1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
|
package ij.process;
import ij.IJ;
import java.util.Arrays;
/** Autothresholding methods from the Auto_Threshold plugin (http://pacific.mpi-cbg.de/wiki/index.php/Auto_Threshold)
by G.Landini at bham dot ac dot uk. */
public class AutoThresholder {
private static String[] mStrings;
public enum Method {
Default,
Huang,
Intermodes,
IsoData,
IJ_IsoData,
Li,
MaxEntropy,
Mean,
MinError,
Minimum,
Moments,
Otsu,
Percentile,
RenyiEntropy,
Shanbhag,
Triangle,
Yen
};
public static String[] getMethods() {
if (mStrings==null) {
Method[] mVals = Method.values();
mStrings = new String[mVals.length];
for (int i=0; i<mVals.length; i++)
mStrings[i] = mVals[i].name();
}
return mStrings;
}
public int getThreshold(Method method, int[] histogram) {
int threshold = 0;
switch (method) {
case Default: threshold = defaultIsoData(histogram); break;
case IJ_IsoData: threshold = IJIsoData(histogram); break;
case Huang: threshold = Huang(histogram); break;
case Intermodes: threshold = Intermodes(histogram); break;
case IsoData: threshold = IsoData(histogram); break;
case Li: threshold = Li(histogram); break;
case MaxEntropy: threshold = MaxEntropy(histogram); break;
case Mean: threshold = Mean(histogram); break;
case MinError: threshold = MinErrorI(histogram); break;
case Minimum: threshold = Minimum(histogram); break;
case Moments: threshold = Moments(histogram); break;
case Otsu: threshold = Otsu(histogram); break;
case Percentile: threshold = Percentile(histogram); break;
case RenyiEntropy: threshold = RenyiEntropy(histogram); break;
case Shanbhag: threshold = Shanbhag(histogram); break;
case Triangle: threshold = Triangle(histogram); break;
case Yen: threshold = Yen(histogram); break;
}
if (threshold==-1) threshold = 0;
return threshold;
}
public int getThreshold(String mString, int[] histogram) {
// throws an exception if unknown argument
int index = mString.indexOf(" ");
if (index!=-1)
mString = mString.substring(0, index);
Method method = Method.valueOf(Method.class, mString);
return getThreshold(method, histogram);
}
int Huang(int [] data ) {
// Implements Huang's fuzzy thresholding method
// Uses Shannon's entropy function (one can also use Yager's entropy function)
// Huang L.-K. and Wang M.-J.J. (1995) "Image Thresholding by Minimizing
// the Measures of Fuzziness" Pattern Recognition, 28(1): 41-51
// M. Emre Celebi 06.15.2007
// Ported to ImageJ plugin by G. Landini from E Celebi's fourier_0.8 routines
int threshold=-1;
int ih, it;
int first_bin;
int last_bin;
double sum_pix;
double num_pix;
double term;
double ent; // entropy
double min_ent; // min entropy
double mu_x;
/* Determine the first non-zero bin */
first_bin=0;
for (ih = 0; ih < 256; ih++ ) {
if ( data[ih] != 0 ) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin=255;
for (ih = 255; ih >= first_bin; ih-- ) {
if ( data[ih] != 0 ) {
last_bin = ih;
break;
}
}
term = 1.0 / ( double ) ( last_bin - first_bin );
double [] mu_0 = new double[256];
sum_pix = num_pix = 0;
for ( ih = first_bin; ih < 256; ih++ ){
sum_pix += (double)ih * data[ih];
num_pix += data[ih];
/* NUM_PIX cannot be zero ! */
mu_0[ih] = sum_pix / num_pix;
}
double [] mu_1 = new double[256];
sum_pix = num_pix = 0;
for ( ih = last_bin; ih > 0; ih-- ){
sum_pix += (double)ih * data[ih];
num_pix += data[ih];
/* NUM_PIX cannot be zero ! */
mu_1[ih - 1] = sum_pix / ( double ) num_pix;
}
/* Determine the threshold that minimizes the fuzzy entropy */
threshold = -1;
min_ent = Double.MAX_VALUE;
for ( it = 0; it < 256; it++ ){
ent = 0.0;
for ( ih = 0; ih <= it; ih++ ) {
/* Equation (4) in Ref. 1 */
mu_x = 1.0 / ( 1.0 + term * Math.abs ( ih - mu_0[it] ) );
if ( !((mu_x < 1e-06 ) || ( mu_x > 0.999999))) {
/* Equation (6) & (8) in Ref. 1 */
ent += data[ih] * ( -mu_x * Math.log ( mu_x ) - ( 1.0 - mu_x ) * Math.log ( 1.0 - mu_x ) );
}
}
for ( ih = it + 1; ih < 256; ih++ ) {
/* Equation (4) in Ref. 1 */
mu_x = 1.0 / ( 1.0 + term * Math.abs ( ih - mu_1[it] ) );
if ( !((mu_x < 1e-06 ) || ( mu_x > 0.999999))) {
/* Equation (6) & (8) in Ref. 1 */
ent += data[ih] * ( -mu_x * Math.log ( mu_x ) - ( 1.0 - mu_x ) * Math.log ( 1.0 - mu_x ) );
}
}
/* No need to divide by NUM_ROWS * NUM_COLS * LOG(2) ! */
if ( ent < min_ent ) {
min_ent = ent;
threshold = it;
}
}
return threshold;
}
boolean bimodalTest(double [] y) {
int len=y.length;
boolean b = false;
int modes = 0;
for (int k=1;k<len-1;k++){
if (y[k-1] < y[k] && y[k+1] < y[k]) {
modes++;
if (modes>2)
return false;
}
}
if (modes == 2)
b = true;
return b;
}
int Intermodes(int [] data ) {
// J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images," in
// Annals of the New York Academy of Sciences, vol. 128, pp. 1035-1053, 1966.
