File: README.md

package info (click to toggle)
ikos 3.5-2
  • links: PTS, VCS
  • area: non-free
  • in suites: sid
  • size: 11,896 kB
  • sloc: cpp: 102,890; python: 6,471; ansic: 5,860; sh: 2,409; javascript: 348; makefile: 16
file content (750 lines) | stat: -rw-r--r-- 32,838 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
IKOS Analyzer
=============

This folder contains the implementation of the analyzer.

Table of contents
-----------------

* [Introduction](#introduction)
* [Installation](#installation)
  - [Dependencies](#dependencies)
  - [Build and Install](#build-and-install)
  - [Tests](#tests)
  - [Documentation](#documentation)
* [How to run IKOS](#how-to-run-ikos)
* [Analyze a whole project with ikos-scan](#analyze-a-whole-project-with-ikos-scan)
* [Examine a report with ikos-view](#examine-a-report-with-ikos-view)
* [Analysis Options](#analysis-options)
  - [Checks](#checks)
  - [Numerical abstract domains](#numerical-abstract-domains)
  - [Entry points](#entry-points)
  - [Multi-threading](#multi-threading)
  - [Optimization level](#optimization-level)
  - [Inter-procedural vs Intra-procedural](#inter-procedural-vs-intra-procedural)
  - [Fixpoint engine parameters](#fixpoint-engine-parameters)
  - [Partitioning](#partitioning)
  - [Hardware addresses](#hardware-addresses)
  - [Other analysis options](#other-analysis-options)
* [Report Options](#report-options)
  - [Format](#format)
  - [File](#file)
  - [Status Filter](#status-filter)
  - [Analysis Filter](#analysis-filter)
  - [Verbosity](#verbosity)
  - [Other report options](#other-report-options)
* [APRON Support](#apron-support)
* [Analysis Assumptions](#analysis-assumptions)
* [Analyze an embedded software requiring a cross-compiler](#analyze-an-embedded-software-requiring-a-cross-compiler)
* [Model library functions to reduce warnings](#model-library-functions-to-reduce-warnings)
* [Overview of the source code](#overview-of-the-source-code)

Introduction
------------

The IKOS Analyzer is an abstract interpretation-based static analyzer that aims at proving the absence of runtime errors in C and C++ programs.

See [Checks](#checks) for the full list of available checks.

Installation
------------

IKOS Analyzer can be installed independently from the other components, but we recommend to build the analyzer from the root directory. To do so, follow the instructions in the root [README.md](../README.md).

### Dependencies

To build and run the analyzer, you will need the following dependencies:

* A C++ compiler that supports C++14 (gcc >= 4.9.2 or clang >= 3.4)
* CMake >= 3.4.3
* GMP >= 4.3.1
* Boost >= 1.55
* Python >= 3.3
* SQLite >= 3.6.20
* TBB >= 2
* LLVM and Clang 14.0.x
* (Optional) APRON >= 0.9.10
* IKOS Core
* IKOS AR
* IKOS LLVM Frontend

### Build and Install

To build and install the analyzer, run the following commands in the `analyzer` directory:

```
$ mkdir build
$ cd build
$ cmake \
    -DCMAKE_INSTALL_PREFIX=/path/to/analyzer-install-directory \
    -DLLVM_CONFIG_EXECUTABLE=/path/to/llvm/bin/llvm-config \
    -DCORE_ROOT=/path/to/core-install-directory \
    -DAR_ROOT=/path/to/ar-install-directory \
    -DFRONTEND_LLVM_ROOT=/path/to/frontend-llvm-install-directory \
    ..
$ make
$ make install
```

### Tests

To build and run the tests, simply type:

```
$ make check
```

### Documentation

To build the documentation, you will need [Doxygen](http://www.doxygen.org).

