File: GaussianBlur.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (592 lines) | stat: -rw-r--r-- 31,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
package ij.plugin.filter;
import ij.IJ;
import ij.ImagePlus;
import ij.Macro;
import ij.Prefs;
import ij.gui.DialogListener;
import ij.gui.GenericDialog;
import ij.process.ByteProcessor;
import ij.process.ColorProcessor;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;

import java.awt.AWTEvent;
import java.awt.Rectangle;

/** This plug-in filter uses convolution with a Gaussian function for smoothing.
 * 'Radius' means the radius of decay to exp(-0.5) ~ 61%, i.e. the standard
 * deviation sigma of the Gaussian (this is the same as in Photoshop, but
 * different from the 'Gaussian Blur' in ImageJ versions before 1.38u, where
 * a value 2.5 times as much had to be entered.
 * - Like all convolution operations in ImageJ, it assumes that out-of-image
 * pixels have a value equal to the nearest edge pixel. This gives higher
 * weight to edge pixels than pixels inside the image, and higher weight
 * to corner pixels than non-corner pixels at the edge. Thus, when smoothing
 * with very high blur radius, the output will be dominated by the edge
 * pixels and especially the corner pixels (in the extreme case, with
 * a blur radius of e.g. 1e20, the image will be raplaced by the average
 * of the four corner pixels).
 * - For increased speed, except for small blur radii, the lines (rows or
 * columns of the image) are downscaled before convolution and upscaled
 * to their original length thereafter.
 * 
 * Version 03-Jun-2007 M. Schmid with preview, progressBar stack-aware,
 * snapshot via snapshot flag; restricted range for resetOutOfRoi
 * 
 * 20-Feb-2010 S. Saalfeld inner multi-threading
 *
 */

public class GaussianBlur implements ExtendedPlugInFilter, DialogListener {

    /** the standard deviation of the Gaussian*/
    private static double sigma = 2.0;
    /** whether sigma is given in units corresponding to the pixel scale (not pixels)*/
    private static boolean sigmaScaled = false;
    /** The flags specifying the capabilities and needs */
    private int flags = DOES_ALL|SUPPORTS_MASKING|KEEP_PREVIEW;
    private ImagePlus imp;              // The ImagePlus of the setup call, needed to get the spatial calibration
    private boolean hasScale = false;   // whether the image has an x&y scale
    private int nPasses = 1;            // The number of passes (filter directions * color channels * stack slices)
    private int nChannels = 1;        // The number of color channels
    private int pass;                   // Current pass
    
    /** Method to return types supported
     * @param arg unused
     * @param imp The ImagePlus, used to get the spatial calibration
     * @return Code describing supported formats etc.
     * (see ij.plugin.filter.PlugInFilter & ExtendedPlugInFilter)
     */
    public int setup(String arg, ImagePlus imp) {
        this.imp = imp;
        if (imp!=null && imp.getRoi()!=null) {
            Rectangle roiRect = imp.getRoi().getBoundingRect();
            if (roiRect.y > 0 || roiRect.y+roiRect.height < imp.getDimensions()[1])
                flags |= SNAPSHOT;                  // snapshot for pixels above and/or below roi rectangle
        }
        return flags;
    }
    
    /** Ask the user for the parameters
     */
    public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) {
        String options = Macro.getOptions();
        boolean oldMacro = false;
        nChannels = imp.getProcessor().getNChannels();
        if  (options!=null) {
            if (options.indexOf("radius=") >= 0) {  // ensure compatibility with old macros
                oldMacro = true;                    // specifying "radius=", not "sigma=
                Macro.setOptions(options.replaceAll("radius=", "sigma="));
            }
        }
        GenericDialog gd = new GenericDialog(command);
        sigma = Math.abs(sigma);
        gd.addNumericField("Sigma (Radius)", sigma, 2);
        if (imp.getCalibration()!=null && !imp.getCalibration().getUnits().equals("pixels")) {
            hasScale = true;
            gd.addCheckbox("Scaled Units ("+imp.getCalibration().getUnits()+")", sigmaScaled);
        } else
            sigmaScaled = false;
        gd.addPreviewCheckbox(pfr);
        gd.addDialogListener(this);
        gd.showDialog();                    // input by the user (or macro) happens here
        if (gd.wasCanceled()) return DONE;
        if (oldMacro) sigma /= 2.5;         // for old macros, "radius" was 2.5 sigma
        IJ.register(this.getClass());       // protect static class variables (parameters) from garbage collection
        return IJ.setupDialog(imp, flags);  // ask whether to process all slices of stack (if a stack)
    }

