File: Utils.h

package info (click to toggle)
igor 1.4.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,124 kB
  • sloc: cpp: 12,453; python: 1,047; sh: 124; makefile: 32
file content (678 lines) | stat: -rw-r--r-- 21,436 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
 * Utils.h
 *
 *  Created on: Apr 9, 2015
 *      Author: Quentin Marcou
 *
 *  This source code is distributed as part of the IGoR software.
 *  IGoR (Inference and Generation of Repertoires) is a versatile software to analyze and model immune receptors
 *  generation, selection, mutation and all other processes.
 *   Copyright (C) 2017  Quentin Marcou
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.

 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

#ifndef UTILS_H_
#define UTILS_H_

#include <fstream>
#include <vector>
#include <string>
#include <utility>
#include <tuple>
#include <stdexcept>
#include <iostream>
#include "IntStr.h"
#include <memory>
#include <list>
#include <random>
#include <chrono>
#include<sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <unordered_map>


class Rec_Event;


enum Event_type {GeneChoice_t , Deletion_t , Insertion_t , Dinuclmarkov_t,Undefined_t};
enum Event_safety{VD_safe = 0  , DJ_safe = 1  , VJ_safe = 2 };
enum Seq_side{ Five_prime =0 , Three_prime = 1 , Undefined_side = 2 };
enum Seq_type {V_gene_seq = 0 , VD_ins_seq = 1 , D_gene_seq = 2 , DJ_ins_seq = 3 , J_gene_seq = 4 , VJ_ins_seq = 5};
enum Gene_class{V_gene=0 , VD_genes=1 , D_gene=2 , DJ_genes=3 , J_gene=4 , VJ_genes=5 , VDJ_genes=6 ,Undefined_gene=7 };
enum Fileformat{CSV_f,FASTA_f,TXT_f, FASTQ_f};
enum Int_nt { int_A = 0 , int_C = 1 , int_G = 2 , int_T = 3 , int_R = 4 , int_Y = 5 , int_K = 6 , int_M = 7 , int_S = 8 ,
				int_W = 9 , int_B = 10 , int_D = 11 , int_H = 12 , int_V = 13 , int_N = 14};


Gene_class str2GeneClass(const std::string);
std::string to_string(const Gene_class);
Seq_side str2SeqSide(const std::string);
std::string to_string(const Seq_side);

std::ostream& operator<<(std::ostream& , Gene_class);
std::ostream& operator<<(std::ostream& , Seq_side);
std::string operator+(const std::string& , Gene_class );
std::string operator+(const std::string& , Seq_side );
std::string operator+(const std::string& , Event_type );

//Type used to describe the array of doubles containing the marginals values
typedef std::unique_ptr<long double []> Marginal_array_p;

//Type used as key for unordered map since Rec_event cannot be instantiated
typedef std::string Rec_Event_name;

//Type used for offset of alignmed sequences in sequence_offsets maps. Used to characterize the beginning and the end of a sequence on the data sequence
typedef int Seq_Offset;
typedef Int_Str* Int_Str_ptr;

//Typedef used for getting the next event ptr
//typedef std::shared_ptr<Rec_Event> Next_event_ptr; //Does not work for some reason
typedef Rec_Event* Next_event_ptr;

/**
 * \brief Declare a null_delete function
 * \author Q.Marcou
 * This function is not performing any task, it's purpose is to supply a "null_delete" function
 * to prevent shared pointer objects created when passing Rec_Event or Error_rate objects pointers to model_parms
 * to be destroyed when the model_parms object is destroyed itself and the rec_event and error_rate objects
 * might still be of used (and if not prevent from a segfault error by trying to delete them twice)
 */
template<class T> struct null_delete{
	null_delete<T>(){}
	void operator()(T*&){};
};