// ported to ImageJ plugin by G.Landini from Antti Niemisto's Matlab code (GPL)
// Original Matlab code Copyright (C) 2004 Antti Niemisto
// See http://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation
// and the original Matlab code.
//
// Assumes a bimodal histogram. The histogram needs is smoothed (using a
// running average of size 3, iteratively) until there are only two local maxima.
// j and k
// Threshold t is (j+k)/2.
// Images with histograms having extremely unequal peaks or a broad and
// flat valley are unsuitable for this method.
double [] iHisto = new double [256];
int iter =0;
int threshold=-1;
for (int i=0; i<256; i++)
iHisto[i]=(double) data[i];
double [] tHisto = iHisto;
while (!bimodalTest(iHisto) ) {
//smooth with a 3 point running mean filter
for (int i=1; i<255; i++)
tHisto[i]= (iHisto[i-1] + iHisto[i] + iHisto[i+1])/3;
tHisto[0] = (iHisto[0]+iHisto[1])/3; //0 outside
tHisto[255] = (iHisto[254]+iHisto[255])/3; //0 outside
iHisto = tHisto;
iter++;
if (iter>10000) {
threshold = -1;
IJ.log("Intermodes: threshold not found after 10000 iterations.");
return threshold;
}
}
// The threshold is the mean between the two peaks.
int tt=0;
for (int i=1; i<255; i++) {
if (iHisto[i-1] < iHisto[i] && iHisto[i+1] < iHisto[i]){
tt += i;
//IJ.log("mode:" +i);
}
}
threshold = (int) Math.floor(tt/2.0);
return threshold;
}
int IsoData(int[] data ) {
// Also called intermeans
// Iterative procedure based on the isodata algorithm [T.W. Ridler, S. Calvard, Picture
// thresholding using an iterative selection method, IEEE Trans. System, Man and
// Cybernetics, SMC-8 (1978) 630-632.]
// The procedure divides the image into objects and background by taking an initial threshold,
// then the averages of the pixels at or below the threshold and pixels above are computed.
// The averages of those two values are computed, the threshold is incremented and the
// process is repeated until the threshold is larger than the composite average. That is,
// threshold = (average background + average objects)/2
// The code in ImageJ that implements this function is the getAutoThreshold() method in the ImageProcessor class.
//
// From: Tim Morris (dtm@ap.co.umist.ac.uk)
// Subject: Re: Thresholding method?
// posted to sci.image.processing on 1996/06/24
// The algorithm implemented in NIH Image sets the threshold as that grey
// value, G, for which the average of the averages of the grey values
// below and above G is equal to G. It does this by initialising G to the
// lowest sensible value and iterating:
// L = the average grey value of pixels with intensities < G
// H = the average grey value of pixels with intensities > G
// is G = (L + H)/2?
// yes => exit
// no => increment G and repeat
//
int i, l, totl, g=0;
double toth, h;
for (i = 1; i < 256; i++) {
if (data[i] > 0){
g = i + 1;
break;
}
}
while (true){
l = 0;
totl = 0;
for (i = 0; i < g; i++) {
totl = totl + data[i];
l = l + (data[i] * i);
}
h = 0;
toth = 0;
for (i = g + 1; i < 256; i++){
toth += data[i];
h += ((double)data[i]*i);
}
if (totl > 0 && toth > 0){
l /= totl;
h /= toth;
if (g == (int) Math.round((l + h) / 2.0))
break;
}
g++;
if (g > 254)
return -1;
}
return g;
}
int defaultIsoData(int[] data) {
// This is the modified IsoData method used by the "Threshold" widget in "Default" mode
int n = data.length;
int[] data2 = new int[n];
int mode=0, maxCount=0;
for (int i=0; i<n; i++) {
int count = data[i];
data2[i] = data[i];
if (data2[i]>maxCount) {
maxCount = data2[i];
mode = i;
}
}
int maxCount2 = 0;
for (int i = 0; i<n; i++) {
if ((data2[i]>maxCount2) && (i!=mode))
maxCount2 = data2[i];
}
int hmax = maxCount;
if ((hmax>(maxCount2*2)) && (maxCount2!=0)) {
hmax = (int)(maxCount2 * 1.5);
data2[mode] = hmax;
}
return IJIsoData(data2);
}
int IJIsoData(int[] data) {
// This is the original ImageJ IsoData implementation, here for backward compatibility.
