File: igraph_get_shortest_paths_dijkstra.c

package info (click to toggle)
igraph 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 19,180 kB
  • ctags: 16,601
  • sloc: ansic: 188,037; sh: 26,731; cpp: 18,275; yacc: 1,164; makefile: 959; lex: 484; xml: 378
file content (214 lines) | stat: -rw-r--r-- 6,456 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/* -*- mode: C -*-  */
/* 
   IGraph library.
   Copyright (C) 2006-2012  Gabor Csardi <csardi.gabor@gmail.com>
   334 Harvard st, Cambridge MA, 02139 USA
   
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA 
   02110-1301 USA

*/

#include <igraph.h>

#include <stdlib.h>

void print_vector(igraph_vector_t *v) {
  long int i, l=igraph_vector_size(v);
  for (i=0; i<l; i++) {
    printf(" %li", (long int) VECTOR(*v)[i]);
  }
  printf("\n");
}

int check_evecs(const igraph_t *graph, const igraph_vector_ptr_t *vecs,
		const igraph_vector_ptr_t *evecs, int error_code) {

  igraph_bool_t directed=igraph_is_directed(graph);
  long int i, n=igraph_vector_ptr_size(vecs);
  if (igraph_vector_ptr_size(evecs) != n) { exit(error_code+1); }
  
  for (i=0; i<n; i++) {
    igraph_vector_t *vvec=VECTOR(*vecs)[i];
    igraph_vector_t *evec=VECTOR(*evecs)[i];
    long int j, n2=igraph_vector_size(evec);
    if (igraph_vector_size(vvec) == 0 && n2==0) { continue; }
    if (igraph_vector_size(vvec) != n2+1) { exit(error_code+2); }
    for (j=0; j<n2; j++) {
      long int edge=VECTOR(*evec)[j];
      long int from=VECTOR(*vvec)[j];
      long int to=VECTOR(*vvec)[j+1];
      if (directed) {
	if (from != IGRAPH_FROM(graph, edge) ||
	    to   != IGRAPH_TO  (graph, edge)) {
	  exit(error_code);
	}
      } else {
	long int from2=IGRAPH_FROM(graph, edge);
	long int to2=IGRAPH_TO(graph, edge);
	long int min1= from < to ? from : to;
	long int max1= from < to ? to : from;
	long int min2= from2 < to2 ? from2 : to2;
	long int max2= from2 < to2 ? to2 : from2;
	if (min1 != min2 || max1 != max2) { exit(error_code+3); }
      }
    }
  }

  return 0;
}

int check_pred_inbound(const igraph_t* graph, const igraph_vector_long_t* pred,
        const igraph_vector_long_t* inbound, int start, int error_code) {
  long int i, n = igraph_vcount(graph);

  if (igraph_vector_long_size(pred) != n ||
      igraph_vector_long_size(inbound) != n) {
    exit(error_code);
  }

  if (VECTOR(*pred)[start] != start || VECTOR(*inbound)[start] != -1)
    exit(error_code+1);

  for (i = 0; i < n; i++) {
    if (VECTOR(*pred)[i] == -1) {
      if (VECTOR(*inbound)[i] != -1) {
        exit(error_code+2);
      }
    } else if (VECTOR(*pred)[i] == i) {
      if (i != start) {
        exit(error_code+3);
      }
      if (VECTOR(*inbound)[i] != -1) {
        exit(error_code+4);
      }
    } else {
      long int eid = VECTOR(*inbound)[i];
      long int u = IGRAPH_FROM(graph, eid), v = IGRAPH_TO(graph, eid);
      if (v != i && !igraph_is_directed(graph)) {
        long int dummy = u;
        u = v; v = dummy;
      }
      if (v != i) {
        exit(error_code+5);
      } else if (u != VECTOR(*pred)[i]) {
        exit(error_code+6);
      }
    }
  }

  return 0;
}

int main() {

  igraph_t g;
  igraph_vector_ptr_t vecs, evecs;
  igraph_vector_long_t pred, inbound;
  long int i;
  igraph_real_t weights[] = { 1, 2, 3, 4, 5, 1, 1, 1, 1, 1 }; 
  igraph_real_t weights2[] = { 0,2,1, 0,5,2, 1,1,0, 2,2,8, 1,1,3, 1,1,4, 2,1 };
  igraph_vector_t weights_vec;
  igraph_vs_t vs;

