1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
package ij.plugin.filter;
import ij.IJ;
import ij.ImagePlus;
import ij.Macro;
import ij.Prefs;
import ij.gui.DialogListener;
import ij.gui.GenericDialog;
import ij.process.ByteProcessor;
import ij.process.ColorProcessor;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;
import java.awt.AWTEvent;
import java.awt.Rectangle;
/** This plug-in filter uses convolution with a Gaussian function for smoothing.
* 'Radius' means the radius of decay to exp(-0.5) ~ 61%, i.e. the standard
* deviation sigma of the Gaussian (this is the same as in Photoshop, but
* different from the 'Gaussian Blur' in ImageJ versions before 1.38u, where
* a value 2.5 times as much had to be entered.
* - Like all convolution operations in ImageJ, it assumes that out-of-image
* pixels have a value equal to the nearest edge pixel. This gives higher
* weight to edge pixels than pixels inside the image, and higher weight
* to corner pixels than non-corner pixels at the edge. Thus, when smoothing
* with very high blur radius, the output will be dominated by the edge
* pixels and especially the corner pixels (in the extreme case, with
* a blur radius of e.g. 1e20, the image will be raplaced by the average
* of the four corner pixels).
* - For increased speed, except for small blur radii, the lines (rows or
* columns of the image) are downscaled before convolution and upscaled
* to their original length thereafter.
*
* Version 03-Jun-2007 M. Schmid with preview, progressBar stack-aware,
* snapshot via snapshot flag; restricted range for resetOutOfRoi
*
* 20-Feb-2010 S. Saalfeld inner multi-threading
*
*/
public class GaussianBlur implements ExtendedPlugInFilter, DialogListener {
/** the standard deviation of the Gaussian*/
private static double sigma = 2.0;
/** whether sigma is given in units corresponding to the pixel scale (not pixels)*/
private static boolean sigmaScaled = false;
/** The flags specifying the capabilities and needs */
private int flags = DOES_ALL|SUPPORTS_MASKING|KEEP_PREVIEW;
private ImagePlus imp; // The ImagePlus of the setup call, needed to get the spatial calibration
private boolean hasScale = false; // whether the image has an x&y scale
private int nPasses = 1; // The number of passes (filter directions * color channels * stack slices)
private int nChannels = 1; // The number of color channels
private int pass; // Current pass
/** Method to return types supported
* @param arg unused
* @param imp The ImagePlus, used to get the spatial calibration
* @return Code describing supported formats etc.
* (see ij.plugin.filter.PlugInFilter & ExtendedPlugInFilter)
*/
public int setup(String arg, ImagePlus imp) {
this.imp = imp;
if (imp!=null && imp.getRoi()!=null) {
Rectangle roiRect = imp.getRoi().getBoundingRect();
if (roiRect.y > 0 || roiRect.y+roiRect.height < imp.getDimensions()[1])
flags |= SNAPSHOT; // snapshot for pixels above and/or below roi rectangle
}
return flags;
}
/** Ask the user for the parameters
*/
public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) {
String options = Macro.getOptions();
boolean oldMacro = false;
nChannels = imp.getProcessor().getNChannels();
if (options!=null) {
if (options.indexOf("radius=") >= 0) { // ensure compatibility with old macros
oldMacro = true; // specifying "radius=", not "sigma=
Macro.setOptions(options.replaceAll("radius=", "sigma="));
}
}
GenericDialog gd = new GenericDialog(command);
sigma = Math.abs(sigma);
gd.addNumericField("Sigma (Radius)", sigma, 2);
if (imp.getCalibration()!=null && !imp.getCalibration().getUnits().equals("pixels")) {
hasScale = true;
gd.addCheckbox("Scaled Units ("+imp.getCalibration().getUnits()+")", sigmaScaled);
} else
sigmaScaled = false;
gd.addPreviewCheckbox(pfr);
gd.addDialogListener(this);
gd.showDialog(); // input by the user (or macro) happens here
if (gd.wasCanceled()) return DONE;
if (oldMacro) sigma /= 2.5; // for old macros, "radius" was 2.5 sigma
IJ.register(this.getClass()); // protect static class variables (parameters) from garbage collection
return IJ.setupDialog(imp, flags); // ask whether to process all slices of stack (if a stack)
}
/** Listener to modifications of the input fields of the dialog */
public boolean dialogItemChanged(GenericDialog gd, AWTEvent e) {
sigma = gd.getNextNumber();
if (sigma < 0 || gd.invalidNumber())
return false;
if (hasScale)
sigmaScaled = gd.getNextBoolean();
return true;
}
/** Set the number of passes of the blur1Direction method. If called by the
* PlugInFilterRunner of ImageJ, an ImagePlus is known and conversion of RGB images
* to float as well as the two filter directions are taken into account.