/*
 * Declare a simple matrix class
 *
 */
template<typename T> struct Matrix {
public:
	Matrix():rows(0) , cols(0) , array_p(new T [0]){}
	Matrix(int m ,int n ): rows(m) , cols(n) , array_p(nullptr){
		if(m*n>0 and m>0){
			array_p = new T [m*n];
		}
	}
	Matrix(int m , int n , T arr[]):rows(m) , cols(n) , array_p(new T [m*n]){
		for(size_t i = 0 ; i != m*n ; i++){
			array_p[i] = arr[i];
		}
	}
	Matrix(int m , int n , std::vector<T> vect):rows(m) , cols(n) , array_p(new T [m*n]){
		for(size_t i = 0 ; i != m*n ; i++){
			array_p[i] = vect.at(i);
		}
	}
	Matrix(const Matrix<T>& other){
		//Provides deep copy of a matrix
		this->rows = other.rows;
		this->cols = other.cols;
		this->array_p = new T [rows*cols];
		for(int i = 0 ; i != rows*cols ; i++){
			this->array_p[i] = other.array_p[i];
		}
	}
	~Matrix(){
			delete [] array_p;
	}

	Matrix<T>& operator=(const Matrix& other){
		delete [] array_p;
		this->rows = other.rows;
		this->cols = other.cols;
		this->array_p = new T [rows*cols];
		for(int i = 0 ; i != rows*cols ; i++){
			this->array_p[i] = other.array_p[i];
		}
	}

	T& operator()(const int& i ,const int& j ){
		if( (i>rows-1) || (j>cols-1) ){
			throw std::length_error("Cannot access indices ["+std::to_string(i)+","+std::to_string(j)+"] with matrix dimensions ["+std::to_string(rows)+","+std::to_string(cols)+"]");
			std::cout<<"out_of range matrix coordinates: "<<rows<<"<"<<i<<" or "<<cols<<"<"<<j<<std::endl;
		}
		return array_p[i + rows*j];
	}

	const T& operator()(const int& i ,const int& j ) const{
		if( (i>rows-1) || (j>cols-1) ){
			throw std::length_error("Cannot access indices ["+std::to_string(i)+","+std::to_string(j)+"] with matrix dimensions ["+std::to_string(rows)+","+std::to_string(cols)+"]");
			std::cout<<"out_of range matrix coordinates: "<<rows<<"<"<<i<<" or "<<cols<<"<"<<j<<std::endl;
		}
		return array_p[i + rows*j];
	}

	T get_field(const int& i ,const int& j ) const{
		if( (i>rows-1) || (j>cols-1) ){
			throw std::length_error("Cannot access indices ["+std::to_string(i)+","+std::to_string(j)+"] with matrix dimensions ["+std::to_string(rows)+","+std::to_string(cols)+"]");
			std::cout<<"out_of range matrix coordinates: "<<rows<<"<"<<i<<" or "<<cols<<"<"<<j<<std::endl;
		}
		return array_p[i + rows*j];
	}

	//Accessors
	const int& get_n_rows() const {return rows;}
	const int& get_n_cols() const {return cols;}
private:
	int rows;
	int cols;
	T* array_p ;
};

template <typename T>
std::ostream& operator<<(std::ostream& stream ,const Matrix<T>& mat){
	stream<<mat.get_n_rows()<<"x"<<mat.get_n_cols()<<" Matrix"<<std::endl;
	for(int j = 0 ; j!= mat.get_n_cols() ; ++j){
		for(int i = 0 ; i!= mat.get_n_rows() ; ++i){
			if(i!=0){
				stream<<" ";
			}
			stream<<mat.get_field(i,j);
		}
		stream<<std::endl;
	}
	return stream;
}


/*
 * This class provides a fast alternative to unordered_map<Seq_type,string*> for the constructed_sequences objects
 * Change this and give some kind of matrix with memory levels
 * Create a 0 size at first?
 * Get rid of it in the deletions
 */
template<typename K, typename V> class  Enum_fast_memory_map {
public:
		Enum_fast_memory_map(int defined_range):max_layer(0) , range(defined_range){
			value_ptr_arr =  new V [range];
			memory_layer_ptr = new int [range];
			for(size_t i = 0 ; i!=range ; ++i){
				this->memory_layer_ptr[i] = -1;
			}
			/*for(size_t i = 0 ; i!=range ; i++){
				str_ptr_arr[i] = nullptr;
			}*/
		}
		virtual ~Enum_fast_memory_map(){
			delete [] value_ptr_arr;
			delete [] memory_layer_ptr;
		}