int level;
int maxValue = data.length - 1;
double result, sum1, sum2, sum3, sum4;
int count0 = data[0];
data[0] = 0; //set to zero so erased areas aren't included
int countMax = data[maxValue];
data[maxValue] = 0;
int min = 0;
while ((data[min]==0) && (min<maxValue))
min++;
int max = maxValue;
while ((data[max]==0) && (max>0))
max--;
if (min>=max) {
data[0]= count0; data[maxValue]=countMax;
level = data.length/2;
return level;
}
int movingIndex = min;
int inc = Math.max(max/40, 1);
do {
sum1=sum2=sum3=sum4=0.0;
for (int i=min; i<=movingIndex; i++) {
sum1 += (double)i*data[i];
sum2 += data[i];
}
for (int i=(movingIndex+1); i<=max; i++) {
sum3 += (double)i*data[i];
sum4 += data[i];
}
result = (sum1/sum2 + sum3/sum4)/2.0;
movingIndex++;
} while ((movingIndex+1)<=result && movingIndex<max-1);
data[0]= count0; data[maxValue]=countMax;
level = (int)Math.round(result);
return level;
}
int Li(int [] data ) {
// Implements Li's Minimum Cross Entropy thresholding method
// This implementation is based on the iterative version (Ref. 2) of the algorithm.
// 1) Li C.H. and Lee C.K. (1993) "Minimum Cross Entropy Thresholding"
// Pattern Recognition, 26(4): 617-625
// 2) Li C.H. and Tam P.K.S. (1998) "An Iterative Algorithm for Minimum
// Cross Entropy Thresholding"Pattern Recognition Letters, 18(8): 771-776
// 3) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding
// Techniques and Quantitative Performance Evaluation" Journal of
// Electronic Imaging, 13(1): 146-165
// http://citeseer.ist.psu.edu/sezgin04survey.html
// Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8 routines
int threshold;
double num_pixels;
double sum_back; /* sum of the background pixels at a given threshold */
double sum_obj; /* sum of the object pixels at a given threshold */
double num_back; /* number of background pixels at a given threshold */
double num_obj; /* number of object pixels at a given threshold */
double old_thresh;
double new_thresh;
double mean_back; /* mean of the background pixels at a given threshold */
double mean_obj; /* mean of the object pixels at a given threshold */
double mean; /* mean gray-level in the image */
double tolerance; /* threshold tolerance */
double temp;
tolerance=0.5;
num_pixels = 0;
for (int ih = 0; ih < 256; ih++ )
num_pixels += data[ih];
/* Calculate the mean gray-level */
mean = 0.0;
for (int ih = 0 + 1; ih < 256; ih++ ) //0 + 1?
mean += (double)ih * data[ih];
mean /= num_pixels;
/* Initial estimate */
new_thresh = mean;
do {
old_thresh = new_thresh;
threshold = (int) (old_thresh + 0.5); /* range */
/* Calculate the means of background and object pixels */
/* Background */
sum_back = 0;
num_back = 0;
for (int ih = 0; ih <= threshold; ih++ ) {
sum_back += (double)ih * data[ih];
num_back += data[ih];
}
mean_back = ( num_back == 0 ? 0.0 : ( sum_back / ( double ) num_back ) );
/* Object */
sum_obj = 0;
num_obj = 0;
for (int ih = threshold + 1; ih < 256; ih++ ) {
sum_obj += (double)ih * data[ih];
num_obj += data[ih];
}
mean_obj = ( num_obj == 0 ? 0.0 : ( sum_obj / ( double ) num_obj ) );
/* Calculate the new threshold: Equation (7) in Ref. 2 */
//new_thresh = simple_round ( ( mean_back - mean_obj ) / ( Math.log ( mean_back ) - Math.log ( mean_obj ) ) );
//simple_round ( double x ) {
// return ( int ) ( IS_NEG ( x ) ? x - .5 : x + .5 );
//}
//
//#define IS_NEG( x ) ( ( x ) < -DBL_EPSILON )
//DBL_EPSILON = 2.220446049250313E-16
temp = ( mean_back - mean_obj ) / ( Math.log ( mean_back ) - Math.log ( mean_obj ) );
if (temp < -2.220446049250313E-16)
new_thresh = (int) (temp - 0.5);
else
new_thresh = (int) (temp + 0.5);
/* Stop the iterations when the difference between the
new and old threshold values is less than the tolerance */
}
while ( Math.abs ( new_thresh - old_thresh ) > tolerance );
return threshold;
}
int MaxEntropy(int [] data ) {
// Implements Kapur-Sahoo-Wong (Maximum Entropy) thresholding method
// Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for
// Gray-Level Picture Thresholding Using the Entropy of the Histogram"
// Graphical Models and Image Processing, 29(3): 273-285
// M. Emre Celebi
// 06.15.2007
// Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8 routines
int threshold=-1;
int ih, it;
int first_bin;
int last_bin;
double tot_ent; /* total entropy */
