File: ZProjector.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (686 lines) | stat: -rw-r--r-- 20,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
package ij.plugin; 
import ij.*; 
import ij.gui.GenericDialog; 
import ij.process.*;
import ij.plugin.filter.*; 
import ij.measure.Measurements;
import java.lang.*; 
import java.awt.*; 
import java.awt.event.*; 

/** This plugin performs a z-projection of the input stack. Type of
    output image is same as type of input image.

    @author Patrick Kelly <phkelly@ucsd.edu> */

public class ZProjector implements PlugIn {
    public static final int AVG_METHOD = 0; 
    public static final int MAX_METHOD = 1;
    public static final int MIN_METHOD = 2;
    public static final int SUM_METHOD = 3;
	public static final int SD_METHOD = 4;
	public static final int MEDIAN_METHOD = 5;
	public static final String[] METHODS = 
		{"Average Intensity", "Max Intensity", "Min Intensity", "Sum Slices", "Standard Deviation", "Median"}; 
    private static final String METHOD_KEY = "zproject.method";
    private int method = (int)Prefs.get(METHOD_KEY, AVG_METHOD);

    private static final int BYTE_TYPE  = 0; 
    private static final int SHORT_TYPE = 1; 
    private static final int FLOAT_TYPE = 2;
    
    public static final String lutMessage =
    	"Stacks with inverter LUTs may not project correctly.\n"
    	+"To create a standard LUT, invert the stack (Edit/Invert)\n"
    	+"and invert the LUT (Image/Lookup Tables/Invert LUT)."; 

    /** Image to hold z-projection. */
    private ImagePlus projImage = null; 

    /** Image stack to project. */
    private ImagePlus imp = null; 

    /** Projection starts from this slice. */
    private int startSlice = 1;
    /** Projection ends at this slice. */
    private int stopSlice = 1;
    /** Project all time points? */
    private boolean allTimeFrames = true;
    
    private String color = "";
    private boolean isHyperstack;
    private int increment = 1;
    private int sliceCount;

    public ZProjector() {
    }

    /** Construction of ZProjector with image to be projected. */
    public ZProjector(ImagePlus imp) {
		setImage(imp); 
    }

    /** Explicitly set image to be projected. This is useful if
	ZProjection_ object is to be used not as a plugin but as a
	stand alone processing object.  */
    public void setImage(ImagePlus imp) {
    	this.imp = imp; 
		startSlice = 1; 
		stopSlice = imp.getStackSize(); 
    }

    public void setStartSlice(int slice) {
		if(imp==null || slice < 1 || slice > imp.getStackSize())
	    	return; 
		startSlice = slice; 
    }

    public void setStopSlice(int slice) {
		if(imp==null || slice < 1 || slice > imp.getStackSize())
	    	return; 
		stopSlice = slice; 
    }

	public void setMethod(int projMethod){
		method = projMethod;
	}
    
    /** Retrieve results of most recent projection operation.*/
    public ImagePlus getProjection() {
		return projImage; 
    }

    public void run(String arg) {
		imp = WindowManager.getCurrentImage();
		int stackSize = imp.getStackSize();
		if (imp==null) {
	    	IJ.noImage(); 
	    	return; 
		}

		//  Make sure input image is a stack.
		if(stackSize==1) {
	    	IJ.error("ZProjection", "Stack required"); 
	    	return; 
		}
	
		//  Check for inverting LUT.
		if (imp.getProcessor().isInvertedLut()) {
	    	if (!IJ.showMessageWithCancel("ZProjection", lutMessage))
	    		return; 
		}

		// Set default bounds.
		int frames = imp.getNFrames();
		int slices = imp.getNSlices();
		isHyperstack = imp.isHyperStack()||( ij.macro.Interpreter.isBatchMode()&&((frames>1&&frames<stackSize)||(slices>1&&slices<stackSize)));
		startSlice = 1; 
		if (isHyperstack) {
			int nSlices = imp.getNSlices();
			if (nSlices>1)
				stopSlice = nSlices;
			else
				stopSlice = imp.getNFrames();
		} else
			stopSlice  = stackSize;
			