		//Accessors
		V& operator[](const K& key){
			if(key>range-1){throw std::out_of_range("Unknown key in Enum_fast_memory_map::operator(Seq_type)");}
			if(memory_layer_ptr[key]>-1){
				return (*(value_ptr_arr+ key + memory_layer_ptr[key]*range));
			}
			else{
				memory_layer_ptr[key] = 0;
				return (*(value_ptr_arr+key));
			}

		}


		V& at(const K& key){
			if(key>range-1){
				throw std::out_of_range("Unknown key in Enum_fast_memory_map::operator(K key)");
			}
			else{
				if(memory_layer_ptr[key]>-1){
					return (*(value_ptr_arr + key + memory_layer_ptr[key]*range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_map::at(const K& key)");
				}
			}
		}


		V& at(const K& key ,int memory_layer){
			if(key>range-1){
				throw std::out_of_range("Unknown seq type in Enum_fast_memory_map::operator(Seq_type)");
			}
			else{
				if(memory_layer<=(memory_layer_ptr[key]+1)){
					memory_layer_ptr[key] = memory_layer;
					return (*(value_ptr_arr + key + memory_layer*range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_map::at( const K& key, int memory_layer)");
				}
			}
		}

		const V& at(const K& key ,int memory_layer) const{
			if(key>range-1){
				throw std::out_of_range("Unknown seq type in Enum_fast_memory_map::operator(Seq_type)");
			}
			else{
				if(memory_layer<=(memory_layer_ptr[key]+1)){
					memory_layer_ptr[key] = memory_layer;
					return (*(value_ptr_arr + key + memory_layer*range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_map::at( const K& key, int memory_layer)");
				}
			}
		}


		int get_current_memory_layer(const K& key){
			return memory_layer_ptr[key];
		}

		void get_all_current_memory_layer(int* memory_layers_recipient){
			for(size_t i =0 ; i!=range ; ++i){
				memory_layers_recipient[i] = memory_layer_ptr[i];
			}
		}

		bool exist(const K& key){
			return memory_layer_ptr[key]>-1;
		}


		void request_memory_layer(const K& key){
			/*std::cout<<key<<std::endl;
			std::cout<<memory_layer_ptr[key]<<std::endl;*/
			if(key>range-1){
				throw std::out_of_range("Unknown key in Enum_fast_memory_map::request_memory_layer()");
			}
			//Get current memory layer at this position
				if(memory_layer_ptr[key]<max_layer){
					++memory_layer_ptr[key];
				}
				else{
					++max_layer;
					V* new_value_ptr = new V [range*(max_layer+1)];
					for(size_t i = 0 ; i!=range ; ++i){
						for(size_t j=0 ; j!=(max_layer) ; ++j){
							(*(new_value_ptr + i+j*range)) = (*(value_ptr_arr + i+j*range));
						}
					}
					delete [] value_ptr_arr;
					value_ptr_arr = new_value_ptr;
					++memory_layer_ptr[key];
				}
			}


		//Setters
		void set_value(const K& key ,const V& value , int memory_layer){
			if(key>range-1){throw std::out_of_range("Unknown seq type in Seq_type_str_p_map::operator(Seq_type)");}
				//Cannot fill memory layer without filling the ones downstream
				if(memory_layer<=(memory_layer_ptr[key]+1)){
					(*(value_ptr_arr + key + memory_layer*range)) = value;
					//Setting a value at a given layer invalidate upper layers
					memory_layer_ptr[key] = memory_layer;
				}
				else{
					throw std::out_of_range("Trying to access incorrect memory layer in Enum_fast_memory_map::set_value()");
				}
		}

		void multiply_all(double& prod_operand , int* memory_adresses){
			for(size_t i = 0 ; i!=range ; ++i){
/*				std::cout<<i<<std::endl;
				std::cout<<(*(value_ptr_arr + i))<<std::endl;
				std::cout<<(*(memory_adresses + i))*range<<std::endl;*/
				prod_operand *= value_ptr_arr[ i +memory_adresses[i]*range];
			}
		}