Then, simply type:

```
$ make doc
$ open doc/html/index.html
```

How to run IKOS
---------------

Suppose we want to analyze the following C program in a file, called *loop.c*:

```c
 1: #include <stdio.h>
 2: int a[10];
 3: int main(int argc, char *argv[]) {
 4:     size_t i = 0;
 5:     for (;i < 10; i++) {
 6:         a[i] = i;
 7:     }
 8:     a[i] = i;
 9:     printf("%i", a[i]);
10: }
```

To analyze this program with IKOS, simply run:

```
$ ikos loop.c
```

You shall see the following output. IKOS reports two occurrences of buffer overflow at line 8 and 9.

```
[*] Compiling loop.c
[*] Running ikos preprocessor
[*] Running ikos analyzer
[*] Translating LLVM bitcode to AR
[*] Running liveness analysis
[*] Running widening hint analysis
[*] Running interprocedural value analysis
[*] Analyzing entry point 'main'
[*] Checking properties for entry point 'main'

# Time stats:
clang        : 0.037 sec
ikos-analyzer: 0.023 sec
ikos-pp      : 0.007 sec

# Summary:
Total number of checks                : 7
Total number of unreachable checks    : 0
Total number of safe checks           : 5
Total number of definite unsafe checks: 2
Total number of warnings              : 0

The program is definitely UNSAFE

# Results
loop.c: In function 'main':
loop.c:8:10: error: buffer overflow, trying to access index 10 of global variable 'a' of 10 elements
    a[i] = i;
         ^
loop.c: In function 'main':
loop.c:9:18: error: buffer overflow, trying to access index 10 of global variable 'a' of 10 elements
    printf("%i", a[i]);
                 ^
```

The `ikos` command takes a source file (`.c`, `.cpp`) or a LLVM bitcode file (`.bc`) as input, analyzes it to find runtime errors (also called undefined behaviors), creates a result database `output.db` in the current working directory and prints a report.

In the report, each line has one of the following status:

* **safe**: the statement is proven safe;
* **error**: the statement always results into an error (or is unreachable);
* **unreachable**: the statement is never executed;
* **warning** may mean three things:
   1. the statement results into an error for some executions, or
   2. the static analyzer did not have enough information to conclude (check dependent on an external input, for instance), or
   3. the static analyzer was not powerful enough to prove the absence of errors;

By default, ikos shows warnings and errors directly in your terminal, like a compiler would do.

If the analysis report is too big, you shall use:
* `ikos-report output.db` to examine the report in your terminal
* `ikos-view output.db` to examine the report in a web interface

Analyze a whole project with ikos-scan
--------------------------------------

To run IKOS on a large project, you shall use ikos-scan.

ikos-scan is a command line utility that runs the static analyzer over a codebase after performing a regular build.

The ikos-scan command works by overriding the environment variables `CC` and `CXX` to intercept the compiler commands. Behind the scene, it builds the original program as well as the LLVM bitcode file that is necessary to run the analyzer.

To use ikos-scan, just prefix your build commands with `ikos-scan`. For instance, to analyze pkg-config:

```
$ tar xf pkg-config-0.29.2.tar.gz
$ cd pkg-config-0.29.2
$ ikos-scan ./configure
[...]
$ ikos-scan make
[...]
Analyze pkg-config? [Y/n]
```

ikos-scan will produce a `.bc` file for each executable in your project. You can analyze them with specific options using `ikos [options] program.bc`.

Examine a report with ikos-view
-------------------------------

ikos-view provides a web interface to examine IKOS results. It is available directly in the analyzer.

The web interface shows the source code with syntax highlighting, and allows you to filter the warnings by checks.

To use ikos-view, first run the analyzer on your project to generate a result database `output.db`, then simply run:

```
$ ikos-view output.db
```

It will start a web server. You can then launch your favorite web browser and visit [http://localhost:8080](http://localhost:8080)

Note that if you want syntax highlighting, you will need to install [Pygments](http://pygments.org):

```
$ pip install --user pygments
```

Analysis Options
----------------

This section describes the most relevant options of the analyzer.