    /** Listener to modifications of the input fields of the dialog */
    public boolean dialogItemChanged(GenericDialog gd, AWTEvent e) {
        sigma = gd.getNextNumber();
        if (sigma < 0 || gd.invalidNumber())
            return false;
        if (hasScale)
            sigmaScaled = gd.getNextBoolean();
        return true;
    }

    /** Set the number of passes of the blur1Direction method. If called by the
     *  PlugInFilterRunner of ImageJ, an ImagePlus is known and conversion of RGB images
     *  to float as well as the two filter directions are taken into account.
     *  Otherwise, the caller should set nPasses to the number of 1-dimensional
     *  filter operations required.
     */
    public void setNPasses(int nPasses) {
        this.nPasses = 2 * nChannels * nPasses;
        pass = 0;
    }

    /** This method is invoked for each slice during execution
     * @param ip The image subject to filtering. It must have a valid snapshot if
     * the height of the roi is less than the full image height.
     */
    public void run(ImageProcessor ip) {
        double sigmaX = sigmaScaled ? sigma/imp.getCalibration().pixelWidth : sigma;
        double sigmaY = sigmaScaled ? sigma/imp.getCalibration().pixelHeight : sigma;
        double accuracy = (ip instanceof ByteProcessor || ip instanceof ColorProcessor) ?
            0.002 : 0.0002;
        Rectangle roi = ip.getRoi();
        blurGaussian(ip, sigmaX, sigmaY, accuracy);
    }

    /** Gaussian Filtering of an ImageProcessor. This method is for compatibility with the
     *  previous code (before 1.38r) and uses a low-accuracy kernel, only slightly better
     *  than the previous ImageJ code */
    public boolean blur(ImageProcessor ip, double radius) {
        Rectangle roi = ip.getRoi();
        if (roi.height!=ip.getHeight() && ip.getMask()==null)
            ip.snapshot();              // a snapshot is needed for out-of-Rectangle pixels
        blurGaussian(ip, 0.4*radius, 0.4*radius, 0.01);
        return true;
    }

    /** Gaussian Filtering of an ImageProcessor. If filtering is not applied to the
     *  full image height, the ImageProcessor must have a valid snapshot.
     * @param ip       The ImageProcessor to be filtered.
     * @param sigmaX   Standard deviation of the Gaussian in x direction (pixels)
     * @param sigmaY   Standard deviation of the Gaussian in y direction (pixels)
     * @param accuracy Accuracy of kernel, should not be above 0.02. Better (lower)
     *                 accuracy needs slightly more computing time.
     */
    public void blurGaussian(ImageProcessor ip, double sigmaX, double sigmaY, double accuracy) {
        if (nPasses<=1)
            nPasses = ip.getNChannels() * (sigmaX>0 && sigmaY>0 ? 2 : 1);
        FloatProcessor fp = null;
        for (int i=0; i<ip.getNChannels(); i++) {
            fp = ip.toFloat(i, fp);
            if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
            blurFloat(fp, sigmaX, sigmaY, accuracy);
            if (Thread.currentThread().isInterrupted()) return;
            ip.setPixels(i, fp);
        }
        if (ip.getRoi().height!=ip.getHeight() && sigmaX>0 && sigmaY>0)
            resetOutOfRoi(ip, (int)Math.ceil(5*sigmaY)); // reset out-of-Rectangle pixels above and below roi
        return;
    }

    /** Gaussian Filtering of a FloatProcessor. This method does NOT include
     *  resetOutOfRoi(ip), i.e., pixels above and below the roi rectangle will
     *  be also subject to filtering in x direction and must be restored
     *  afterwards (unless the full image height is processed).
     * @param ip        The FloatProcessor to be filtered.
     * @param sigmaX    Standard deviation of the Gaussian in x direction (pixels)
     * @param sigmaY    Standard deviation of the Gaussian in y direction (pixels)
     * @param accuracy  Accuracy of kernel, should not be above 0.02. Better (lower)
     *                  accuracy needs slightly more computing time.
     */
    public void blurFloat(FloatProcessor ip, double sigmaX, double sigmaY, double accuracy) {
        if (sigmaX > 0)
            blur1Direction(ip, sigmaX, accuracy, true, (int)Math.ceil(5*sigmaY));
        if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
        if (sigmaY > 0)
            blur1Direction(ip, sigmaY, accuracy, false, 0);
        return;
    }