double max_ent; /* max entropy */
double ent_back; /* entropy of the background pixels at a given threshold */
double ent_obj; /* entropy of the object pixels at a given threshold */
double [] norm_histo = new double[256]; /* normalized histogram */
double [] P1 = new double[256]; /* cumulative normalized histogram */
double [] P2 = new double[256];
double total =0;
for (ih = 0; ih < 256; ih++ )
total+=data[ih];
for (ih = 0; ih < 256; ih++ )
norm_histo[ih] = data[ih]/total;
P1[0]=norm_histo[0];
P2[0]=1.0-P1[0];
for (ih = 1; ih < 256; ih++ ){
P1[ih]= P1[ih-1] + norm_histo[ih];
P2[ih]= 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
first_bin=0;
for (ih = 0; ih < 256; ih++ ) {
if ( !(Math.abs(P1[ih])<2.220446049250313E-16)) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin=255;
for (ih = 255; ih >= first_bin; ih-- ) {
if ( !(Math.abs(P2[ih])<2.220446049250313E-16)) {
last_bin = ih;
break;
}
}
// Calculate the total entropy each gray-level
// and find the threshold that maximizes it
max_ent = Double.MIN_VALUE;
for ( it = first_bin; it <= last_bin; it++ ) {
/* Entropy of the background pixels */
ent_back = 0.0;
for ( ih = 0; ih <= it; ih++ ) {
if ( data[ih] !=0 ) {
ent_back -= ( norm_histo[ih] / P1[it] ) * Math.log ( norm_histo[ih] / P1[it] );
}
}
/* Entropy of the object pixels */
ent_obj = 0.0;
for ( ih = it + 1; ih < 256; ih++ ){
if (data[ih]!=0){
ent_obj -= ( norm_histo[ih] / P2[it] ) * Math.log ( norm_histo[ih] / P2[it] );
}
}
/* Total entropy */
tot_ent = ent_back + ent_obj;
// IJ.log(""+max_ent+" "+tot_ent);
if ( max_ent < tot_ent ) {
max_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
int Mean(int [] data ) {
// C. A. Glasbey, "An analysis of histogram-based thresholding algorithms,"
// CVGIP: Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993.
//
// The threshold is the mean of the greyscale data
int threshold = -1;
double tot=0, sum=0;
for (int i=0; i<256; i++){
tot+= data[i];
sum+=((double)i*data[i]);
}
threshold =(int) Math.floor(sum/tot);
return threshold;
}
int MinErrorI(int [] data ) {
// Kittler and J. Illingworth, "Minimum error thresholding," Pattern Recognition, vol. 19, pp. 41-47, 1986.
// C. A. Glasbey, "An analysis of histogram-based thresholding algorithms," CVGIP: Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993.
// Ported to ImageJ plugin by G.Landini from Antti Niemisto's Matlab code (GPL)
// Original Matlab code Copyright (C) 2004 Antti Niemisto
// See http://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation
// and the original Matlab code.
int threshold = Mean(data); //Initial estimate for the threshold is found with the MEAN algorithm.
int Tprev =-2;
double mu, nu, p, q, sigma2, tau2, w0, w1, w2, sqterm, temp;
//int counter=1;
while (threshold!=Tprev){
//Calculate some statistics.
mu = B(data, threshold)/A(data, threshold);
nu = (B(data, 255)-B(data, threshold))/(A(data, 255)-A(data, threshold));
p = A(data, threshold)/A(data, 255);
q = (A(data, 255)-A(data, threshold)) / A(data, 255);
sigma2 = C(data, threshold)/A(data, threshold)-(mu*mu);
tau2 = (C(data, 255)-C(data, threshold)) / (A(data, 255)-A(data, threshold)) - (nu*nu);
//The terms of the quadratic equation to be solved.
w0 = 1.0/sigma2-1.0/tau2;
w1 = mu/sigma2-nu/tau2;
w2 = (mu*mu)/sigma2 - (nu*nu)/tau2 + Math.log10((sigma2*(q*q))/(tau2*(p*p)));
//If the next threshold would be imaginary, return with the current one.
sqterm = (w1*w1)-w0*w2;
if (sqterm < 0) {
IJ.log("MinError(I): not converging.");
return threshold;
}
//The updated threshold is the integer part of the solution of the quadratic equation.
Tprev = threshold;
temp = (w1+Math.sqrt(sqterm))/w0;
if ( Double.isNaN(temp)) {
IJ.log ("MinError(I): NaN, not converging.");
threshold = Tprev;
}
else
threshold =(int) Math.floor(temp);
//IJ.log("Iter: "+ counter+++" t:"+threshold);
}
return threshold;
}
double A(int [] y, int j) {
double x = 0;
for (int i=0;i<=j;i++)
x+=y[i];
return x;
}
double B(int [] y, int j) {
double x = 0;
for (int i=0;i<=j;i++)
x+=i*y[i];
return x;
}
double C(int [] y, int j) {
double x = 0;
for (int i=0;i<=j;i++)
x+=i*i*y[i];
return x;
}
int Minimum(int [] data ) {
// J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images," in
// Annals of the New York Academy of Sciences, vol. 128, pp. 1035-1053, 1966.