### Checks

The list of available checks are:

* **buffer overflow analysis**, `-a=boa`: checks for buffer overflows and out-of-bound array accesses.
* **division by zero analysis**, `-a=dbz`: checks for integer divisions by zero.
* **null pointer analysis**, `-a=nullity`: checks for null pointer dereferences.
* **assertion prover**, `-a=prover`: prove user-defined properties, using `__ikos_assert(condition)`.
* **unaligned pointer analysis**, `-a=upa`: checks for unaligned pointer dereferences.
* **uninitialized variable analysis**, `-a=uva`: checks for read of uninitialized variables.
* **signed integer overflow analysis**, `-a=sio`: checks for signed integer overflows.
* **unsigned integer overflow analysis**, `-a=uio`: checks for unsigned integer overflows.
* **shift count analysis**, `-a=shc`: checks for invalid shifts, where the amount shifted is greater or equal to the bit-width of the left operand, or less than zero.
* **pointer overflow analysis**, `-a=poa`: checks for pointer arithmetic overflows.
* **pointer comparison analysis**, `-a=pcmp`: checks for pointer comparisons between pointers referring to different objects.
* **soundness analysis**, `-a=sound`: checks for instructions that could make the analysis unsound, i.e miss bugs.
* **function call analysis**, `-a=fca`: checks for function calls through function pointers of the wrong type.
* **dead code analysis**, `-a=dca`: checks for unreachable statements.
* **double free analysis**, `-a=dfa`: checks for double free, invalid free, use after free and use after return.
* **debugger**, `-a=dbg`: prints debug information, using `__ikos_print_values("desc", x)` and `__ikos_print_invariant()`.
* **memory watcher**, `-a=watch`: prints memory writes at a given memory location, using `__ikos_watch_mem(ptr, size)`.

By default, all the checks are enabled except:

* **unaligned pointer analysis**, because it needs a congruence domain to generate meaningful results. See [Numerical abstract domains](#numerical-abstract-domains).
* **unsigned integer overflow analysis**, because it is not an undefined behavior according to the C standard.
* **pointer overflow analysis**, because it is redundant with the buffer overflow analysis.
* **memory watcher**, because it is slow.

If you want to run specific checks, use the `-a` parameter:

```
$ ikos -a=boa,nullity test.c
```

Note that you can use the wildcard character `*`, `+` and `-`:

```
$ ikos -a='*,-sio' test.c
```

In this example, all the checks are enabled except signed integer overflow checks.

### Numerical abstract domains

IKOS is based on the theory of [Abstract Interpretation](https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html). The analysis uses a numerical abstract domain internally to model integer variables.

The list of available numerical abstract domains are:

* `-d=interval`: The interval domain, see [CC77](https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf).
* `-d=congruence`: The congruence domain, see [Gra89](http://www.tandfonline.com/doi/abs/10.1080/00207168908803778).
* `-d=interval-congruence`: The reduced product of interval and congruence.
* `-d=dbm`: The Difference-Bound Matrices domain, see [PADO01](https://www-apr.lip6.fr/~mine/publi/article-mine-padoII.pdf).
* `-d=var-pack-dbm`: The Difference-Bound Matrices domain with variable packing, see [VMCAI16](https://seahorn.github.io/papers/vmcai16.pdf).
* `-d=var-pack-dbm-congruence`: The reduced product of DBM with variable packing and congruence.
* `-d=gauge`: The gauge domain, see [CAV12](https://ti.arc.nasa.gov/publications/4767/download/).
* `-d=gauge-interval-congruence`: The reduced product of gauge, interval and congruence.
* `-d=apron-interval`: The APRON interval domain, see [Box](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_21.html#SEC54).
* `-d=apron-octagon`: The APRON octagon domain, see [Oct](http://apron.cri.ensmp.fr/library/0.9.10/apron/oct_doc.html).
* `-d=apron-polka-polyhedra`: The APRON polka polyhedra domain, see [NewPolka](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_25.html#SEC58).
* `-d=apron-polka-linear-equalities`: The APRON polka linear equalities domain, see [NewPolka](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_25.html#SEC58).
* `-d=apron-ppl-polyhedra`: The APRON PPL polyhedra domain, see [PPL](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_29.html#SEC65).
* `-d=apron-ppl-linear-congruences`: The APRON PPL linear congruences domain, see [PPL](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_29.html#SEC65).
* `-d=apron-pkgrid-polyhedra-lin-cong`: The APRON Pkgrid polyhedra and linear congruences domain, see [Pkgrid](http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_33.html#SEC69).
* `-d=var-pack-apron-octagon`: The APRON octagon domain with variable packing.
* `-d=var-pack-apron-polka-polyhedra`: The APRON Polka polyhedra domain with variable packing.
* `-d=var-pack-apron-polka-linear-equalities`: The APRON Polka linear equalities domain with variable packing.
* `-d=var-pack-apron-ppl-polyhedra`: The APRON PPL polyhedra domain with variable packing.
* `-d=var-pack-apron-ppl-linear-congruences`: The APRON PPL linear congruences domain with variable packing.
* `-d=var-pack-apron-pkgrid-polyhedra-lin-cong`: The APRON Pkgrid polyhedra and linear congruences domain with variable packing.