    /** Blur an image in one direction (x or y) by a Gaussian.
     * @param ip        The Image with the original data where also the result will be stored
     * @param sigma     Standard deviation of the Gaussian
     * @param accuracy  Accuracy of kernel, should not be > 0.02
     * @param xDirection True for bluring in x direction, false for y direction
     * @param extraLines Number of lines (parallel to the blurring direction) 
     *                  below and above the roi bounds that should be processed.
     */
    public void blur1Direction( final FloatProcessor ip, final double sigma, final double accuracy,
            final boolean xDirection, final int extraLines) {
        
        final int UPSCALE_K_RADIUS = 2;                     //number of pixels to add for upscaling
        final double MIN_DOWNSCALED_SIGMA = 4.;             //minimum standard deviation in the downscaled image
        final float[] pixels = (float[])ip.getPixels();
        final int width = ip.getWidth();
        final int height = ip.getHeight();
        final Rectangle roi = ip.getRoi();
        final int length = xDirection ? width : height;     //number of points per line (line can be a row or column)
        final int pointInc = xDirection ? 1 : width;        //increment of the pixels array index to the next point in a line
        final int lineInc = xDirection ? width : 1;         //increment of the pixels array index to the next line
        final int lineFromA = (xDirection ? roi.y : roi.x) - extraLines;  //the first line to process
        final int lineFrom;
        if (lineFromA < 0) lineFrom = 0;
        else lineFrom = lineFromA;
        final int lineToA = (xDirection ? roi.y+roi.height : roi.x+roi.width) + extraLines; //the last line+1 to process
        final int lineTo;
        if (lineToA > (xDirection ? height:width)) lineTo = (xDirection ? height:width);
        else lineTo = lineToA;
        final int writeFrom = xDirection? roi.x : roi.y;    //first point of a line that needs to be written
        final int writeTo = xDirection ? roi.x+roi.width : roi.y+roi.height;
/**/        final int inc = Math.max((lineTo-lineFrom)/(100/(nPasses>0?nPasses:1)+1),20);
        pass++;
        if (pass>nPasses) pass =1;
        
        final int numThreads = Math.min(Prefs.getThreads(), lineTo-lineFrom);
        final Thread[] lineThreads = new Thread[numThreads];

        /* large radius (sigma): scale down, then convolve, then scale up */
        final boolean doDownscaling = sigma > 2*MIN_DOWNSCALED_SIGMA + 0.5;
        final int reduceBy = doDownscaling ?                //downscale by this factor
                Math.min((int)Math.floor(sigma/MIN_DOWNSCALED_SIGMA), length)
                : 1;
        /* Downscaling and upscaling blur the image a bit - we have to correct the standard
         * deviation for this:
         * Downscaling gives std devation sigma = 1/sqrt(3); upscale gives sigma = 1/2 (in downscaled pixels).
         * All sigma^2 values add to full sigma^2, which should be the desired value  */
        final double sigmaGauss = doDownscaling ?
                Math.sqrt(sigma*sigma/(reduceBy*reduceBy) - 1./3. - 1./4.)
                : sigma;
        final int maxLength = doDownscaling ?
                (length+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1) //downscaled line can't be longer
                : length;
        final float[][] gaussKernel = makeGaussianKernel(sigmaGauss, accuracy, maxLength);
        final int kRadius = gaussKernel[0].length*reduceBy;             //Gaussian kernel radius after upscaling
        final int readFrom = (writeFrom-kRadius < 0) ? 0 : writeFrom-kRadius; //not including broadening by downscale&upscale
        final int readTo = (writeTo+kRadius > length) ? length : writeTo+kRadius;
        final int newLength = doDownscaling ?                           //line length for convolution
                (readTo-readFrom+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1)
                : length;
        final int unscaled0 = readFrom - (UPSCALE_K_RADIUS + 1)*reduceBy; //input point corresponding to cache index 0
        //the following is relevant for upscaling only
        //IJ.log("reduce="+reduceBy+", newLength="+newLength+", unscaled0="+unscaled0+", sigmaG="+(float)sigmaGauss+", kRadius="+gaussKernel[0].length);
        final float[] downscaleKernel = doDownscaling ? makeDownscaleKernel(reduceBy) : null;
        final float[] upscaleKernel = doDownscaling ? makeUpscaleKernel(reduceBy) : null;
           