		// Build control dialog
		GenericDialog gd = buildControlDialog(startSlice,stopSlice); 
		gd.showDialog(); 
		if(gd.wasCanceled()) return; 

		if (!imp.lock()) return;   // exit if in use
		long tstart = System.currentTimeMillis();
		setStartSlice((int)gd.getNextNumber()); 
		setStopSlice((int)gd.getNextNumber()); 
		method = gd.getNextChoiceIndex();
		Prefs.set(METHOD_KEY, method);
		if (isHyperstack) {
			allTimeFrames = imp.getNFrames()>1&&imp.getNSlices()>1?gd.getNextBoolean():false;
			doHyperStackProjection(allTimeFrames);
		} else if (imp.getType()==ImagePlus.COLOR_RGB)
			doRGBProjection();
		else 
			doProjection(); 

		if (arg.equals("") && projImage!=null) {
			long tstop = System.currentTimeMillis();
			projImage.setCalibration(imp.getCalibration()); 
	    	projImage.show("ZProjector: " +IJ.d2s((tstop-tstart)/1000.0,2)+" seconds");
		}

		imp.unlock(); 
		IJ.register(ZProjector.class);
		return; 
    }
    
    public void doRGBProjection() {
		doRGBProjection(imp.getStack());
    }

    private void doRGBProjection(ImageStack stack) {
        ImageStack[] channels = ChannelSplitter.splitRGB(stack, true);
        ImagePlus red = new ImagePlus("Red", channels[0]);
        ImagePlus green = new ImagePlus("Green", channels[1]);
        ImagePlus blue = new ImagePlus("Blue", channels[2]);
        imp.unlock();
        ImagePlus saveImp = imp;
        imp = red;
		color = "(red)"; doProjection();
		ImagePlus red2 = projImage;
        imp = green;
		color = "(green)"; doProjection();
		ImagePlus green2 = projImage;
        imp = blue;
		color = "(blue)"; doProjection();
		ImagePlus blue2 = projImage;
        int w = red2.getWidth(), h = red2.getHeight(), d = red2.getStackSize();
        RGBStackMerge merge = new RGBStackMerge();
        ImageStack stack2 = merge.mergeStacks(w, h, d, red2.getStack(), green2.getStack(), blue2.getStack(), true);
        imp = saveImp;
        projImage = new ImagePlus(makeTitle(), stack2);
    }

    /** Builds dialog to query users for projection parameters.
	@param start starting slice to display
	@param stop last slice */
    protected GenericDialog buildControlDialog(int start, int stop) {
		GenericDialog gd = new GenericDialog("ZProjection",IJ.getInstance()); 
		gd.addNumericField("Start slice:",startSlice,0/*digits*/); 
		gd.addNumericField("Stop slice:",stopSlice,0/*digits*/);
		gd.addChoice("Projection Type", METHODS, METHODS[method]); 
		if (isHyperstack && imp.getNFrames()>1&& imp.getNSlices()>1)
			gd.addCheckbox("All Time Frames", allTimeFrames); 
		return gd; 
    }

    /** Performs actual projection using specified method. */
    public void doProjection() {
		if (imp==null)
			return;
		sliceCount = 0;
		if (method<AVG_METHOD || method>MEDIAN_METHOD)
			method = AVG_METHOD;
    	for (int slice=startSlice; slice<=stopSlice; slice+=increment)
    		sliceCount++;
		if (method==MEDIAN_METHOD) {
			projImage = doMedianProjection();
			return;
		} 
		
		// Create new float processor for projected pixels.
		FloatProcessor fp = new FloatProcessor(imp.getWidth(),imp.getHeight()); 
		ImageStack stack = imp.getStack();
		RayFunction rayFunc = getRayFunction(method, fp);
		if(IJ.debugMode==true) {
	    	IJ.log("\nProjecting stack from: "+startSlice
		     	+" to: "+stopSlice); 
		}