  /* Simple ring graph without weights */

  igraph_ring(&g, 10, IGRAPH_UNDIRECTED, 0, 1);
  
  igraph_vector_ptr_init(&vecs, 5);
  igraph_vector_ptr_init(&evecs, 5);
  igraph_vector_long_init(&pred, 0);
  igraph_vector_long_init(&inbound, 0);

  for (i=0; i<igraph_vector_ptr_size(&vecs); i++) {
    VECTOR(vecs)[i] = calloc(1, sizeof(igraph_vector_t));
    igraph_vector_init(VECTOR(vecs)[i], 0);
    VECTOR(evecs)[i] = calloc(1, sizeof(igraph_vector_t));
    igraph_vector_init(VECTOR(evecs)[i], 0);
  }
  igraph_vs_vector_small(&vs, 1, 3, 5, 2, 1,  -1);
  
  igraph_get_shortest_paths_dijkstra(&g, /*vertices=*/ &vecs, 
				     /*edges=*/ &evecs, /*from=*/ 0, /*to=*/ vs, 
				     /*weights=*/ 0, /*mode=*/ IGRAPH_OUT,
				     /*predecessors=*/ &pred,
				     /*inbound_edges=*/ &inbound);

  check_evecs(&g, &vecs, &evecs, 10);
  check_pred_inbound(&g, &pred, &inbound, /* from= */ 0, 40);

  for (i=0; i<igraph_vector_ptr_size(&vecs); i++) {
    print_vector(VECTOR(vecs)[i]);
  }

  /* Same ring, but with weights */

  igraph_vector_view(&weights_vec, weights, sizeof(weights)/sizeof(igraph_real_t));
  igraph_get_shortest_paths_dijkstra(&g, /*vertices=*/ &vecs, 
				     /*edges=*/ &evecs, /*from=*/ 0, /*to=*/ vs, 
				     &weights_vec, IGRAPH_OUT,
				     /*predecessors=*/ &pred,
				     /*inbound_edges=*/ &inbound);
  
  check_evecs(&g, &vecs, &evecs, 20);
  check_pred_inbound(&g, &pred, &inbound, /* from= */ 0, 50);

  for (i=0; i<igraph_vector_ptr_size(&vecs); i++) {
    print_vector(VECTOR(vecs)[i]);
  }

  igraph_destroy(&g);

  /* More complicated example */

  igraph_small(&g, 10, IGRAPH_DIRECTED, 
	       0,1, 0,2, 0,3,    1,2, 1,4, 1,5,
	       2,3, 2,6,         3,2, 3,6,
	       4,5, 4,7,         5,6, 5,8, 5,9,
	       7,5, 7,8,         8,9,
	       5,2,
	       2,1,
	       -1);
  
  igraph_vector_view(&weights_vec, weights2, sizeof(weights2)/sizeof(igraph_real_t));
  igraph_get_shortest_paths_dijkstra(&g, /*vertices=*/ &vecs, 
				     /*edges=*/ &evecs, /*from=*/ 0, /*to=*/ vs, 
				     &weights_vec, IGRAPH_OUT,
				     /*predecessors=*/ &pred,
				     /*inbound_edges=*/ &inbound);

  check_evecs(&g, &vecs, &evecs, 30);
  check_pred_inbound(&g, &pred, &inbound, /* from= */ 0, 60);
  
  for (i=0; i<igraph_vector_ptr_size(&vecs); i++) {
    print_vector(VECTOR(vecs)[i]);
    igraph_vector_destroy(VECTOR(vecs)[i]);
    free(VECTOR(vecs)[i]);
    igraph_vector_destroy(VECTOR(evecs)[i]);
    free(VECTOR(evecs)[i]);
  }

  igraph_vector_ptr_destroy(&vecs);
  igraph_vector_ptr_destroy(&evecs);
  igraph_vector_long_destroy(&pred);
  igraph_vector_long_destroy(&inbound);
  
  igraph_vs_destroy(&vs);
  igraph_destroy(&g);

  if (!IGRAPH_FINALLY_STACK_EMPTY) return 1;

  return 0;
}