        for ( int t = 0; t < numThreads; ++t ) {
            final int ti = t;
            final float[] cache1 = new float[newLength];  //holds data before convolution (after downscaling, if any)
            final float[] cache2 = doDownscaling ? new float[newLength] : null;  //holds data after convolution
            
            final Thread thread = new Thread(
                    new Runnable() {
                        final public void run() { /*try{*/
                            long lastTime = System.currentTimeMillis();
                            boolean canShowProgress = Thread.currentThread() == lineThreads[0];
                            int pixel0 = (lineFrom+ti)*lineInc;
                            for (int line=lineFrom + ti; line<lineTo; line += numThreads, pixel0+=numThreads*lineInc) {
                                long time = System.currentTimeMillis();
                                if (time - lastTime >110) {
                                    if (canShowProgress)
                                        showProgress((double)(line-lineFrom)/(lineTo-lineFrom));
                                    if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
                                    lastTime = time;
                                }
                                if (doDownscaling) {
                                    downscaleLine(pixels, cache1, downscaleKernel, reduceBy, pixel0, unscaled0, length, pointInc, newLength);
                                    convolveLine(cache1, cache2, gaussKernel, 0, newLength, 1, newLength-1, 0, 1);
                                    upscaleLine(cache2, pixels, upscaleKernel, reduceBy, pixel0, unscaled0, writeFrom, writeTo, pointInc);
                                } else {
                                    int p = pixel0 + readFrom*pointInc;
                                    for (int i=readFrom; i<readTo; i++ ,p+=pointInc)
                                        cache1[i] = pixels[p];
                                    convolveLine(cache1, pixels, gaussKernel, readFrom, readTo, writeFrom, writeTo, pixel0, pointInc);
                                }
                                    
                            }
                        } /*catch(Exception ex) {IJ.handleException(ex);} }*/
                    },
                    "GaussianBlur-"+t);
            
            thread.setPriority( Thread.currentThread().getPriority() );
            lineThreads[ ti ] = thread;
            thread.start();
        }
        try {
            for ( final Thread thread : lineThreads )
                if ( thread != null ) thread.join();
        }
        catch ( InterruptedException e ) {
            for ( final Thread thread : lineThreads )
                thread.interrupt();
            try {
                for ( final Thread thread : lineThreads )
                    thread.join();
            }
            catch ( InterruptedException f ) {}
            Thread.currentThread().interrupt();
        }
            