		void reset(){
			for(size_t i = 0 ; i!=range ; ++i){
				if(memory_layer_ptr[i]>-1){
					memory_layer_ptr[i]=0;
				}
			}
		}

		void init_first_layer(V value){
			for(size_t i = 0 ; i!=range ; ++i){
				if(memory_layer_ptr[i]>-1){
					throw std::runtime_error("First memory layer already initialized for key " + std::to_string(i) + " in Enum_fast_memory_map::init_first_layer");
				}
				else{
					value_ptr_arr[i] = value;
					memory_layer_ptr[i] = 0;
				}
			}
		}



protected:
	V* value_ptr_arr;
	int* memory_layer_ptr;
	int max_layer;
	size_t range; //= 6; //number of outcomes in Seq_type

};



typedef Enum_fast_memory_map<Seq_type,Int_Str_ptr> Seq_type_str_p_map;

typedef Enum_fast_memory_map<Event_safety,bool> Safety_bool_map;

typedef Enum_fast_memory_map<Seq_type,std::vector<int>*> Mismatch_vectors_map;

typedef Enum_fast_memory_map<int,size_t> Index_map;

typedef Enum_fast_memory_map<Seq_type,double> Downstream_scenario_proba_bound_map;

/*
	template<> class Enum_fast_memory_map<Seq_type ,Str_ptr>{
	Enum_fast_memory_map():Enum_fast_memory_map<Seq_type,Str_ptr>(6){};
	size_t range = 6;
};
*/


/*template<>
class Seq_type_str_p_map : public Enum_fast_memory_map<Seq_type,Str_ptr>{

};*/


/*
 * This class provides a fast alternative to unordered_map<Seq_type,string*> for the constructed_sequences objects
 * Change this and give some kind of matrix with memory levels
 * Create a 0 size at first?
 * Get rid of it in the deletions
 */
template<typename K1, typename K2 , typename V> class  Enum_fast_memory_dual_key_map {
public:
		Enum_fast_memory_dual_key_map(size_t Key1_range , size_t Key2_range):max_layer(0) , range_key1(Key1_range) , range_key2(Key2_range){
			total_range = range_key1*range_key2;
			value_ptr_arr =  new V [total_range];
			memory_layer_ptr = new int [total_range];
			for(size_t i = 0 ; i!=total_range ; ++i){
				this->memory_layer_ptr[i] = -1;
			}
			/*for(size_t i = 0 ; i!=range ; i++){
				str_ptr_arr[i] = nullptr;
			}*/
		}
		virtual ~Enum_fast_memory_dual_key_map(){
			delete [] value_ptr_arr;
			delete [] memory_layer_ptr;
		}

		//Accessors
		//Cannot use [] with more than one argument
		/*V& operator[](const K1& key1 , const K2& key2){
			if(key1>range_key1-1){throw std::out_of_range("Unknown key1 in Enum_fast_memory_map::operator(Seq_type)");}
			if(key2>range_key2-1){throw std::out_of_range("Unknown key2 in Enum_fast_memory_map::operator(Seq_type)");}
			if(memory_layer_ptr[key1+range_key1*key2]>-1){
				return (*(value_ptr_arr+ key1+range_key1*key2 + memory_layer_ptr[key1+range_key1*key2]*total_range));
			}
			else{
				memory_layer_ptr[key1+range_key1*key2] = 0;
				return (*(value_ptr_arr+key1+range_key1*key2));
			}

		}*/


		V& at(const K1& key1 , const K2& key2){
			if(key1>range_key1-1){
				throw std::out_of_range("Unknown key1 in Enum_fast_memory_dual_key_map::at()");
			}
			else if(key2>range_key2-1){
				throw std::out_of_range("Unknown key2 in Enum_fast_memory_dual_key__map::at()");
			}
			else{
				if(memory_layer_ptr[key1+range_key1*key2]>-1){
					return (*(value_ptr_arr + key1+range_key1*key2 + memory_layer_ptr[key1+range_key1*key2]*total_range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_dual_key__map::at()");
				}
			}
		}

		const V& at(const K1& key1 , const K2& key2) const{
			if(key1>range_key1-1){
				throw std::out_of_range("Unknown key1 in Enum_fast_memory_dual_key_map::at()");
			}
			else if(key2>range_key2-1){
				throw std::out_of_range("Unknown key2 in Enum_fast_memory_dual_key__map::at()");
			}
			else{
				if(memory_layer_ptr[key1+range_key1*key2]>-1){
					return (*(value_ptr_arr + key1+range_key1*key2 + memory_layer_ptr[key1+range_key1*key2]*total_range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_dual_key__map::at()");
				}
			}
		}

