1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/* -*- mode: C -*- */
/*
Test suite for random sampling.
Copyright (C) 2011 Minh Van Nguyen <nguyenminh2@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include <assert.h>
#include <igraph.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#define R_INTEGER(a,b) (igraph_rng_get_integer(igraph_rng_default(), (a), (b)))
/* test parameters */
typedef struct {
igraph_integer_t low;
igraph_integer_t high;
igraph_integer_t length;
int retval;
} sampling_test_t;
/* Error tests. Don't be afraid to crash the library function.
*/
int error_test() {
const igraph_integer_t min = -1000;
const igraph_integer_t max = 1000;
igraph_integer_t low; /* lower limit */
igraph_integer_t high; /* upper limit */
igraph_integer_t length; /* sample size */
igraph_integer_t poolsize; /* size of candidate pool */
igraph_vector_t V;
int i, n, ret;
sampling_test_t *test;
igraph_rng_seed(igraph_rng_default(), time(0));
igraph_vector_init(&V, /*size*/ 0);
/* test parameters */
/*----------low----high----length----retval----------*/
/* lower limit is greater than upper limit */
do {
high = (igraph_integer_t)R_INTEGER(min, max);
} while (high == max);
do {
low = (igraph_integer_t)R_INTEGER(min, max);
} while (low <= high);
assert(low > high);
length = (igraph_integer_t)R_INTEGER(min, max);
sampling_test_t lower_bigger = {low, high, length, IGRAPH_EINVAL};
/* sample size is greater than size of candidate pool */
do {
high = (igraph_integer_t)R_INTEGER(min, max);
} while (high == min);
do {
low = (igraph_integer_t)R_INTEGER(min, max);
} while (low >= high);
assert(low < high);
poolsize = (igraph_integer_t)fabs((double)high - (double)low);
length = poolsize * poolsize;
sampling_test_t sample_size_bigger = {low, high, length, IGRAPH_EINVAL};
sampling_test_t *all_checks[] = {/* 1 */ &lower_bigger,
/* 2 */ &sample_size_bigger};
/* failure is the mother of success */
igraph_set_error_handler(igraph_error_handler_ignore);
n = 2;
for (i = 0; i < n; i++) {
test = all_checks[i];
ret = igraph_random_sample(&V, test->low, test->high, test->length);
if (ret != test->retval) {
printf("Error test no. %d failed.\n", (int)(i + 1));
return IGRAPH_FAILURE;
}
}
igraph_set_error_handler(igraph_error_handler_abort);
igraph_vector_destroy(&V);
return IGRAPH_SUCCESS;
}
/* Get a few random samples and test their properties.
*/
int random_sample_test() {
const igraph_integer_t min = -1000;
const igraph_integer_t max = 1000;
igraph_integer_t low; /* lower limit */
igraph_integer_t high; /* upper limit */
igraph_integer_t length; /* sample size */
igraph_integer_t poolsize; /* size of candidate pool */
igraph_real_t sP; /* population total sum */
igraph_real_t ss; /* sample total sum */
igraph_vector_t V;
int i;
igraph_rng_seed(igraph_rng_default(), time(0));
/* The generated sequence of numbers must be in increasing order. */
igraph_vector_init(&V, /*size*/ 0);
do {
high = (igraph_integer_t)R_INTEGER(min, max);
} while (high == min);
do {
low = (igraph_integer_t)R_INTEGER(min, max);
} while (low >= high);
poolsize = (igraph_integer_t)fabs((double)high - (double)low);
do {
length = (igraph_integer_t)R_INTEGER(1, max);
} while (length > poolsize);
igraph_random_sample(&V, low, high, length);
if (length != igraph_vector_size(&V)) {
printf("Requested vector length and resulting length mismatch.\n");
return IGRAPH_FAILURE;
}
for (i = 0; i < length - 1; i++) {
if (VECTOR(V)[i] >= VECTOR(V)[i+1]) {
printf("Sample not in increasing order.\n");
return IGRAPH_FAILURE;
}
}
igraph_vector_destroy(&V);
/* Let P be a candidate pool of positive integers with total sum s_P. */
/* Let S be a random sample from P and having total sum s_S. Then we */
/* have the bound s_s <= s_P. */
igraph_vector_init(&V, /*size*/ 0);
low = 1;
do {
high = (igraph_integer_t)R_INTEGER(low, max);
} while (high == low);
poolsize = (igraph_integer_t)fabs((double)high - (double)low);
do {
length = (igraph_integer_t)R_INTEGER(low, max);
} while (length > poolsize);
igraph_random_sample(&V, low, high, length);
/* Use Gauss' formula to sum all consecutive positive integers from 1 */
/* up to and including an upper limit. In LaTeX, Gauss' formula is */
/* \sum_{i=1}^n i = \frac{n(n+1)}{2} where n is the upper limit. */
sP = (high * (high + 1)) / 2;
ss = igraph_vector_sum(&V);
if (ss > sP) {
printf("Sum of sampled sequence exceeds sum of whole population.\n");
return IGRAPH_FAILURE;
}
igraph_vector_destroy(&V);
return IGRAPH_SUCCESS;
}
int equal_test() {
igraph_vector_t V;
int i;
igraph_vector_init(&V, 0);
igraph_random_sample(&V, 0, 0, 1);
if (igraph_vector_size(&V) != 1) { return 1; }
if (VECTOR(V)[0] != 0) { return 2; }
igraph_random_sample(&V, 10, 10, 1);
if (igraph_vector_size(&V) != 1) { return 3; }
if (VECTOR(V)[0] != 10) { return 4; }
igraph_random_sample(&V, 2, 12, 11);
if (igraph_vector_size(&V) != 11) { return 5; }
for (i = 0; i < 11; i++)
if (VECTOR(V)[i] != i+2) { return 6; }
igraph_vector_destroy(&V);
return 0;
}
int rare_test() {
igraph_vector_t V;
igraph_vector_init(&V, 0);
igraph_random_sample(&V, 0, 0, 1);
if (igraph_vector_size(&V) != 1) { return 1; }
if (VECTOR(V)[0] != 0) { return 2; }
igraph_random_sample(&V, 10, 10, 1);
if (igraph_vector_size(&V) != 1) { return 3; }
if (VECTOR(V)[0] != 10) { return 4; }
igraph_vector_destroy(&V);
return 0;
}
int main() {
int ret;
ret = error_test();
if (ret)
return 1;
ret = random_sample_test();
if (ret)
return 2;
ret = equal_test();
if (ret)
return 3;
ret = rare_test();
if (ret)
return 4;
return 0;
}
|