_marginals.first){
cout<<tmp.first<<",";
tmp_size*=tmp.second;
}
cout<<endl;
for(size_t i=0 ; i!=tmp_size ; ++i){
cout<<swapped_marginals.second.get()[i]<<",";
}
cout<<endl;*/
}
/**
* Utility to align marginals with events in the same order
* Note that the implementation is probably not efficient but at least remains simple
* Can align marginals with higher number of dimensions than the reference
*/
void align_marginal_array(const list<pair<Rec_Event_name,size_t>>& reference_marginals_order , pair<list<pair<Rec_Event_name,size_t>>,shared_ptr<long double>>& aligned_marginals){
////////////////////////////////////////////////////
/*cout<<"align_marginal_array()"<<endl;
cout<<"Reference marginal order: ";
for(pair<Rec_Event_name,size_t> zzz : reference_marginals_order){
cout<<zzz.first<<",";
}
cout<<endl<<"Aligned marginal order: ";
for(pair<Rec_Event_name,size_t> zzz : aligned_marginals.first){
cout<<zzz.first<<",";
}
cout<<endl;*/
if(reference_marginals_order.size()>aligned_marginals.first.size()){
throw runtime_error("Aligned marginals have less dimensions than the reference marginals in align_marginal_array()");
}
list<pair<Rec_Event_name,size_t>>::const_iterator reference_iterator = reference_marginals_order.cbegin();
size_t counter = 0;
while(reference_iterator != reference_marginals_order.cend()){
//Swap the reference event directly at the right position
list<pair<Rec_Event_name,size_t>>::iterator tmp_iter = aligned_marginals.first.begin();
size_t i=0;
while(i!=counter){
++tmp_iter;
++i;
}
if(reference_iterator->first != tmp_iter->first){
swap_events_order(reference_iterator->first , tmp_iter->first , aligned_marginals);
}
++counter;
++reference_iterator;
}
}
|