* Otherwise, the caller should set nPasses to the number of 1-dimensional
* filter operations required.
*/
public void setNPasses(int nPasses) {
this.nPasses = 2 * nChannels * nPasses;
pass = 0;
}
/** This method is invoked for each slice during execution
* @param ip The image subject to filtering. It must have a valid snapshot if
* the height of the roi is less than the full image height.
*/
public void run(ImageProcessor ip) {
double sigmaX = sigmaScaled ? sigma/imp.getCalibration().pixelWidth : sigma;
double sigmaY = sigmaScaled ? sigma/imp.getCalibration().pixelHeight : sigma;
double accuracy = (ip instanceof ByteProcessor || ip instanceof ColorProcessor) ?
0.002 : 0.0002;
Rectangle roi = ip.getRoi();
blurGaussian(ip, sigmaX, sigmaY, accuracy);
}
/** Gaussian Filtering of an ImageProcessor. This method is for compatibility with the
* previous code (before 1.38r) and uses a low-accuracy kernel, only slightly better
* than the previous ImageJ code */
public boolean blur(ImageProcessor ip, double radius) {
Rectangle roi = ip.getRoi();
if (roi.height!=ip.getHeight() && ip.getMask()==null)
ip.snapshot(); // a snapshot is needed for out-of-Rectangle pixels
blurGaussian(ip, 0.4*radius, 0.4*radius, 0.01);
return true;
}
/** Gaussian Filtering of an ImageProcessor. If filtering is not applied to the
* full image height, the ImageProcessor must have a valid snapshot.
* @param ip The ImageProcessor to be filtered.
* @param sigmaX Standard deviation of the Gaussian in x direction (pixels)
* @param sigmaY Standard deviation of the Gaussian in y direction (pixels)
* @param accuracy Accuracy of kernel, should not be above 0.02. Better (lower)
* accuracy needs slightly more computing time.
*/
public void blurGaussian(ImageProcessor ip, double sigmaX, double sigmaY, double accuracy) {
if (nPasses<=1)
nPasses = ip.getNChannels() * (sigmaX>0 && sigmaY>0 ? 2 : 1);
FloatProcessor fp = null;
for (int i=0; i<ip.getNChannels(); i++) {
fp = ip.toFloat(i, fp);
if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
blurFloat(fp, sigmaX, sigmaY, accuracy);
if (Thread.currentThread().isInterrupted()) return;
ip.setPixels(i, fp);
}
if (ip.getRoi().height!=ip.getHeight() && sigmaX>0 && sigmaY>0)
resetOutOfRoi(ip, (int)Math.ceil(5*sigmaY)); // reset out-of-Rectangle pixels above and below roi
return;
}
/** Gaussian Filtering of a FloatProcessor. This method does NOT include
* resetOutOfRoi(ip), i.e., pixels above and below the roi rectangle will
* be also subject to filtering in x direction and must be restored
* afterwards (unless the full image height is processed).
* @param ip The FloatProcessor to be filtered.
* @param sigmaX Standard deviation of the Gaussian in x direction (pixels)
* @param sigmaY Standard deviation of the Gaussian in y direction (pixels)
* @param accuracy Accuracy of kernel, should not be above 0.02. Better (lower)
* accuracy needs slightly more computing time.