        showProgress(1.0);
        return;
    }

    /** Scale a line (row or column of a FloatProcessor or part thereof)
     * down by a factor <code>reduceBy</code> and write the result into
     * <code>cache</code>.
     * Input line pixel # <code>unscaled0</code> will correspond to output
     * line pixel # 0. <code>unscaled0</code> may be negative. Out-of-line
     * pixels of the input are replaced by the edge pixels.
     * @param pixels    input array
     * @param cache     output array
     * @param kernel    downscale kernel, runs form -1.5 to +1.5 in downscaled coordinates
     * @param reduceBy  downscaling factor
     * @param pixel0    index in pixels array corresponding to start of line or column
     * @param unscaled0 index in input line corresponding to output line index 0, May be negative.
     * @param length    length of full input line or column
     * @param pointInc  spacing of values in input array (1 for lines, image width for columns)
     * @param newLength length of downscaled data
     */
    final static private void downscaleLine(final float[] pixels, final float[] cache, final float[] kernel,
            final int reduceBy, final int pixel0, final int unscaled0, final int length, final int pointInc, final int newLength) {
        int p = pixel0 + pointInc*(unscaled0-reduceBy*3/2);  //pointer in pixels array
        final int pLast = pixel0 + pointInc*(length-1);
        for (int xout=-1; xout<=newLength; xout++) {
            float sum0 = 0, sum1 = 0, sum2 = 0;
            for (int x=0; x<reduceBy; x++, p+=pointInc) {
                float v = pixels[p<pixel0 ? pixel0 : (p>pLast ? pLast : p)];
                sum0 += v * kernel[x+2*reduceBy];
                sum1 += v * kernel[x+reduceBy];
                sum2 += v * kernel[x];
            }
            if (xout>0) cache[xout-1] += sum0;
            if (xout>=0 && xout<newLength) cache[xout] += sum1;
            if (xout+1<newLength) cache[xout+1] = sum2;
        }
    }
    /** the above code is equivalent to the following one; but the above code is faster
     *  - above: accesses each pixel in the pixels array only once
     *  - below: accesses each pixel in the pixels array 3 times, more cache misses */
    /*final static private void downscaleLine(final float[] pixels, final float[] cache, final float[] kernel,
            final int reduceBy, final int pixel0, final int unscaled0, final int length, final int pointInc, final int newLength) {
        final int xin = unscaled0 - reduceBy/2;
        int p = pixel0 + pointInc*xin;
        final int pLast = pixel0 + pointInc*(length-1);
        for (int xout=0; xout<newLength; xout++) {
            float v = 0;
            for (int x=0; x<reduceBy; x++, p+=pointInc) {
                int pp = p-pointInc*reduceBy;
                v += kernel[x] * pixels[pp<pixel0 ? pixel0 : (pp>pLast ? pLast : pp)];
                v += kernel[x+reduceBy] * pixels[p<pixel0 ? pixel0 : (p>pLast ? pLast : p)];
                pp = p+pointInc*reduceBy;
                v += kernel[x+2*reduceBy] * pixels[pp<pixel0 ? pixel0 : (pp>pLast ? pLast : pp)];
            }
            cache[xout] = v;
        }
    }*/

    /* Create a kernel for downscaling. The kernel function preserves
     * norm and 1st moment (i.e., position) and has fixed 2nd moment,
     * (in contrast to linear interpolation).
     * In scaled space, the length of the kernel runs from -1.5 to +1.5,
     * and the standard deviation is 1/2.
     * Array index corresponding to the kernel center is
     * unitLength*3/2
     */
    final static private float[] makeDownscaleKernel (final int unitLength) {
        final int mid = unitLength*3/2;
        final float[] kernel = new float[3*unitLength];
        for (int i=0; i<=unitLength/2; i++) {
            final double x = i/(double)unitLength;
            final float v = (float)((0.75-x*x)/unitLength);
            kernel[mid-i] = v;
            kernel[mid+i] = v;
        }
        for (int i=unitLength/2+1; i<(unitLength*3+1)/2; i++) {
            final double x = i/(double)unitLength;
            final float v = (float)((0.125 + 0.5*(x-1)*(x-2))/unitLength);
            kernel[mid-i] = v;
            kernel[mid+i] = v;
        }
        return kernel;
    }

    /** Scale a line up by factor <code>reduceBy</code> and write as a row
     * or column (or part thereof) to the pixels array of a FloatProcessor.
     */
    final static private void upscaleLine (final float[] cache, final float[] pixels, final float[] kernel,
            final int reduceBy, final int pixel0, final int unscaled0, final int writeFrom, final int writeTo, final int pointInc) {
        int p = pixel0 + pointInc*writeFrom;
        for (int xout = writeFrom; xout < writeTo; xout++, p+=pointInc) {
            final int xin = (xout-unscaled0+reduceBy-1)/reduceBy; //the corresponding point in the cache (if exact) or the one above
            final int x = reduceBy - 1 - (xout-unscaled0+reduceBy-1)%reduceBy;
            pixels[p] = cache[xin-2]*kernel[x]
                    + cache[xin-1]*kernel[x+reduceBy]
                    + cache[xin]*kernel[x+2*reduceBy]
                    + cache[xin+1]*kernel[x+3*reduceBy];
        }
    }

    /** Create a kernel for upscaling. The kernel function is a convolution
     *  of four unit squares, i.e., four uniform kernels with value +1
     *  from -0.5 to +0.5 (in downscaled coordinates). The second derivative
     *  of this kernel is smooth, the third is not. Its standard deviation
     *  is 1/sqrt(3) in downscaled cordinates.
     *  The kernel runs from [-2 to +2[, corresponding to array index
     *  0 ... 4*unitLength (whereby the last point is not in the array any more).
     */
    final static private float[] makeUpscaleKernel (final int unitLength) {
        final float[] kernel = new float[4*unitLength];
        final int mid = 2*unitLength;
        kernel[0] = 0;
        for (int i=0; i<unitLength; i++) {
            final double x = i/(double)unitLength;
            final float v = (float)((2./3. -x*x*(1-0.5*x)));
            kernel[mid+i] = v;
            kernel[mid-i] = v;
        }
        for (int i=unitLength; i<2*unitLength; i++) {
            final double x = i/(double)unitLength;
            final float v = (float)((2.-x)*(2.-x)*(2.-x)/6.);
            kernel[mid+i] = v;
            kernel[mid-i] = v;
        }
        return kernel;
    }

