File: Distribution.java

package info (click to toggle)
imagej 1.44c-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 4,096 kB
  • ctags: 10,231
  • sloc: java: 83,363; sh: 308; xml: 51; makefile: 6
file content (180 lines) | stat: -rw-r--r-- 4,988 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
package ij.plugin;
import ij.*;
import ij.gui.*;
import ij.process.*;
import ij.plugin.PlugIn;
import ij.measure.*;
import ij.util.Tools;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

/**
This plugin implements the Analyze/Distribution command.
It reads the data from the ResultsTable and plots a frequency histogram.
@author G. Landini at bham. ac. uk
*/
public class Distribution implements PlugIn, TextListener {
	static String parameter = "Area";
	static boolean autoBinning = true;
	static boolean showStats = false;
	static int nBins = 10;
	static String range = "0-0";
	Checkbox checkbox;
	TextField nBinsField, rangeField;
	String defaultNBins, defaultRange;

	public void run(String arg) {
		ResultsTable rt=ResultsTable.getResultsTable();
		int count = rt.getCounter();
		if (count==0) {
			IJ.error("Distribution", "The \"Results\" table is empty");
			return;
		}
		String head= rt.getColumnHeadings();
		//IJ.log(head);

		StringTokenizer t = new StringTokenizer(head, "\t");
		int tokens = t.countTokens()-1;
		String[] strings = new String[tokens];
		strings[0] = t.nextToken(); // first token is empty?
	   	for(int i=0; i<tokens; i++)
			strings[i] = t.nextToken();

		defaultNBins = ""+nBins;
		defaultRange = range;
		GenericDialog gd = new GenericDialog("Distribution");
		gd.addChoice("Parameter: ", strings, strings[getIndex(strings)]);
		gd.addMessage("Data points: "+ count);
		gd.addCheckbox("Automatic binning", autoBinning);
		gd.addNumericField ("or specify bins:", nBins, 0);
		gd.addStringField ("and range:", range);

		//gd.addCheckbox("Log Statistics", showStats);
		Vector v = gd.getNumericFields();
		nBinsField = (TextField)v.elementAt(0);
		nBinsField.addTextListener(this);
		v = gd.getStringFields();
		rangeField = (TextField)v.elementAt(0);
		rangeField.addTextListener(this);
		checkbox = (Checkbox)(gd.getCheckboxes().elementAt(0));
		gd.showDialog();
		if (gd.wasCanceled())
			return;

		parameter = gd.getNextChoice ();
		autoBinning = gd.getNextBoolean();
		double nMin=0.0, nMax=0.0;
		if (!autoBinning) {
			nBins = (int)gd.getNextNumber();
			range = gd.getNextString();
			String[] minAndMax = Tools.split(range, " -");
			nMin = Tools.parseDouble(minAndMax[0]);
			nMax = minAndMax.length==2?Tools.parseDouble(minAndMax[1]):Double.NaN;
			if (Double.isNaN(nMin) || Double.isNaN(nMax))
				{nMin=0.0; nMax=0.0; range="0-0";}
		}
		//boolean showStats = gd.getNextBoolean();

		//int nBins =5;
		float[] data = rt.getColumn(rt.getColumnIndex(parameter));

		float [] pars = new float [11];
		stats(count, data, pars);
		if (showStats) {
			IJ.log("Param: "+parameter);
			IJ.log("Data: "+ pars[1]);
			IJ.log("Sum: "+pars[2]);
			IJ.log("Min: "+pars[3]);
			IJ.log("Max: "+pars[4]);
			IJ.log("Mean: "+pars[5]);
			IJ.log("AvDev: "+pars[6]);
			IJ.log("StDev: "+pars[7]);
			IJ.log("Var: "+pars[8]);
			IJ.log("Skew: "+pars[9]);
			IJ.log("Kurt: "+pars[10]);
			IJ.log(" ");
		}
		if (autoBinning) {
			//sd = 7, min = 3, max = 4
			// use Scott's method (1979 Biometrika, 66:605-610) for optimal binning: 3.49*sd*N^-1/3
			float binWidth = (float)(3.49 * pars[7]*(float)Math.pow((float)count, -1.0/3.0));
			nBins= (int)Math.floor(((pars[4]-pars[3])/binWidth)+.5);
			if (nBins<2) nBins = 2;
		}

		ImageProcessor ip = new FloatProcessor(count, 1, data, null);
		ImagePlus imp = new ImagePlus("", ip);
		ImageStatistics stats = new StackStatistics(imp, nBins, nMin, nMax);
		int maxCount = 0;
		for (int i=0; i<stats.histogram.length; i++) {
			if (stats.histogram[i]>maxCount)
				maxCount = stats.histogram[i];
		}
		stats.histYMax = maxCount;
		new HistogramWindow(parameter+" Distribution", imp, stats);
	}
	
	int getIndex(String[] strings) {
		for (int i=0; i<strings.length; i++) {
			if (strings[i].equals(parameter))
				return i;
		}
		return 0;
	}

	public void textValueChanged(TextEvent e) {
		if (!defaultNBins.equals(nBinsField.getText()))
			checkbox.setState(false);
		if (!defaultRange.equals(rangeField.getText()))
			checkbox.setState(false);
	}

	void stats(int nc, float [] data, float [] pars){
 // ("\tPoints\tEdges_n\tGraph_Length\tMin\tMax\tMean\tAvDev\tSDev\tVar\tSkew\tKurt");
		int i;
		float s = 0, min = Float.MAX_VALUE, max = -Float.MAX_VALUE, totl=0, ave=0, adev=0, sdev=0, var=0, skew=0, kurt=0, p;

		for(i=0;i<nc;i++){
			totl+= data[i];
			//tot& = tot& + 1
				if(data[i]<min) min = data[i];
			if(data[i]>max) max = data[i];
		}

		ave = totl/nc;

		for(i=0;i<nc;i++){
			s = data[i] - ave;
			adev+=Math.abs(s);
			p = s * s;
			var+= p;
			p*=s;
			skew+= p;
			p*= s;
			kurt+= p;
		}

		adev/= nc;
		var/=nc-1;
		sdev = (float) Math.sqrt(var);

		if(var> 0){
			skew = (float)skew / (nc * (float) Math.pow(sdev,3));
			kurt = (float)kurt / (nc * (float) Math.pow(var, 2)) - 3;
		}
		pars[1]=(float) nc;
		pars[2]=totl;
		pars[3]=min;
		pars[4]=max;
		pars[5]=ave;
		pars[6]=adev;
		pars[7]=sdev;
		pars[8]=var;
		pars[9]=skew;
		pars[10]=kurt;

	}

}