		// Determine type of input image. Explicit determination of
		// processor type is required for subsequent pixel
		// manipulation.  This approach is more efficient than the
		// more general use of ImageProcessor's getPixelValue and
		// putPixel methods.
		int ptype; 
		if(stack.getProcessor(1) instanceof ByteProcessor) ptype = BYTE_TYPE; 
		else if(stack.getProcessor(1) instanceof ShortProcessor) ptype = SHORT_TYPE; 
		else if(stack.getProcessor(1) instanceof FloatProcessor) ptype = FLOAT_TYPE; 
		else {
	    	IJ.error("ZProjector: Non-RGB stack required"); 
	    	return; 
		}

		// Do the projection.
		for(int n=startSlice; n<=stopSlice; n+=increment) {
	    	IJ.showStatus("ZProjection " + color +": " + n + "/" + stopSlice);
	    	IJ.showProgress(n-startSlice, stopSlice-startSlice);
	    	projectSlice(stack.getPixels(n), rayFunc, ptype);
		}

		// Finish up projection.
		if (method==SUM_METHOD) {
			fp.resetMinAndMax();
			projImage = new ImagePlus(makeTitle(),fp); 
		} else if (method==SD_METHOD) {
			rayFunc.postProcess();
			fp.resetMinAndMax();
			projImage = new ImagePlus(makeTitle(), fp); 
		} else {
			rayFunc.postProcess(); 
			projImage = makeOutputImage(imp, fp, ptype);
		}

		if(projImage==null)
	    	IJ.error("ZProjection - error computing projection.");
    }

	public void doHyperStackProjection(boolean allTimeFrames) {
		int start = startSlice;
		int stop = stopSlice;
		int firstFrame = 1;
		int lastFrame = imp.getNFrames();
		if (!allTimeFrames)
			firstFrame = lastFrame = imp.getFrame();
		ImageStack stack = new ImageStack(imp.getWidth(), imp.getHeight());
		int channels = imp.getNChannels();
		int slices = imp.getNSlices();
		if (slices==1) {
			slices = imp.getNFrames();
			firstFrame = lastFrame = 1;
		}
		int frames = lastFrame-firstFrame+1;
		increment = channels;
		boolean rgb = imp.getBitDepth()==24;
		for (int frame=firstFrame; frame<=lastFrame; frame++) {
			for (int channel=1; channel<=channels; channel++) {
				startSlice = (frame-1)*channels*slices + (start-1)*channels + channel;
				stopSlice = (frame-1)*channels*slices + (stop-1)*channels + channel;
				if (rgb)
					doHSRGBProjection(imp);
				else
					doProjection();
				stack.addSlice(null, projImage.getProcessor());
			}
		}
        projImage = new ImagePlus(makeTitle(), stack);
        projImage.setDimensions(channels, 1, frames);
        if (channels>1) {
           	projImage = new CompositeImage(projImage, 0);
        	((CompositeImage)projImage).copyLuts(imp);
      		if (method==SUM_METHOD || method==SD_METHOD)
        			((CompositeImage)projImage).resetDisplayRanges();
        }
        if (frames>1)
        	projImage.setOpenAsHyperStack(true);
        IJ.showProgress(1, 1);
	}
	
	private void doHSRGBProjection(ImagePlus rgbImp) {
		ImageStack stack = rgbImp.getStack();
		ImageStack stack2 = new ImageStack(stack.getWidth(), stack.getHeight());
		for (int i=startSlice; i<=stopSlice; i++)
			stack2.addSlice(null, stack.getProcessor(i));
		startSlice = 1;
		stopSlice = stack2.getSize();
		doRGBProjection(stack2);
	}

 	private RayFunction getRayFunction(int method, FloatProcessor fp) {
 		switch (method) {
 			case AVG_METHOD: case SUM_METHOD:
	    		return new AverageIntensity(fp, sliceCount); 
			case MAX_METHOD:
	    		return new MaxIntensity(fp);
	    	case MIN_METHOD:
	    		return new MinIntensity(fp); 
			case SD_METHOD:
	    		return new StandardDeviation(fp, sliceCount); 
			default:
	    		IJ.error("ZProjection - unknown method.");
	    		return null;
	    }
	}