		V& at(const K1& key1 , const K2& key2 , int memory_layer){
			if(key1>range_key1-1){
				throw std::out_of_range("Unknown key1 in Enum_fast_memory_dual_key__map::at()");
			}
			else if(key2>range_key2-1){
				throw std::out_of_range("Unknown key2 in Enum_fast_memory_dual_key__map::at()");
			}
			else{
				if(memory_layer<=(memory_layer_ptr[key1+range_key1*key2]+1)){
					memory_layer_ptr[key1+range_key1*key2] = memory_layer;
					return (*(value_ptr_arr + key1+range_key1*key2 + memory_layer*total_range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_dual_key__map::at()");
				}
			}
		}

		const V& at(const K1& key1 , const K2& key2 , int memory_layer) const{
			if(key1>range_key1-1){
				throw std::out_of_range("Unknown key1 in Enum_fast_memory_dual_key__map::at()");
			}
			else if(key2>range_key2-1){
				throw std::out_of_range("Unknown key2 in Enum_fast_memory_dual_key__map::at()");
			}
			else{
				if(memory_layer<=(memory_layer_ptr[key1+range_key1*key2]+1)){
					memory_layer_ptr[key1+range_key1*key2] = memory_layer;
					return (*(value_ptr_arr + key1+range_key1*key2 + memory_layer*total_range));
				}
				else{
					throw std::out_of_range("Trying to access uninitialized position in Enum_fast_memory_dual_key__map::at()");
				}
			}
		}


		int get_current_memory_layer(const K1& key1 , const K2& key2){
			return memory_layer_ptr[key1+range_key1*key2];
		}


		void request_memory_layer(const K1& key1 , const K2& key2){
			/*std::cout<<key<<std::endl;
			std::cout<<memory_layer_ptr[key]<<std::endl;*/
			if(key1>range_key1-1){
				throw std::out_of_range("Unknown key1 in Enum_fast_memory_dual_key__map::request_memory_layer()");
			}
			if(key2>range_key2-1){
				throw std::out_of_range("Unknown key2 in Enum_fast_memory_dual_key__map::request_memory_layer()");
			}
			//Get current memory layer at this position
				if(memory_layer_ptr[key1+range_key1*key2]<max_layer){
					++memory_layer_ptr[key1+range_key1*key2];
				}
				else{
					++max_layer;
					V* new_value_ptr = new V [total_range*(max_layer+1)];
					for(size_t i = 0 ; i!=total_range ; ++i){
						for(size_t j=0 ; j!=(max_layer) ; ++j){
							(*(new_value_ptr + i+j*total_range)) = (*(value_ptr_arr + i+j*total_range));
						}
					}
					delete [] value_ptr_arr;
					value_ptr_arr = new_value_ptr;
					++memory_layer_ptr[key1+range_key1*key2];
				}
			}


		//Setters
		void set_value(const K1& key1 , const K2& key2 ,V value , int memory_layer){
			if(key1>range_key1-1){throw std::out_of_range("Unknown key1 in Seq_type_str_p_map::set_value()");}
			if(key2>range_key2-1){throw std::out_of_range("Unknown key2 in Seq_type_str_p_map::set_value()");}
				//Cannot fill memory layer without filling the ones downstream
				if(memory_layer<=(memory_layer_ptr[key1+range_key1*key2]+1)){
					(*(value_ptr_arr + key1+range_key1*key2 + memory_layer*total_range)) = value;
					//Setting a value at a given layer invalidate upper layers
					memory_layer_ptr[key1+range_key1*key2] = memory_layer;
				}
				else{
					throw std::out_of_range("Trying to access incorrect memory layer in Enum_fast_memory_dual_key__map::set_value()");
				}
		}


protected:
	V* value_ptr_arr;
	int* memory_layer_ptr;
	int max_layer;
	size_t range_key1; //= 6; //number of outcomes in Seq_type
	size_t range_key2;
	size_t total_range;