    /** Convolve a line with a symmetric kernel and write to a separate array,
     * possibly the pixels array of a FloatProcessor (as a row or column or part thereof)
     *
     * @param input     Input array containing the line
     * @param pixels    Float array for output, can be the pixels of a FloatProcessor
     * @param kernel    "One-sided" kernel array, kernel[0][n] must contain the kernel
     *                  itself, kernel[1][n] must contain the running sum over all
     *                  kernel elements from kernel[0][n+1] to the periphery.
     *                  The kernel must be normalized, i.e. sum(kernel[0][n]) = 1
     *                  where n runs from the kernel periphery (last element) to 0 and
     *                  back. Normalization should include all kernel points, also these
     *                  not calculated because they are not needed.
     * @param readFrom  First array element of the line that must be read.
     *                  <code>writeFrom-kernel.length</code> or 0.
     * @param readTo    Last array element+1 of the line that must be read.
     *                  <code>writeTo+kernel.length</code> or <code>input.length</code>
     * @param writeFrom Index of the first point in the line that should be written
     * @param writeTo   Index+1 of the last point in the line that should be written
     * @param point0    Array index of first element of the 'line' in pixels (i.e., lineNumber * lineInc)
     * @param pointInc  Increment of the pixels array index to the next point (for an ImageProcessor,
     *                  it should be <code>1</code> for a row, <code>width</code> for a column)
     */
    final static private void convolveLine( final float[] input, final float[] pixels, final float[][] kernel, final int readFrom,
            final int readTo, final int writeFrom, final int writeTo, final int point0, final int pointInc) {
        final int length = input.length;
        final float first = input[0];                 //out-of-edge pixels are replaced by nearest edge pixels
        final float last = input[length-1];
        final float[] kern = kernel[0];               //the kernel itself
        final float kern0 = kern[0];
        final float[] kernSum = kernel[1];            //the running sum over the kernel
        final int kRadius = kern.length;
        final int firstPart = kRadius < length ? kRadius : length;
        int p = point0 + writeFrom*pointInc;
        int i = writeFrom;
        for (; i<firstPart; i++,p+=pointInc) {  //while the sum would include pixels < 0
            float result = input[i]*kern0;
            result += kernSum[i]*first;
            if (i+kRadius>length) result += kernSum[length-i-1]*last;
            for (int k=1; k<kRadius; k++) {
                float v = 0;
                if (i-k >= 0) v += input[i-k];
                if (i+k<length) v+= input[i+k];
                result += kern[k] * v;
            }
            pixels[p] = result;
        }
        final int iEndInside = length-kRadius<writeTo ? length-kRadius : writeTo;
        for (;i<iEndInside;i++,p+=pointInc) {   //while only pixels within the line are be addressed (the easy case)
            float result = input[i]*kern0;
            for (int k=1; k<kRadius; k++)
                result += kern[k] * (input[i-k] + input[i+k]);
            pixels[p] = result;
        }
        for (; i<writeTo; i++,p+=pointInc) {    //while the sum would include pixels >= length 
            float result = input[i]*kern0;
            if (i<kRadius) result += kernSum[i]*first;
            if (i+kRadius>=length) result += kernSum[length-i-1]*last;
            for (int k=1; k<kRadius; k++) {
                float v = 0;
                if (i-k >= 0) v += input[i-k];
                if (i+k<length) v+= input[i+k];
                result += kern[k] * v;
            }
            pixels[p] = result;
        }
    }