    /** Generate output image whose type is same as input image. */
    private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) {
		int width = imp.getWidth(); 
		int height = imp.getHeight(); 
		float[] pixels = (float[])fp.getPixels(); 
		ImageProcessor oip=null; 

		// Create output image consistent w/ type of input image.
		int size = pixels.length;
		switch (ptype) {
			case BYTE_TYPE:
				oip = imp.getProcessor().createProcessor(width,height);
				byte[] pixels8 = (byte[])oip.getPixels(); 
				for(int i=0; i<size; i++)
					pixels8[i] = (byte)pixels[i];
				break;
			case SHORT_TYPE:
				oip = imp.getProcessor().createProcessor(width,height);
				short[] pixels16 = (short[])oip.getPixels(); 
				for(int i=0; i<size; i++)
					pixels16[i] = (short)pixels[i];
				break;
			case FLOAT_TYPE:
				oip = new FloatProcessor(width, height, pixels, null);
				break;
		}
	
		// Adjust for display.
	    // Calling this on non-ByteProcessors ensures image
	    // processor is set up to correctly display image.
	    oip.resetMinAndMax(); 

		// Create new image plus object. Don't use
		// ImagePlus.createImagePlus here because there may be
		// attributes of input image that are not appropriate for
		// projection.
		return new ImagePlus(makeTitle(), oip); 
    }

    /** Handles mechanics of projection by selecting appropriate pixel
	array type. We do this rather than using more general
	ImageProcessor getPixelValue() and putPixel() methods because
	direct manipulation of pixel arrays is much more efficient.  */
	private void projectSlice(Object pixelArray, RayFunction rayFunc, int ptype) {
		switch(ptype) {
			case BYTE_TYPE:
	    		rayFunc.projectSlice((byte[])pixelArray); 
	    		break; 
			case SHORT_TYPE:
	    		rayFunc.projectSlice((short[])pixelArray); 
	    		break; 
			case FLOAT_TYPE:
	    		rayFunc.projectSlice((float[])pixelArray); 
	    		break; 
		}
    }
    
    String makeTitle() {
    	String prefix = "AVG_";
 		switch (method) {
 			case SUM_METHOD: prefix = "SUM_"; break;
			case MAX_METHOD: prefix = "MAX_"; break;
	    	case MIN_METHOD: prefix = "MIN_"; break;
			case SD_METHOD:  prefix = "STD_"; break;
			case MEDIAN_METHOD:  prefix = "MED_"; break;
	    }
    	return WindowManager.makeUniqueName(prefix+imp.getTitle());
    }

	ImagePlus doMedianProjection() {
		IJ.showStatus("Calculating median...");
		ImageStack stack = imp.getStack();
		ImageProcessor[] slices = new ImageProcessor[sliceCount];
		int index = 0;
		for (int slice=startSlice; slice<=stopSlice; slice+=increment)
			slices[index++] = stack.getProcessor(slice);
		ImageProcessor ip2 = slices[0].duplicate();
		ip2 = ip2.convertToFloat();
		float[] values = new float[sliceCount];
		int width = ip2.getWidth();
		int height = ip2.getHeight();
		int inc = Math.max(height/30, 1);
		for (int y=0; y<height; y++) {
			if (y%inc==0) IJ.showProgress(y, height-1);
			for (int x=0; x<width; x++) {
				for (int i=0; i<sliceCount; i++)
				values[i] = slices[i].getPixelValue(x, y);
				ip2.putPixelValue(x, y, median(values));
			}
		}
		return new ImagePlus(makeTitle(), ip2);
	}