*/
public void blurFloat(FloatProcessor ip, double sigmaX, double sigmaY, double accuracy) {
if (sigmaX > 0)
blur1Direction(ip, sigmaX, accuracy, true, (int)Math.ceil(5*sigmaY));
if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
if (sigmaY > 0)
blur1Direction(ip, sigmaY, accuracy, false, 0);
return;
}
/** Blur an image in one direction (x or y) by a Gaussian.
* @param ip The Image with the original data where also the result will be stored
* @param sigma Standard deviation of the Gaussian
* @param accuracy Accuracy of kernel, should not be > 0.02
* @param xDirection True for bluring in x direction, false for y direction
* @param extraLines Number of lines (parallel to the blurring direction)
* below and above the roi bounds that should be processed.
*/
public void blur1Direction( final FloatProcessor ip, final double sigma, final double accuracy,
final boolean xDirection, final int extraLines) {
final int UPSCALE_K_RADIUS = 2; //number of pixels to add for upscaling
final double MIN_DOWNSCALED_SIGMA = 4.; //minimum standard deviation in the downscaled image
final float[] pixels = (float[])ip.getPixels();
final int width = ip.getWidth();
final int height = ip.getHeight();
final Rectangle roi = ip.getRoi();
final int length = xDirection ? width : height; //number of points per line (line can be a row or column)
final int pointInc = xDirection ? 1 : width; //increment of the pixels array index to the next point in a line
final int lineInc = xDirection ? width : 1; //increment of the pixels array index to the next line
final int lineFromA = (xDirection ? roi.y : roi.x) - extraLines; //the first line to process
final int lineFrom;
if (lineFromA < 0) lineFrom = 0;
else lineFrom = lineFromA;
final int lineToA = (xDirection ? roi.y+roi.height : roi.x+roi.width) + extraLines; //the last line+1 to process
final int lineTo;
if (lineToA > (xDirection ? height:width)) lineTo = (xDirection ? height:width);
else lineTo = lineToA;
final int writeFrom = xDirection? roi.x : roi.y; //first point of a line that needs to be written
final int writeTo = xDirection ? roi.x+roi.width : roi.y+roi.height;
/**/ final int inc = Math.max((lineTo-lineFrom)/(100/(nPasses>0?nPasses:1)+1),20);
pass++;
if (pass>nPasses) pass =1;
final int numThreads = Math.min(Prefs.getThreads(), lineTo-lineFrom);
final Thread[] lineThreads = new Thread[numThreads];
/* large radius (sigma): scale down, then convolve, then scale up */
final boolean doDownscaling = sigma > 2*MIN_DOWNSCALED_SIGMA + 0.5;
final int reduceBy = doDownscaling ? //downscale by this factor
Math.min((int)Math.floor(sigma/MIN_DOWNSCALED_SIGMA), length)
: 1;
/* Downscaling and upscaling blur the image a bit - we have to correct the standard
* deviation for this:
* Downscaling gives std devation sigma = 1/sqrt(3); upscale gives sigma = 1/2 (in downscaled pixels).
* All sigma^2 values add to full sigma^2, which should be the desired value */
final double sigmaGauss = doDownscaling ?
Math.sqrt(sigma*sigma/(reduceBy*reduceBy) - 1./3. - 1./4.)
: sigma;
final int maxLength = doDownscaling ?