By default, IKOS uses the fastest and least precise numerical domain, the **interval** domain. If you want to run the analysis with a specific domain, use the `-d` parameter:

```
$ ikos -d=var-pack-dbm test.c
```

For most users, we recommend to analyze your project with the fastest and least precise domain (i.e, interval) first, and then try slower but more precise domains until the analysis is too long for you. This is the best way to reach a low rate of false positives (i.e, warnings).

Here is a list of numerical domains, sorted from the fastest and least precise to the slowest and most precise:

* `-d=interval`
* `-d=gauge-interval-congruence`
* `-d=var-pack-dbm`
* `-d=var-pack-apron-octagon`
* `-d=var-pack-apron-ppl-polyhedra`
* `-d=dbm`
* `-d=apron-octagon`
* `-d=apron-ppl-polyhedra`

You should consider running different analyses in this specific order.

Please also note that:
* Floating point variables are safely ignored.
* In order to use the **APRON** abstract domain, you need to build IKOS with APRON first. See [APRON Support](#apron-support).

### Entry points

By default, the analyzer assumes the entry point of the program is `main`. You can specify a list of entry points using the `--entry-points` parameter:

```
$ ikos --entry-points=foo,bar test.c
```

IKOS analyses each entry point independently, as if they were running in different processes.

### Multi-threading

The analyzer can use multi-threading to speed up the analysis. You can specify the number of threads to use with the `--jobs` or `-j` parameter:

```
$ ikos --jobs=4 test.c
```

Use `-j` to use all available threads. By default, the analyzer only uses one thread.

**Warning:** APRON numerical abstract domains are currently NOT thread-safe and might cause crashes.

### Optimization level

The parameter `--opt` allows you to set the optimization level. Optimizations are performed by running a set of LLVM passes on the analyzed code.

Available levels are:

* **none**: Disable all optimizations.
* **basic**: Basic set of optimizations (similar to `-O1`). This is the default value.
* **aggressive**: Aggressive optimizations (similar to `-O3`). This is not recommended since it might hide errors. The translation from LLVM to AR might fail because of unsupported instructions.

### Inter-procedural vs Intra-procedural

An **inter-procedural** analysis analyzes a function considering its call stack while an **intra-procedural** analysis ignores it. The former produces more precise results than the latter but it is often much more expensive.

By default, IKOS performs an inter-procedural analysis. Use `--proc=intra` to perform an intra-procedural analysis.

### Fixpoint engine parameters

The analyzer uses the theory of Abstract Interpretation to compute a fixpoint of the semantic of the program. The fixpoint engine can be tuned using several parameters.

When visiting a loop, the engine will first compute a fixed number of iterations, then use a widening strategy periodically to approximate the behavior of the loop, until convergence.