	float median(float[] a) {
		sort(a);
		int length = a.length;
		if ((length&1)==0)
			return (a[length/2-1]+a[length/2])/2f; // even
		else
			return a[length/2]; // odd
	}
	
	void sort(float[] a) {
		if (!alreadySorted(a))
			sort(a, 0, a.length - 1);
	}
	
	void sort(float[] a, int from, int to) {
		int i = from, j = to;
		float center = a[ (from + to) / 2 ];
		do {
			while ( i < to && center>a[i] ) i++;
			while ( j > from && center<a[j] ) j--;
			if (i < j) {float temp = a[i]; a[i] = a[j]; a[j] = temp; }
			if (i <= j) { i++; j--; }
		} while(i <= j);
		if (from < j) sort(a, from, j);
		if (i < to) sort(a,  i, to);
	}
		
	boolean alreadySorted(float[] a) {
		for ( int i=1; i<a.length; i++ ) {
			if (a[i]<a[i-1] )
			return false;
		}
		return true;
	}

/*
    ImagePlus doModeProjection() {
    	IJ.showStatus("Calculating mode...");
    	ImageStack stack = imp.getStack();
    	ImageProcessor[] slices = new ImageProcessor[sliceCount];
    	int index = 0;
    	for (int slice=startSlice; slice<=stopSlice; slice+=increment)
    		slices[index++] = stack.getProcessor(slice);
    	ImageProcessor ip2 = slices[0].duplicate();
    	ip2 = ip2.convertToShort(false);
    	short[] values = new short[sliceCount];
    	int width = ip2.getWidth();
    	int height = ip2.getHeight();
    	int inc = Math.max(height/30, 1);
    	for (int y=0; y<height; y++) {
    		if (y%inc==0) IJ.showProgress(y, height-1);
    		for (int x=0; x<width; x++) {
    			for (int i=0; i<sliceCount; i++)
    				values[i] = (short)slices[i].getPixel(x, y);
    			ip2.putPixel(x, y, mode(values));
    		}
    	}
  		return new ImagePlus(makeTitle(), ip2);
    }
    
    ImageProcessor modeProcessor=null;

	int mode(short[] a) {
		if (modeProcessor==null)
			modeProcessor = new ShortProcessor(a.length, 1, a, null);
		else
			modeProcessor.setPixels(a);
		int[] histogram = modeProcessor.getHistogram();
		int count, mode=0, maxCount=0;
		for (int i=0; i<histogram.length; i++) {
			count = histogram[i];
			if (count>maxCount) {
				maxCount = count;
				mode = i;
			}
		}
		return mode;
	}
*/

     /** Abstract class that specifies structure of ray
	function. Preprocessing should be done in derived class
	constructors.
	*/
    abstract class RayFunction {
		/** Do actual slice projection for specific data types. */
		public abstract void projectSlice(byte[] pixels);
		public abstract void projectSlice(short[] pixels);
		public abstract void projectSlice(float[] pixels);
		
		/** Perform any necessary post processing operations, e.g.
	    	averging values. */
		public void postProcess() {}

    } // end RayFunction


    /** Compute average intensity projection. */
    class AverageIntensity extends RayFunction {
     	private float[] fpixels;
 		private int num, len; 

		/** Constructor requires number of slices to be
	    	projected. This is used to determine average at each
	    	pixel. */
		public AverageIntensity(FloatProcessor fp, int num) {
			fpixels = (float[])fp.getPixels();
			len = fpixels.length;
	    	this.num = num;
		}

		public void projectSlice(byte[] pixels) {
	    	for(int i=0; i<len; i++)
				fpixels[i] += (pixels[i]&0xff); 
		}

		public void projectSlice(short[] pixels) {
	    	for(int i=0; i<len; i++)
				fpixels[i] += pixels[i]&0xffff;
		}

		public void projectSlice(float[] pixels) {
	    	for(int i=0; i<len; i++)
				fpixels[i] += pixels[i]; 
		}

		public void postProcess() {
			float fnum = num;
	    	for(int i=0; i<len; i++)
				fpixels[i] /= fnum;
		}