};

typedef Enum_fast_memory_dual_key_map<Seq_type,Seq_side,Seq_Offset> Seq_offsets_map;







/*
 * Defining a hash functions for Rec_Event, Gene_class and pair<Gene_class,Seq_side>
 */
 namespace std{
	 /*
 	 template<>
	 struct hash<Rec_Event>{
		inline std::size_t operator()(const Rec_Event& event) const{ //TODO inline?
			return  (((hash<int>()(event.get_class())
					^(hash<int>()(event.get_side())<<1 )) >>1)
					^(hash<int>()(event.get_priority())<<1)>>1)
					^(hash<int>()(event.get_realizations_map().size())<<1);
			//Note : only consider the size of the realization map and not what it contains for speed purposes
			//this should be enough to ensure no collisions
		}
	 };
	 */


/*
	 template<>
	 struct hash<Rec_Event*>{
		 std::size_t operator()(const Rec_Event*& event_point) const{
			 return hash<Rec_Event>()(*event_point);
		 }
	 };
	 */

	 template<>
	 	 struct hash<Seq_type>{
	 		 std::size_t operator()(const Seq_type& seq_t) const{
	 		 			return  hash<int>()(seq_t);
	 		 		}
	 	 };

	template<>
		 struct hash<Gene_class>{
			 std::size_t operator()(const Gene_class& gene) const{
						return  hash<int>()(gene);
					}
		 };

	 template<>
	 struct hash<std::pair<Gene_class,Seq_side>>{
		 std::size_t operator()(const pair<Gene_class,Seq_side>& gene_pair) const{
		 		 		return  (hash<Gene_class>()(gene_pair.first)
		 		 				^(hash<int>()(gene_pair.second) <<1))>>1;
		 		 	}
	 };

	 template<>
	 struct hash<std::tuple<Event_type,Gene_class,Seq_side>>{
		std::size_t operator()(const std::tuple<Event_type,Gene_class,Seq_side>& event_triplet) const{
			Event_type ev_type;
			Gene_class g_class;
			Seq_side s_side;
			std::tie(ev_type,g_class,s_side) = event_triplet;
			return ((hash<int>()(ev_type)
					^(hash<int>()(g_class) <<1)>>1)
					^(hash<int>()(s_side) <<1));

		}
	 };

	 template<>
	 struct hash<std::pair<Seq_type,Seq_side>>{
		std::size_t operator()(const std::pair<Seq_type,Seq_side> seq_pair) const{
			return  (hash<int>()(seq_pair.first)
					 		 				^(hash<int>()(seq_pair.second) <<1))>>1;
		}
	 };

	 template<>
	 struct hash<Event_safety>{
		 std::size_t operator()(const Event_safety ev_saf) const{
			 return (hash<int>()(ev_saf));
		 }
	 };
 }

 struct D_position_comparator{
 	 bool operator()(std::tuple<std::string,int,int,double> position_1 , std::tuple<std::string,int,int,double> position_2 ){
 		 return std::get<3>(position_1) > std::get<3>(position_2);
 	 }
 };

 struct inverse_offset_comparator{
	 bool operator()(const std::pair<std::shared_ptr<const Rec_Event>,int>& inv_offset_1 , const std::pair<std::shared_ptr<const Rec_Event>,int>& inv_offset_2){
		 return inv_offset_1.second < inv_offset_2.second;
	 }
 };

std::vector<std::string> extract_string_fields(const std::string,const std::string);

void show_progress_bar(std::ostream&,double, std::string prefix_message = "", size_t progress_bar_size = 70);
void close_progress_bar(std::ostream&, std::string prefix_message = "", size_t progress_bar_size = 70);
uint64_t draw_random_64bits_seed();


typedef std::unordered_map<std::string,std::string> UMCodonTable;



std::string translate(std::string seq);

#endif /* UTILS_H_ */