(length+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1) //downscaled line can't be longer
: length;
final float[][] gaussKernel = makeGaussianKernel(sigmaGauss, accuracy, maxLength);
final int kRadius = gaussKernel[0].length*reduceBy; //Gaussian kernel radius after upscaling
final int readFrom = (writeFrom-kRadius < 0) ? 0 : writeFrom-kRadius; //not including broadening by downscale&upscale
final int readTo = (writeTo+kRadius > length) ? length : writeTo+kRadius;
final int newLength = doDownscaling ? //line length for convolution
(readTo-readFrom+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1)
: length;
final int unscaled0 = readFrom - (UPSCALE_K_RADIUS + 1)*reduceBy; //input point corresponding to cache index 0
//the following is relevant for upscaling only
//IJ.log("reduce="+reduceBy+", newLength="+newLength+", unscaled0="+unscaled0+", sigmaG="+(float)sigmaGauss+", kRadius="+gaussKernel[0].length);
final float[] downscaleKernel = doDownscaling ? makeDownscaleKernel(reduceBy) : null;
final float[] upscaleKernel = doDownscaling ? makeUpscaleKernel(reduceBy) : null;
for ( int t = 0; t < numThreads; ++t ) {
final int ti = t;
final float[] cache1 = new float[newLength]; //holds data before convolution (after downscaling, if any)
final float[] cache2 = doDownscaling ? new float[newLength] : null; //holds data after convolution
final Thread thread = new Thread(
new Runnable() {
final public void run() { /*try{*/
long lastTime = System.currentTimeMillis();
boolean canShowProgress = Thread.currentThread() == lineThreads[0];
int pixel0 = (lineFrom+ti)*lineInc;
for (int line=lineFrom + ti; line<lineTo; line += numThreads, pixel0+=numThreads*lineInc) {
long time = System.currentTimeMillis();
if (time - lastTime >110) {
if (canShowProgress)
showProgress((double)(line-lineFrom)/(lineTo-lineFrom));
if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
lastTime = time;
}
if (doDownscaling) {
downscaleLine(pixels, cache1, downscaleKernel, reduceBy, pixel0, unscaled0, length, pointInc, newLength);
convolveLine(cache1, cache2, gaussKernel, 0, newLength, 1, newLength-1, 0, 1);
upscaleLine(cache2, pixels, upscaleKernel, reduceBy, pixel0, unscaled0, writeFrom, writeTo, pointInc);
} else {
int p = pixel0 + readFrom*pointInc;
for (int i=readFrom; i<readTo; i++ ,p+=pointInc)
cache1[i] = pixels[p];
convolveLine(cache1, pixels, gaussKernel, readFrom, readTo, writeFrom, writeTo, pixel0, pointInc);
}
}
} /*catch(Exception ex) {IJ.handleException(ex);} }*/
},
"GaussianBlur-"+t);
thread.setPriority( Thread.currentThread().getPriority() );
lineThreads[ ti ] = thread;
thread.start();
}
try {
for ( final Thread thread : lineThreads )
if ( thread != null ) thread.join();
}
catch ( InterruptedException e ) {
for ( final Thread thread : lineThreads )
thread.interrupt();
try {
for ( final Thread thread : lineThreads )
thread.join();
}
catch ( InterruptedException f ) {}
Thread.currentThread().interrupt();
}
showProgress(1.0);
return;
}
/** Scale a line (row or column of a FloatProcessor or part thereof)
* down by a factor <code>reduceBy</code> and write the result into
* <code>cache</code>.
* Input line pixel # <code>unscaled0</code> will correspond to output
* line pixel # 0. <code>unscaled0</code> may be negative. Out-of-line
* pixels of the input are replaced by the edge pixels.
* @param pixels input array
* @param cache output array
* @param kernel downscale kernel, runs form -1.5 to +1.5 in downscaled coordinates
* @param reduceBy downscaling factor
* @param pixel0 index in pixels array corresponding to start of line or column
* @param unscaled0 index in input line corresponding to output line index 0, May be negative.