    } // end AverageIntensity


     /** Compute max intensity projection. */
    class MaxIntensity extends RayFunction {
    	private float[] fpixels;
 		private int len; 

		/** Simple constructor since no preprocessing is necessary. */
		public MaxIntensity(FloatProcessor fp) {
			fpixels = (float[])fp.getPixels();
			len = fpixels.length;
			for (int i=0; i<len; i++)
				fpixels[i] = -Float.MAX_VALUE;
		}

		public void projectSlice(byte[] pixels) {
	    	for(int i=0; i<len; i++) {
				if((pixels[i]&0xff)>fpixels[i])
		    		fpixels[i] = (pixels[i]&0xff); 
	    	}
		}

		public void projectSlice(short[] pixels) {
	    	for(int i=0; i<len; i++) {
				if((pixels[i]&0xffff)>fpixels[i])
		    		fpixels[i] = pixels[i]&0xffff;
	    	}
		}

		public void projectSlice(float[] pixels) {
	    	for(int i=0; i<len; i++) {
				if(pixels[i]>fpixels[i])
		    		fpixels[i] = pixels[i]; 
	    	}
		}
		
    } // end MaxIntensity

     /** Compute min intensity projection. */
    class MinIntensity extends RayFunction {
    	private float[] fpixels;
 		private int len; 

		/** Simple constructor since no preprocessing is necessary. */
		public MinIntensity(FloatProcessor fp) {
			fpixels = (float[])fp.getPixels();
			len = fpixels.length;
			for (int i=0; i<len; i++)
				fpixels[i] = Float.MAX_VALUE;
		}

		public void projectSlice(byte[] pixels) {
	    	for(int i=0; i<len; i++) {
				if((pixels[i]&0xff)<fpixels[i])
		    		fpixels[i] = (pixels[i]&0xff); 
	    	}
		}

		public void projectSlice(short[] pixels) {
	    	for(int i=0; i<len; i++) {
				if((pixels[i]&0xffff)<fpixels[i])
		    		fpixels[i] = pixels[i]&0xffff;
	    	}
		}

		public void projectSlice(float[] pixels) {
	    	for(int i=0; i<len; i++) {
				if(pixels[i]<fpixels[i])
		    		fpixels[i] = pixels[i]; 
	    	}
		}
		
    } // end MaxIntensity


    /** Compute standard deviation projection. */
    class StandardDeviation extends RayFunction {
    	private float[] result;
    	private double[] sum, sum2;
		private int num,len; 

		public StandardDeviation(FloatProcessor fp, int num) {
			result = (float[])fp.getPixels();
			len = result.length;
		    this.num = num;
			sum = new double[len];
			sum2 = new double[len];
		}
	
		public void projectSlice(byte[] pixels) {
			int v;
		    for(int i=0; i<len; i++) {
		    	v = pixels[i]&0xff;
				sum[i] += v;
				sum2[i] += v*v;
			} 
		}
	
		public void projectSlice(short[] pixels) {
			double v;
		    for(int i=0; i<len; i++) {
		    	v = pixels[i]&0xffff;
				sum[i] += v;
				sum2[i] += v*v;
			} 
		}
	
		public void projectSlice(float[] pixels) {
			double v;
		    for(int i=0; i<len; i++) {
		    	v = pixels[i];
				sum[i] += v;
				sum2[i] += v*v;
			} 
		}
	
		public void postProcess() {
			double stdDev;
			double n = num;
		    for(int i=0; i<len; i++) {
				if (num>1) {
					stdDev = (n*sum2[i]-sum[i]*sum[i])/n;
					if (stdDev>0.0)
						result[i] = (float)Math.sqrt(stdDev/(n-1.0));
					else
						result[i] = 0f;
				} else
					result[i] = 0f;
			}
		}

    } // end StandardDeviation

}  // end ZProjection