The fixed number of iterations performed before the widening strategy can be set using `--widening-delay`. By default, it is 1.

The period of the widening strategy can be set using `--widening-period`. By default, it is 1, thus the widening strategy is always applied.

The widening strategy can be set using `--widening-strategy=`:
* **widen**: Use the widening operator to approximate the behavior of the loop (default)
* **join**: Use the join operator, effectively computing all iterations (very slow)

After reaching a fixpoint, the engine will perform extra iterations to regain precision using a narrowing strategy, until convergence.

The narrowing strategy can be set using `--narrowing-strategy=`:
* **narrow**: Use the narrowing operator, ensuring a fast convergence
* **meet**: Use the meet operator, convergence can be slow
* **auto**: Use the narrowing operator if available for the numerical abstract domain. Otherwise, perform 2 iterations using the meet operator (default)

You can specify a fixed number of narrowing iterations to perform using `--narrowing-iterations`.

You can specify the widening delay for a given function using `--widening-delay-functions`. For instance, `--widening-delay-functions="main:10, f:32"`.

### Partitioning

The analyzer can use abstract domain partitioning based on integer variables using the `--partitioning` option.

Using `--partitioning=return`, the analyzer will split the states at the end of a function according to the function return codes.

This can be used to improve the precision of the analysis on the following code pattern:
```c
int init() {
    int status = xxx();
    if (status < 0) {
      return -1; // Error in xxx
    }

    status = yyy();
    if (status < 0) {
      return -2; // Error in yyy
    }

    zzz();

    return 0; // Success
}
```
Instead of performing the abstract union and lose precision, the analyzer will keep 3 invariants for each outcome of the `init` function.

Using `--partitioning=manual`, the analyzer will split the states according to the values of a given integer variable, set with `__ikos_partitioning_var_int(x)`.

By default, partitioning is disabled.

### Hardware addresses

In C code for embedded systems, it is usual to read or write at specific addresses to communicate with the hardware. By default, IKOS treats memory accesses at specific addresses as errors.

You can provide the `--hardware-addresses` parameter to specify a range of valid memory addresses:

```
$ ikos --hardware-addresses=0x20-0x40 project.bc
```

During the analysis, IKOS will assume that memory accesses in the range `[0x20, 0x40]` (in bytes, inclusive) are safe.

### Other analysis options

* `--globals-init`: use the given strategy for initialization of global variables.
* `--no-init-globals`: disable global variable initialization for the given entry points.
* `--no-liveness`: disable the liveness analysis.
* `--no-pointer`: disable the pointer analysis.
* `--no-widening-hints`: disable the detection of widening hints.
* `--no-fixpoint-cache`: disable the cache of fixpoint for called functions.
* `--no-checks`: disable all the checks
* `--argc`: specify the value of `argc` for the analysis.
* `--no-libc`: do not use libc intrinsics. Useful for bare metal programming.

See `ikos --help` for more information.

Report Options
--------------

This section describes the most relevant report options supported by `ikos` and `ikos-report`.

### Format

You can specify the format of the report using the `--format` (or `-f`) parameter.

Available formats are:

* **text**: Text format, convenient for the terminal;
* **csv**: CSV format, convenient for spreadsheet import;
* **json**: JSON format, convenient for developers.
* **web**: Web interface, using ikos-view.
* **no**: Disable the report.

By default, if the report has less than 15 entries, it will be printed out using the text format.

We recommend to use [ikos-view](#examine-a-report-with-ikos-view) to examine reports of large projects.

### File

By default, the report is generated on the standard output. You can write it into a file using `--report-file=/path/to/report`

### Status Filter

Use `--status-filter` to filter unwanted checks.

Possible values are: **error**, **warning**, **safe**, **unreachable**.

Note that you can use the wildcard character `*`, `+` and `-`.

### Analysis Filter

Use `--analyses-filter` to filter unwanted checks.

Possible values are described in [Checks](#checks).