// ported to ImageJ plugin by G.Landini from Antti Niemisto's Matlab code (GPL)
// Original Matlab code Copyright (C) 2004 Antti Niemisto
// See http://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation
// and the original Matlab code.
//
// Assumes a bimodal histogram. The histogram needs is smoothed (using a
// running average of size 3, iteratively) until there are only two local maxima.
// Threshold t is such that yt−1 > yt ≤ yt+1.
// Images with histograms having extremely unequal peaks or a broad and
// flat valley are unsuitable for this method.
int iter =0;
int threshold = -1;
double [] iHisto = new double [256];
for (int i=0; i<256; i++)
iHisto[i]=(double) data[i];
double [] tHisto = iHisto;
while (!bimodalTest(iHisto) ) {
//smooth with a 3 point running mean filter
for (int i=1; i<255; i++)
tHisto[i]= (iHisto[i-1] + iHisto[i] +iHisto[i+1])/3;
tHisto[0] = (iHisto[0]+iHisto[1])/3; //0 outside
tHisto[255] = (iHisto[254]+iHisto[255])/3; //0 outside
iHisto = tHisto;
iter++;
if (iter>10000) {
threshold = -1;
IJ.log("Minimum: threshold not found after 10000 iterations.");
return threshold;
}
}
// The threshold is the minimum between the two peaks.
for (int i=1; i<255; i++) {
//IJ.log(" "+i+" "+iHisto[i]);
if (iHisto[i-1] > iHisto[i] && iHisto[i+1] >= iHisto[i])
threshold = i;
}
return threshold;
}
int Moments(int [] data ) {
// W. Tsai, "Moment-preserving thresholding: a new approach," Computer Vision,
// Graphics, and Image Processing, vol. 29, pp. 377-393, 1985.
// Ported to ImageJ plugin by G.Landini from the the open source project FOURIER 0.8
// by M. Emre Celebi , Department of Computer Science, Louisiana State University in Shreveport
// Shreveport, LA 71115, USA
// http://sourceforge.net/projects/fourier-ipal
// http://www.lsus.edu/faculty/~ecelebi/fourier.htm
double total =0;
double m0=1.0, m1=0.0, m2 =0.0, m3 =0.0, sum =0.0, p0=0.0;
double cd, c0, c1, z0, z1; /* auxiliary variables */
int threshold = -1;
double [] histo = new double [256];
for (int i=0; i<256; i++)
total+=data[i];
for (int i=0; i<256; i++)
histo[i]=(double)(data[i]/total); //normalised histogram
/* Calculate the first, second, and third order moments */
for ( int i = 0; i < 256; i++ ) {
double di = i;
m1 += di * histo[i];
m2 += di * di * histo[i];
m3 += di * di * di * histo[i];
}
/*
First 4 moments of the gray-level image should match the first 4 moments
of the target binary image. This leads to 4 equalities whose solutions
are given in the Appendix of Ref. 1
*/
cd = m0 * m2 - m1 * m1;
c0 = ( -m2 * m2 + m1 * m3 ) / cd;
c1 = ( m0 * -m3 + m2 * m1 ) / cd;
z0 = 0.5 * ( -c1 - Math.sqrt ( c1 * c1 - 4.0 * c0 ) );
z1 = 0.5 * ( -c1 + Math.sqrt ( c1 * c1 - 4.0 * c0 ) );
p0 = ( z1 - m1 ) / ( z1 - z0 ); /* Fraction of the object pixels in the target binary image */
// The threshold is the gray-level closest
// to the p0-tile of the normalized histogram
sum=0;
for (int i=0; i<256; i++){
sum+=histo[i];
if (sum>p0) {
threshold = i;
break;
}
}
return threshold;
}
int Otsu(int [] data ) {
// Otsu's threshold algorithm
// C++ code by Jordan Bevik <Jordan.Bevic@qtiworld.com>
// ported to ImageJ plugin by G.Landini
int k,kStar; // k = the current threshold; kStar = optimal threshold
double N1, N; // N1 = # points with intensity <=k; N = total number of points
double BCV, BCVmax; // The current Between Class Variance and maximum BCV
double num, denom; // temporary bookeeping
double Sk; // The total intensity for all histogram points <=k
double S, L=256; // The total intensity of the image
// Initialize values:
S = N = 0;
for (k=0; k<L; k++){
S += (double)k * data[k]; // Total histogram intensity
N += data[k]; // Total number of data points
}
Sk = 0;
N1 = data[0]; // The entry for zero intensity
BCV = 0;
BCVmax=0;
kStar = 0;
// Look at each possible threshold value,
// calculate the between-class variance, and decide if it's a max
for (k=1; k<L-1; k++) { // No need to check endpoints k = 0 or k = L-1
Sk += (double)k * data[k];
N1 += data[k];
// The float casting here is to avoid compiler warning about loss of precision and
// will prevent overflow in the case of large saturated images
denom = (double)( N1) * (N - N1); // Maximum value of denom is (N^2)/4 = approx. 3E10
if (denom != 0 ){
// Float here is to avoid loss of precision when dividing
num = ( (double)N1 / N ) * S - Sk; // Maximum value of num = 255*N = approx 8E7
BCV = (num * num) / denom;
}
else
BCV = 0;
if (BCV >= BCVmax){ // Assign the best threshold found so far
BCVmax = BCV;
kStar = k;
}
}
// kStar += 1; // Use QTI convention that intensity -> 1 if intensity >= k
// (the algorithm was developed for I-> 1 if I <= k.)