* @param length length of full input line or column
* @param pointInc spacing of values in input array (1 for lines, image width for columns)
* @param newLength length of downscaled data
*/
final static private void downscaleLine(final float[] pixels, final float[] cache, final float[] kernel,
final int reduceBy, final int pixel0, final int unscaled0, final int length, final int pointInc, final int newLength) {
int p = pixel0 + pointInc*(unscaled0-reduceBy*3/2); //pointer in pixels array
final int pLast = pixel0 + pointInc*(length-1);
for (int xout=-1; xout<=newLength; xout++) {
float sum0 = 0, sum1 = 0, sum2 = 0;
for (int x=0; x<reduceBy; x++, p+=pointInc) {
float v = pixels[p<pixel0 ? pixel0 : (p>pLast ? pLast : p)];
sum0 += v * kernel[x+2*reduceBy];
sum1 += v * kernel[x+reduceBy];
sum2 += v * kernel[x];
}
if (xout>0) cache[xout-1] += sum0;
if (xout>=0 && xout<newLength) cache[xout] += sum1;
if (xout+1<newLength) cache[xout+1] = sum2;
}
}
/** the above code is equivalent to the following one; but the above code is faster
* - above: accesses each pixel in the pixels array only once
* - below: accesses each pixel in the pixels array 3 times, more cache misses */
/*final static private void downscaleLine(final float[] pixels, final float[] cache, final float[] kernel,
final int reduceBy, final int pixel0, final int unscaled0, final int length, final int pointInc, final int newLength) {
final int xin = unscaled0 - reduceBy/2;
int p = pixel0 + pointInc*xin;
final int pLast = pixel0 + pointInc*(length-1);
for (int xout=0; xout<newLength; xout++) {
float v = 0;
for (int x=0; x<reduceBy; x++, p+=pointInc) {
int pp = p-pointInc*reduceBy;
v += kernel[x] * pixels[pp<pixel0 ? pixel0 : (pp>pLast ? pLast : pp)];
v += kernel[x+reduceBy] * pixels[p<pixel0 ? pixel0 : (p>pLast ? pLast : p)];
pp = p+pointInc*reduceBy;
v += kernel[x+2*reduceBy] * pixels[pp<pixel0 ? pixel0 : (pp>pLast ? pLast : pp)];
}
cache[xout] = v;
}
}*/
/* Create a kernel for downscaling. The kernel function preserves
* norm and 1st moment (i.e., position) and has fixed 2nd moment,
* (in contrast to linear interpolation).
* In scaled space, the length of the kernel runs from -1.5 to +1.5,
* and the standard deviation is 1/2.
* Array index corresponding to the kernel center is
* unitLength*3/2
*/
final static private float[] makeDownscaleKernel (final int unitLength) {
final int mid = unitLength*3/2;
final float[] kernel = new float[3*unitLength];
for (int i=0; i<=unitLength/2; i++) {
final double x = i/(double)unitLength;
final float v = (float)((0.75-x*x)/unitLength);
kernel[mid-i] = v;
kernel[mid+i] = v;
}
for (int i=unitLength/2+1; i<(unitLength*3+1)/2; i++) {
final double x = i/(double)unitLength;
final float v = (float)((0.125 + 0.5*(x-1)*(x-2))/unitLength);
kernel[mid-i] = v;
kernel[mid+i] = v;
}
return kernel;
}
/** Scale a line up by factor <code>reduceBy</code> and write as a row
* or column (or part thereof) to the pixels array of a FloatProcessor.
*/
final static private void upscaleLine (final float[] cache, final float[] pixels, final float[] kernel,
final int reduceBy, final int pixel0, final int unscaled0, final int writeFrom, final int writeTo, final int pointInc) {
int p = pixel0 + pointInc*writeFrom;
for (int xout = writeFrom; xout < writeTo; xout++, p+=pointInc) {
final int xin = (xout-unscaled0+reduceBy-1)/reduceBy; //the corresponding point in the cache (if exact) or the one above
final int x = reduceBy - 1 - (xout-unscaled0+reduceBy-1)%reduceBy;
pixels[p] = cache[xin-2]*kernel[x]
+ cache[xin-1]*kernel[x+reduceBy]
+ cache[xin]*kernel[x+2*reduceBy]
+ cache[xin+1]*kernel[x+3*reduceBy];
}
}
/** Create a kernel for upscaling. The kernel function is a convolution
* of four unit squares, i.e., four uniform kernels with value +1
* from -0.5 to +0.5 (in downscaled coordinates). The second derivative
* of this kernel is smooth, the third is not. Its standard deviation
* is 1/sqrt(3) in downscaled cordinates.
* The kernel runs from [-2 to +2[, corresponding to array index
* 0 ... 4*unitLength (whereby the last point is not in the array any more).