Note that you can use the wildcard character `*`, `+` and `-`. For instance:

```
$ ikos-report --analyses-filter='*,-boa' output.db
```

This will generate a report with all the checks, except buffer overflows.

### Verbosity

Use `--report-verbosity [1-4]` to specify the verbosity. A verbosity of one will give you very short messages, where a verbosity of 4 will provide you with all the information the analyzer has.

#### Other report options

See `ikos-report --help` for more information.

APRON Support
-------------

[APRON](http://apron.cri.ensmp.fr/library/) is a C library for static analysis using Abstract Interpretation. It implements several complex abstract domains, such as the Polyhedra domain.

IKOS provides a wrapper for APRON, allowing you to use any APRON abstract domain in the analyzer.

To use APRON, first download, build and install it. Consider using the svn trunk. You will also need to build APRON with [Parma Polyhedra Library](http://bugseng.com/products/ppl/) enabled. Set `HAS_PPL = 1` and define `PPL_PREFIX` in your `Makefile.config`

Now, to build IKOS with APRON support, just provide the option `-DAPRON_ROOT=/path/to/apron-install` when running cmake. For instance:

```
cmake \
    -DCMAKE_INSTALL_PREFIX=/path/to/ikos-install \
    -DAPRON_ROOT=/path/to/apron-install \
    ..
```

See [Numerical abstract domains](#numerical-abstract-domains) for the list of numerical abstract domains.

Analysis Assumptions
--------------------

This section describes the assumptions made by the analyzer about the code.

First, the analyzed code is compiled with the **Clang** compiler using the host target. Thus, Clang is responsible for specifying the data model (size of types), the data layout (alignments), the endianness, the signedness of `char`, the semantic of floating points, etc. depending on the host target. The analyzer uses the generated LLVM bitcode from Clang. This means that you can get different results depending on your host target.

During the analysis, the analyzer will make the following assumptions:
* The program is single-threaded.
* The program does not receive signals.
* The program does not receive interrupts.
* Extern functions (without implementation) do not update global variables.
* Extern functions can write on their pointer parameters, but only with one level of indirection:
```c
extern void f(int** p); // Assume to write on *p but not **p
```
* Extern functions do not call user-defined functions (no callbacks).
* Extern functions can throw exceptions.
* Extern functions return well-initialized values.
* Recursive function calls can update any value in memory.
* Recursive function calls can throw exceptions.
* Recursive function calls return well-initialized values.
* Assembly codes are treated as extern function calls.
* C standard library functions do not throw exceptions.

Analyze an embedded software requiring a cross-compiler
-------------------------------------------------------

Running the analyzer on an embedded software that requires a cross-compiler can be challenging.

You should try to use [ikos-scan](#analyze-a-whole-project-with-ikos-scan) first, but this will probably fail with compiler errors.

To solve this issue, you will need to create an alternative build file that compiles everything to LLVM bitcode. For instance, if you use `make`, you could create `Makefile.llvm` based on `Makefile`.

In the alternative build file:
* Locate the build rules that generate intermediate object files (`.o`).
* In these rules, add the flag `-save-temps=obj` to the cross-compiler commands. This will generate a preprocessed file `.i` in addition to the `.o`.
* At the end of these rules, add a command to compile the preprocessed file `.i` to LLVM bitcode `.bc` using: `clang -c -emit-llvm -D_FORTIFY_SOURCE=0 -D__IKOS__ -g -O0 -Xclang -disable-O0-optnone <file.i> -o <file.bc>`.
* Locate the build rules that link the intermediate object files into binaries or shared libraries.
* At the end of these rules, link the LLVM bitcodes `.bc` together using `llvm-link`.