return kStar;
}
int Percentile(int [] data ) {
// W. Doyle, "Operation useful for similarity-invariant pattern recognition,"
// Journal of the Association for Computing Machinery, vol. 9,pp. 259-267, 1962.
// ported to ImageJ plugin by G.Landini from Antti Niemisto's Matlab code (GPL)
// Original Matlab code Copyright (C) 2004 Antti Niemisto
// See http://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation
// and the original Matlab code.
int iter =0;
int threshold = -1;
double ptile= 0.5; // default fraction of foreground pixels
double [] avec = new double [256];
for (int i=0; i<256; i++)
avec[i]=0.0;
double total =partialSum(data, 255);
double temp = 1.0;
for (int i=0; i<256; i++){
avec[i]=Math.abs((partialSum(data, i)/total)-ptile);
//IJ.log("Ptile["+i+"]:"+ avec[i]);
if (avec[i]<temp) {
temp = avec[i];
threshold = i;
}
}
return threshold;
}
double partialSum(int [] y, int j) {
double x = 0;
for (int i=0;i<=j;i++)
x+=y[i];
return x;
}
int RenyiEntropy(int [] data ) {
// Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for
// Gray-Level Picture Thresholding Using the Entropy of the Histogram"
// Graphical Models and Image Processing, 29(3): 273-285
// M. Emre Celebi
// 06.15.2007
// Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8 routines
int threshold;
int opt_threshold;
int ih, it;
int first_bin;
int last_bin;
int tmp_var;
int t_star1, t_star2, t_star3;
int beta1, beta2, beta3;
double alpha;/* alpha parameter of the method */
double term;
double tot_ent; /* total entropy */
double max_ent; /* max entropy */
double ent_back; /* entropy of the background pixels at a given threshold */
double ent_obj; /* entropy of the object pixels at a given threshold */
double omega;
double [] norm_histo = new double[256]; /* normalized histogram */
double [] P1 = new double[256]; /* cumulative normalized histogram */
double [] P2 = new double[256];
double total =0;
for (ih = 0; ih < 256; ih++ )
total+=data[ih];
for (ih = 0; ih < 256; ih++ )
norm_histo[ih] = data[ih]/total;
P1[0]=norm_histo[0];
P2[0]=1.0-P1[0];
for (ih = 1; ih < 256; ih++ ){
P1[ih]= P1[ih-1] + norm_histo[ih];
P2[ih]= 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
first_bin=0;
for (ih = 0; ih < 256; ih++ ) {
if ( !(Math.abs(P1[ih])<2.220446049250313E-16)) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin=255;
for (ih = 255; ih >= first_bin; ih-- ) {
if ( !(Math.abs(P2[ih])<2.220446049250313E-16)) {
last_bin = ih;
break;
}
}
/* Maximum Entropy Thresholding - BEGIN */
/* ALPHA = 1.0 */
/* Calculate the total entropy each gray-level
and find the threshold that maximizes it
*/
threshold =0; // was MIN_INT in original code, but if an empty image is processed it gives an error later on.