*/
final static private float[] makeUpscaleKernel (final int unitLength) {
final float[] kernel = new float[4*unitLength];
final int mid = 2*unitLength;
kernel[0] = 0;
for (int i=0; i<unitLength; i++) {
final double x = i/(double)unitLength;
final float v = (float)((2./3. -x*x*(1-0.5*x)));
kernel[mid+i] = v;
kernel[mid-i] = v;
}
for (int i=unitLength; i<2*unitLength; i++) {
final double x = i/(double)unitLength;
final float v = (float)((2.-x)*(2.-x)*(2.-x)/6.);
kernel[mid+i] = v;
kernel[mid-i] = v;
}
return kernel;
}
/** Convolve a line with a symmetric kernel and write to a separate array,
* possibly the pixels array of a FloatProcessor (as a row or column or part thereof)
*
* @param input Input array containing the line
* @param pixels Float array for output, can be the pixels of a FloatProcessor
* @param kernel "One-sided" kernel array, kernel[0][n] must contain the kernel
* itself, kernel[1][n] must contain the running sum over all
* kernel elements from kernel[0][n+1] to the periphery.
* The kernel must be normalized, i.e. sum(kernel[0][n]) = 1
* where n runs from the kernel periphery (last element) to 0 and
* back. Normalization should include all kernel points, also these
* not calculated because they are not needed.
* @param readFrom First array element of the line that must be read.
* <code>writeFrom-kernel.length</code> or 0.
* @param readTo Last array element+1 of the line that must be read.
* <code>writeTo+kernel.length</code> or <code>input.length</code>
* @param writeFrom Index of the first point in the line that should be written
* @param writeTo Index+1 of the last point in the line that should be written
* @param point0 Array index of first element of the 'line' in pixels (i.e., lineNumber * lineInc)
* @param pointInc Increment of the pixels array index to the next point (for an ImageProcessor,
* it should be <code>1</code> for a row, <code>width</code> for a column)
*/
final static private void convolveLine( final float[] input, final float[] pixels, final float[][] kernel, final int readFrom,
final int readTo, final int writeFrom, final int writeTo, final int point0, final int pointInc) {
final int length = input.length;
final float first = input[0]; //out-of-edge pixels are replaced by nearest edge pixels
final float last = input[length-1];
final float[] kern = kernel[0]; //the kernel itself
final float kern0 = kern[0];
final float[] kernSum = kernel[1]; //the running sum over the kernel
final int kRadius = kern.length;
final int firstPart = kRadius < length ? kRadius : length;
int p = point0 + writeFrom*pointInc;
int i = writeFrom;
for (; i<firstPart; i++,p+=pointInc) { //while the sum would include pixels < 0
float result = input[i]*kern0;
result += kernSum[i]*first;
if (i+kRadius>length) result += kernSum[length-i-1]*last;
for (int k=1; k<kRadius; k++) {
float v = 0;
if (i-k >= 0) v += input[i-k];
if (i+k<length) v+= input[i+k];
result += kern[k] * v;
}
pixels[p] = result;
}
final int iEndInside = length-kRadius<writeTo ? length-kRadius : writeTo;
for (;i<iEndInside;i++,p+=pointInc) { //while only pixels within the line are be addressed (the easy case)
float result = input[i]*kern0;
for (int k=1; k<kRadius; k++)
result += kern[k] * (input[i-k] + input[i+k]);
pixels[p] = result;
}
for (; i<writeTo; i++,p+=pointInc) { //while the sum would include pixels >= length
float result = input[i]*kern0;
if (i<kRadius) result += kernSum[i]*first;
if (i+kRadius>=length) result += kernSum[length-i-1]*last;
for (int k=1; k<kRadius; k++) {
float v = 0;
if (i-k >= 0) v += input[i-k];
if (i+k<length) v+= input[i+k];
result += kern[k] * v;
}
pixels[p] = result;
}
}
/** Create a 1-dimensional normalized Gaussian kernel with standard deviation sigma
* and the running sum over the kernel
* Note: this is one side of the kernel only, not the full kernel as used by the
* Convolver class of ImageJ.