For instance, in `Makefile.llvm`:
```
%.o: %.c
	$(CC) -c $(CPPFLAGS) $(CFLAGS) -save-temps=obj $< -o $@
	clang -c -emit-llvm -D_FORTIFY_SOURCE=0 -D__IKOS__ -g -O0 -Xclang -disable-O0-optnone $(subst .o,.i,$@) -o $(subst .o,.bc,$@)

program: a.o b.o
	$(CC) $(CPPFLAGS) $(CFLAGS) a.o b.o -o $@
	llvm-link a.bc b.bc -o $@.bc

clean:
	rm -f *.o *.i *.s *.bc
```

Then, run your build tool using the alternative build file to generate the LLVM bitcode (e.g, `make -f Makefile.llvm`).

You can finally analyze your program by running ikos on the generated LLVM bitcode file (e.g, `ikos program.bc`).

Model library functions to reduce warnings
------------------------------------------

The analyzer doesn't require the libraries used by your program. It will consider library functions as unknown extern functions and make some [assumptions](#analysis-assumptions) about them.

The analyzer will produce a warning for each call to an unknown function. You can use `ikos-report --analyses-filter=sound output.db` to list these warnings, or filter the "ignored call side effect" in ikos-view.

You can model library functions to improve the precision of the analysis and reduce the number of warnings. To model a library function, simply write a small implementation for it and link it in your program. This is usually called a "stub".

For instance, a stub for `fgets` could be:
```c
#include <ikos/analyzer/intrinsic.h>

char* fgets(char* restrict str, int size, FILE* restrict stream) {
    __ikos_assert(size >= 0);
    __ikos_forget_mem(stream, sizeof(FILE));
    __ikos_abstract_mem(str, size);
    return __ikos_nondet_int() ? str : NULL;
}
```

The analyzer provides helper functions to implement these stubs, see [include/ikos/analyzer/intrinsic.h](include/ikos/analyzer/intrinsic.h)

Note that most functions of the C standard library are already modeled, but not all of them.

Overview of the source code
---------------------------

The following illustrates the directory structure of this folder:

```
.
├── doc
│   └── doxygen
│       └── latex
├── include
│   └── ikos
│       └── analyzer
│           ├── analysis
│           │   ├── execution_engine
│           │   ├── pointer
│           │   └── value
│           ├── checker
│           ├── database
│           │   └── table
│           ├── json
│           ├── support
│           └── util
├── python
│   └── ikos
│       └── view
│           ├── static
│           │   ├── css
│           │   └── js
│           └── template
├── script
├── src
│   ├── analysis
│   │   ├── pointer
│   │   └── value
│   │       └── machine_int_domain
│   ├── checker
│   ├── database
│   │   └── table
│   ├── json
│   └── util
└── test
    └── regression
```

#### doc/

Contains Doxygen files.

#### include/

* [include/ikos/analyzer/intrinsic.h](include/ikos/analyzer/intrinsic.h) contains definition of IKOS intrinsics that can be used in analyzed source code.

##### include/ikos/analyzer/analysis

* [include/ikos/analyzer/analysis/call_context.hpp](include/ikos/analyzer/analysis/call_context.hpp) contains definition of a call context and the call context factory.

* [include/ikos/analyzer/analysis/context.hpp](include/ikos/analyzer/analysis/context.hpp) contains definition of the global context of the analyzer.

* [include/ikos/analyzer/analysis/literal.hpp](include/ikos/analyzer/analysis/literal.hpp) contains definition of the literal factory. It converts an AR operand to an AR-independent format.

* [include/ikos/analyzer/analysis/liveness.hpp](include/ikos/analyzer/analysis/liveness.hpp) contains definition of the liveness analysis. It computes the set of live and dead variables for all functions.

* [include/ikos/analyzer/analysis/memory_location.hpp](include/ikos/analyzer/analysis/memory_location.hpp) contains definition of symbolic memory locations (global, stack, heap-allocated, etc), and the memory location factory.

* [include/ikos/analyzer/analysis/option.hpp](include/ikos/analyzer/analysis/option.hpp) contains definition of analysis options.

* [include/ikos/analyzer/analysis/variable.hpp](include/ikos/analyzer/analysis/variable.hpp) contains definition of variables (local, global, etc), and the variable factory.