max_ent = 0.0;
for ( it = first_bin; it <= last_bin; it++ ) {
/* Entropy of the background pixels */
ent_back = 0.0;
for ( ih = 0; ih <= it; ih++ ) {
if ( data[ih] !=0 ) {
ent_back -= ( norm_histo[ih] / P1[it] ) * Math.log ( norm_histo[ih] / P1[it] );
}
}
/* Entropy of the object pixels */
ent_obj = 0.0;
for ( ih = it + 1; ih < 256; ih++ ){
if (data[ih]!=0){
ent_obj -= ( norm_histo[ih] / P2[it] ) * Math.log ( norm_histo[ih] / P2[it] );
}
}
/* Total entropy */
tot_ent = ent_back + ent_obj;
// IJ.log(""+max_ent+" "+tot_ent);
if ( max_ent < tot_ent ) {
max_ent = tot_ent;
threshold = it;
}
}
t_star2 = threshold;
/* Maximum Entropy Thresholding - END */
threshold =0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
max_ent = 0.0;
alpha = 0.5;
term = 1.0 / ( 1.0 - alpha );
for ( it = first_bin; it <= last_bin; it++ ) {
/* Entropy of the background pixels */
ent_back = 0.0;
for ( ih = 0; ih <= it; ih++ )
ent_back += Math.sqrt ( norm_histo[ih] / P1[it] );
/* Entropy of the object pixels */
ent_obj = 0.0;
for ( ih = it + 1; ih < 256; ih++ )
ent_obj += Math.sqrt ( norm_histo[ih] / P2[it] );
/* Total entropy */
tot_ent = term * ( ( ent_back * ent_obj ) > 0.0 ? Math.log ( ent_back * ent_obj ) : 0.0);
if ( tot_ent > max_ent ){
max_ent = tot_ent;
threshold = it;
}
}
t_star1 = threshold;
threshold = 0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
max_ent = 0.0;
alpha = 2.0;
term = 1.0 / ( 1.0 - alpha );
for ( it = first_bin; it <= last_bin; it++ ) {
/* Entropy of the background pixels */
ent_back = 0.0;
for ( ih = 0; ih <= it; ih++ )
ent_back += ( norm_histo[ih] * norm_histo[ih] ) / ( P1[it] * P1[it] );
/* Entropy of the object pixels */
ent_obj = 0.0;
for ( ih = it + 1; ih < 256; ih++ )
ent_obj += ( norm_histo[ih] * norm_histo[ih] ) / ( P2[it] * P2[it] );
/* Total entropy */
tot_ent = term *( ( ent_back * ent_obj ) > 0.0 ? Math.log(ent_back * ent_obj ): 0.0 );
if ( tot_ent > max_ent ){
max_ent = tot_ent;
threshold = it;
}
}
t_star3 = threshold;
/* Sort t_star values */
if ( t_star2 < t_star1 ){
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
if ( t_star3 < t_star2 ){
tmp_var = t_star2;
t_star2 = t_star3;
t_star3 = tmp_var;
}
if ( t_star2 < t_star1 ) {
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
/* Adjust beta values */
if ( Math.abs ( t_star1 - t_star2 ) <= 5 ) {
if ( Math.abs ( t_star2 - t_star3 ) <= 5 ) {
beta1 = 1;
beta2 = 2;
beta3 = 1;
}
else {
beta1 = 0;
beta2 = 1;
beta3 = 3;
}
}
else {
if ( Math.abs ( t_star2 - t_star3 ) <= 5 ) {
beta1 = 3;
beta2 = 1;
beta3 = 0;
}
else {
beta1 = 1;
beta2 = 2;
beta3 = 1;
}
}
//IJ.log(""+t_star1+" "+t_star2+" "+t_star3);
/* Determine the optimal threshold value */
omega = P1[t_star3] - P1[t_star1];
opt_threshold = (int) (t_star1 * ( P1[t_star1] + 0.25 * omega * beta1 ) + 0.25 * t_star2 * omega * beta2 + t_star3 * ( P2[t_star3] + 0.25 * omega * beta3 ));
return opt_threshold;
}
int Shanbhag(int [] data ) {
// Shanhbag A.G. (1994) "Utilization of Information Measure as a Means of
// Image Thresholding" Graphical Models and Image Processing, 56(5): 414-419
// Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8 routines
int threshold;
int ih, it;
int first_bin;
int last_bin;
double term;
double tot_ent; /* total entropy */
double min_ent; /* max entropy */
double ent_back; /* entropy of the background pixels at a given threshold */
double ent_obj; /* entropy of the object pixels at a given threshold */
double [] norm_histo = new double[256]; /* normalized histogram */
double [] P1 = new double[256]; /* cumulative normalized histogram */
double [] P2 = new double[256];
double total =0;
for (ih = 0; ih < 256; ih++ )
total+=data[ih];
for (ih = 0; ih < 256; ih++ )
norm_histo[ih] = data[ih]/total;
P1[0]=norm_histo[0];
P2[0]=1.0-P1[0];
for (ih = 1; ih < 256; ih++ ){
P1[ih]= P1[ih-1] + norm_histo[ih];
P2[ih]= 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
first_bin=0;
for (ih = 0; ih < 256; ih++ ) {
if ( !(Math.abs(P1[ih])<2.220446049250313E-16)) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin=255;
for (ih = 255; ih >= first_bin; ih-- ) {
if ( !(Math.abs(P2[ih])<2.220446049250313E-16)) {
last_bin = ih;
break;
}
}
// Calculate the total entropy each gray-level
// and find the threshold that maximizes it
threshold =-1;
min_ent = Double.MAX_VALUE;
for ( it = first_bin; it <= last_bin; it++ ) {
/* Entropy of the background pixels */
ent_back = 0.0;
term = 0.5 / P1[it];
for ( ih = 1; ih <= it; ih++ ) { //0+1?