* To avoid a step due to the cutoff at a finite value, the near-edge values are
* replaced by a 2nd-order polynomial with its minimum=0 at the first out-of-kernel
* pixel. Thus, the kernel function has a smooth 1st derivative in spite of finite
* length.
*
* @param sigma Standard deviation, i.e. radius of decay to 1/sqrt(e), in pixels.
* @param accuracy Relative accuracy; for best results below 0.01 when processing
* 8-bit images. For short or float images, values of 1e-3 to 1e-4
* are better (but increase the kernel size and thereby the
* processing time). Edge smoothing will fail with very poor
* accuracy (above approx. 0.02)
* @param maxRadius Maximum radius of the kernel: Limits kernel size in case of
* large sigma, should be set to image width or height. For small
* values of maxRadius, the kernel returned may have a larger
* radius, however.
* @return A 2*n array. Array[0][n] is the kernel, decaying towards zero,
* which would be reached at kernel.length (unless kernel size is
* limited by maxRadius). Array[1][n] holds the sum over all kernel
* values > n, including non-calculated values in case the kernel
* size is limited by <code>maxRadius</code>.
*/
public float[][] makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) {
int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
if (maxRadius < 50) maxRadius = 50; // too small maxRadius would result in inaccurate sum.
if (kRadius > maxRadius) kRadius = maxRadius;
float[][] kernel = new float[2][kRadius];
for (int i=0; i<kRadius; i++) // Gaussian function
kernel[0][i] = (float)(Math.exp(-0.5*i*i/sigma/sigma));
if (kRadius < maxRadius && kRadius > 3) { // edge correction
double sqrtSlope = Double.MAX_VALUE;
int r = kRadius;
while (r > kRadius/2) {
r--;
double a = Math.sqrt(kernel[0][r])/(kRadius-r);
if (a < sqrtSlope)
sqrtSlope = a;
else
break;
}
for (int r1 = r+2; r1 < kRadius; r1++)
kernel[0][r1] = (float)((kRadius-r1)*(kRadius-r1)*sqrtSlope*sqrtSlope);
}
double sum; // sum over all kernel elements for normalization
if (kRadius < maxRadius) {
sum = kernel[0][0];
for (int i=1; i<kRadius; i++)
sum += 2*kernel[0][i];
} else
sum = sigma * Math.sqrt(2*Math.PI);
double rsum = 0.5 + 0.5*kernel[0][0]/sum;
for (int i=0; i<kRadius; i++) {
double v = (kernel[0][i]/sum);
kernel[0][i] = (float)v;
rsum -= v;
kernel[1][i] = (float)rsum;
//IJ.log("k["+i+"]="+(float)v+" sum="+(float)rsum);
}
return kernel;
}
/** Set the processed pixels above and below the roi rectangle back to their
* previous value (i.e., snapshot buffer). This is necessary since ImageJ
* only restores out-of-roi pixels inside the enclosing rectangle of the roi
* (If the roi is non-rectangular and the SUPPORTS_MASKING flag is set).
* @param ip The image to be processed
* @param radius The range above and below the roi that should be processed
*/
public static void resetOutOfRoi(ImageProcessor ip, int radius) {
Rectangle roi = ip.getRoi();
int width = ip.getWidth();
int height = ip.getHeight();
Object pixels = ip.getPixels();
Object snapshot = ip.getSnapshotPixels();
int y0 = roi.y-radius; // the first line that should be reset
if (y0<0) y0 = 0;
for (int y=y0,p=width*y+roi.x; y<roi.y; y++,p+=width)
System.arraycopy(snapshot, p, pixels, p, roi.width);
int yEnd = roi.y+roi.height+radius; // the last line + 1 that should be reset
if (yEnd > height) yEnd = height;
for (int y=roi.y+roi.height,p=width*y+roi.x; y<yEnd; y++,p+=width)
System.arraycopy(snapshot, p, pixels, p, roi.width);
}
void showProgress(double percent) {
percent = (double)(pass-1)/nPasses + percent/nPasses;
IJ.showProgress(percent);
}
}
|