##### include/ikos/analyzer/analysis/execution_engine

* [include/ikos/analyzer/analysis/execution_engine/context_insensitive.hpp](include/ikos/analyzer/analysis/execution_engine/context_insensitive.hpp) contains definition of `ContextInsensitiveCallExecutionEngine`, a call execution engine for context-insensitive analyses.

* [include/ikos/analyzer/analysis/execution_engine/engine.hpp](include/ikos/analyzer/analysis/execution_engine/engine.hpp) contains definition of base classes for execution engines. It defines an API to execute AR statements.

* [include/ikos/analyzer/analysis/execution_engine/inliner.hpp](include/ikos/analyzer/analysis/execution_engine/inliner.hpp) contains definition of `InlineCallExecutionEngine`, a call execution engine performing dynamic inlining.

* [include/ikos/analyzer/analysis/execution_engine/numerical.hpp](include/ikos/analyzer/analysis/execution_engine/numerical.hpp) contains definition of `NumericalExecutionEngine`, the main execution engine of the analyzer. It executes AR statements on an abstract domain.

##### include/ikos/analyzer/analysis/pointer

* [include/ikos/analyzer/analysis/pointer/constraint.hpp](include/ikos/analyzer/analysis/pointer/constraint.hpp) contains definition of `PointerConstraintsGenerator`, a generator of pointer constraints given an AR function or global variable.

* [include/ikos/analyzer/analysis/pointer/function.hpp](include/ikos/analyzer/analysis/pointer/function.hpp) contains definition of a function pointer analysis.

* [include/ikos/analyzer/analysis/pointer/pointer.hpp](include/ikos/analyzer/analysis/pointer/pointer.hpp) contains definition of a pointer analysis.

##### include/ikos/analyzer/analysis/value

* [include/ikos/analyzer/analysis/value/abstract_domain.hpp](include/ikos/analyzer/analysis/value/abstract_domain.hpp) contains definition the abstract domain used during the value analysis.

* [include/ikos/analyzer/analysis/value/interprocedural.hpp](include/ikos/analyzer/analysis/value/interprocedural.hpp) contains definition the interprocedural value analysis.

* [include/ikos/analyzer/analysis/value/intraprocedural.hpp](include/ikos/analyzer/analysis/value/intraprocedural.hpp) contains definition the intraprocedural value analysis.

* [include/ikos/analyzer/analysis/value/machine_int_domain.hpp](include/ikos/analyzer/analysis/value/machine_int_domain.hpp) contains definition the machine integer abstract domain used during the value analysis.

##### include/ikos/analyzer/checker

Contains definition of the different checks on the code (buffer overflow, division by zero, etc.), given the result of an analysis.

##### include/ikos/analyzer/database/table

Contains definition of the different output database tables.

##### include/ikos/analyzer/json

Contains definition of a JSON library.

##### include/ikos/analyzer/support

Contains various helpers, e.g, assertions.

##### include/ikos/analyzer/util

Contains definition of utilities for the analyzer, e.g, logging, colors, timers, etc.

#### python/

* [python/ikos/analyzer.py](python/ikos/analyzer.py) contains implementation of the `ikos` command line tool.

* [python/ikos/report.py](python/ikos/report.py) contains implementation of the `ikos-report` command line tool.

* [python/ikos/settings.py.in](python/ikos/settings.py.in) contains implementation of the `ikos-config` command line tool.

* [python/ikos/view.py](python/ikos/view.py) contains implementation of the `ikos-view` command line tool.

##### python/ikos/analyzer/view

Contains the web resources for ikos-view. It includes HTML, CSS and JS code.

#### script/

Contains python entry points for the command line tools.

#### src/

Contains implementation files, following the structure of `include/ikos/analyzer`.

* [src/ikos_analyzer.cpp](src/ikos_analyzer.cpp) contains the implementation of `ikos-analyzer`. This is the entry point for all analyses.