    /** Create a 1-dimensional normalized Gaussian kernel with standard deviation sigma
     *  and the running sum over the kernel
     *  Note: this is one side of the kernel only, not the full kernel as used by the
     *  Convolver class of ImageJ.
     *  To avoid a step due to the cutoff at a finite value, the near-edge values are
     *  replaced by a 2nd-order polynomial with its minimum=0 at the first out-of-kernel
     *  pixel. Thus, the kernel function has a smooth 1st derivative in spite of finite
     *  length.
     *
     * @param sigma     Standard deviation, i.e. radius of decay to 1/sqrt(e), in pixels.
     * @param accuracy  Relative accuracy; for best results below 0.01 when processing
     *                  8-bit images. For short or float images, values of 1e-3 to 1e-4
     *                  are better (but increase the kernel size and thereby the
     *                  processing time). Edge smoothing will fail with very poor
     *                  accuracy (above approx. 0.02)
     * @param maxRadius Maximum radius of the kernel: Limits kernel size in case of
     *                  large sigma, should be set to image width or height. For small
     *                  values of maxRadius, the kernel returned may have a larger
     *                  radius, however.
     * @return          A 2*n array. Array[0][n] is the kernel, decaying towards zero,
     *                  which would be reached at kernel.length (unless kernel size is
     *                  limited by maxRadius). Array[1][n] holds the sum over all kernel
     *                  values > n, including non-calculated values in case the kernel
     *                  size is limited by <code>maxRadius</code>.
     */
    public float[][] makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) {
        int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
        if (maxRadius < 50) maxRadius = 50;         // too small maxRadius would result in inaccurate sum.
        if (kRadius > maxRadius) kRadius = maxRadius;
        float[][] kernel = new float[2][kRadius];
        for (int i=0; i<kRadius; i++)               // Gaussian function
            kernel[0][i] = (float)(Math.exp(-0.5*i*i/sigma/sigma));
        if (kRadius < maxRadius && kRadius > 3) {   // edge correction
            double sqrtSlope = Double.MAX_VALUE;
            int r = kRadius;
            while (r > kRadius/2) {
                r--;
                double a = Math.sqrt(kernel[0][r])/(kRadius-r);
                if (a < sqrtSlope)
                    sqrtSlope = a;
                else
                    break;
            }
            for (int r1 = r+2; r1 < kRadius; r1++)
                kernel[0][r1] = (float)((kRadius-r1)*(kRadius-r1)*sqrtSlope*sqrtSlope);
        }
        double sum;                                 // sum over all kernel elements for normalization
        if (kRadius < maxRadius) {
            sum = kernel[0][0];
            for (int i=1; i<kRadius; i++)
                sum += 2*kernel[0][i];
        } else
            sum = sigma * Math.sqrt(2*Math.PI);
        
        double rsum = 0.5 + 0.5*kernel[0][0]/sum;
        for (int i=0; i<kRadius; i++) {
            double v = (kernel[0][i]/sum);
            kernel[0][i] = (float)v;
            rsum -= v;
            kernel[1][i] = (float)rsum;
            //IJ.log("k["+i+"]="+(float)v+" sum="+(float)rsum);
        }
        return kernel;
    }

    /** Set the processed pixels above and below the roi rectangle back to their
     * previous value (i.e., snapshot buffer). This is necessary since ImageJ
     * only restores out-of-roi pixels inside the enclosing rectangle of the roi
     * (If the roi is non-rectangular and the SUPPORTS_MASKING flag is set).
     * @param ip The image to be processed
     * @param radius The range above and below the roi that should be processed
     */    
    public static void resetOutOfRoi(ImageProcessor ip, int radius) {
        Rectangle roi = ip.getRoi();
        int width = ip.getWidth();
        int height = ip.getHeight();
        Object pixels = ip.getPixels();
        Object snapshot = ip.getSnapshotPixels();
        int y0 = roi.y-radius;              // the first line that should be reset
        if (y0<0) y0 = 0;
        for (int y=y0,p=width*y+roi.x; y<roi.y; y++,p+=width)
            System.arraycopy(snapshot, p, pixels, p, roi.width);
        int yEnd = roi.y+roi.height+radius; // the last line + 1 that should be reset
        if (yEnd > height) yEnd = height;
        for (int y=roi.y+roi.height,p=width*y+roi.x; y<yEnd; y++,p+=width)
            System.arraycopy(snapshot, p, pixels, p, roi.width);
    }
    
    void showProgress(double percent) {
        percent = (double)(pass-1)/nPasses + percent/nPasses;
        IJ.showProgress(percent);
    }
}