ent_back -= norm_histo[ih] * Math.log ( 1.0 - term * P1[ih - 1] );
}
ent_back *= term;
/* Entropy of the object pixels */
ent_obj = 0.0;
term = 0.5 / P2[it];
for ( ih = it + 1; ih < 256; ih++ ){
ent_obj -= norm_histo[ih] * Math.log ( 1.0 - term * P2[ih] );
}
ent_obj *= term;
/* Total entropy */
tot_ent = Math.abs ( ent_back - ent_obj );
if ( tot_ent < min_ent ) {
min_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
int Triangle(int [] data ) {
// Zack, G. W., Rogers, W. E. and Latt, S. A., 1977,
// Automatic Measurement of Sister Chromatid Exchange Frequency,
// Journal of Histochemistry and Cytochemistry 25 (7), pp. 741-753
//
// modified from Johannes Schindelin plugin
//
// find min and max
int min = 0, dmax=0, max = 0, min2=0;
for (int i = 0; i < data.length; i++) {
if (data[i]>0){
min=i;
break;
}
}
if (min>0) min--; // line to the (p==0) point, not to data[min]
// The Triangle algorithm cannot tell whether the data is skewed to one side or another.
// This causes a problem as there are 2 possible thresholds between the max and the 2 extremes
// of the histogram.
// Here I propose to find out to which side of the max point the data is furthest, and use that as
// the other extreme.
for (int i = 255; i >0; i-- ) {
if (data[i]>0){
min2=i;
break;
}
}
if (min2<255) min2++; // line to the (p==0) point, not to data[min]
for (int i =0; i < 256; i++) {
if (data[i] >dmax) {
max=i;
dmax=data[i];
}
}
// find which is the furthest side
//IJ.log(""+min+" "+max+" "+min2);
boolean inverted = false;
if ((max-min)<(min2-max)){
// reverse the histogram
//IJ.log("Reversing histogram.");
inverted = true;
int left = 0; // index of leftmost element
int right = 255; // index of rightmost element
while (left < right) {
// exchange the left and right elements
int temp = data[left];
data[left] = data[right];
data[right] = temp;
// move the bounds toward the center
left++;
right--;
}
min=255-min2;
max=255-max;
}
if (min == max){
//IJ.log("Triangle: min == max.");
return min;
}
// describe line by nx * x + ny * y - d = 0
double nx, ny, d;
// nx is just the max frequency as the other point has freq=0
nx = data[max]; //-min; // data[min]; // lowest value bmin = (p=0)% in the image
ny = min - max;
d = Math.sqrt(nx * nx + ny * ny);
nx /= d;
ny /= d;
d = nx * min + ny * data[min];
// find split point
int split = min;
double splitDistance = 0;
for (int i = min + 1; i <= max; i++) {
double newDistance = nx * i + ny * data[i] - d;
if (newDistance > splitDistance) {
split = i;
splitDistance = newDistance;
}
}
split--;
if (inverted) {
// The histogram might be used for something else, so let's reverse it back
int left = 0;
int right = 255;
while (left < right) {
int temp = data[left];
data[left] = data[right];
data[right] = temp;
left++;
right--;
}
return (255-split);
}
else
return split;
}
int Yen(int [] data ) {
// Implements Yen thresholding method
// 1) Yen J.C., Chang F.J., and Chang S. (1995) "A New Criterion
// for Automatic Multilevel Thresholding" IEEE Trans. on Image
// Processing, 4(3): 370-378
// 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding
// Techniques and Quantitative Performance Evaluation" Journal of
// Electronic Imaging, 13(1): 146-165
// http://citeseer.ist.psu.edu/sezgin04survey.html
//
// M. Emre Celebi
// 06.15.2007
// Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8 routines
int threshold;
int ih, it;
double crit;
double max_crit;
double [] norm_histo = new double[256]; /* normalized histogram */
double [] P1 = new double[256]; /* cumulative normalized histogram */
double [] P1_sq = new double[256];
double [] P2_sq = new double[256];
double total =0;
for (ih = 0; ih < 256; ih++ )
total+=data[ih];
for (ih = 0; ih < 256; ih++ )
norm_histo[ih] = data[ih]/total;
P1[0]=norm_histo[0];
for (ih = 1; ih < 256; ih++ )
P1[ih]= P1[ih-1] + norm_histo[ih];
P1_sq[0]=norm_histo[0]*norm_histo[0];
for (ih = 1; ih < 256; ih++ )
P1_sq[ih]= P1_sq[ih-1] + norm_histo[ih] * norm_histo[ih];
P2_sq[255] = 0.0;
for ( ih = 254; ih >= 0; ih-- )
P2_sq[ih] = P2_sq[ih + 1] + norm_histo[ih + 1] * norm_histo[ih + 1];
/* Find the threshold that maximizes the criterion */
threshold = -1;
max_crit = Double.MIN_VALUE;
for ( it = 0; it < 256; it++ ) {
crit = -1.0 * (( P1_sq[it] * P2_sq[it] )> 0.0? Math.log( P1_sq[it] * P2_sq[it]):0.0) + 2 * ( ( P1[it] * ( 1.0 - P1[it] ) )>0.0? Math.log( P1[it] * ( 1.0 - P1[it] ) ): 0.0);
if ( crit > max_crit ) {
max_crit = crit;
threshold = it;
}
}
return threshold;
}
}
|