File: ByteStatistics.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (167 lines) | stat: -rw-r--r-- 4,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
package ij.process;
import ij.measure.Calibration;

/** 8-bit image statistics, including histogram. */
public class ByteStatistics extends ImageStatistics {

	/** Construct an ImageStatistics object from a ByteProcessor
		using the standard measurement options (area, mean,
		mode, min and max) and no calibration. */
	public ByteStatistics(ImageProcessor ip) {
		this(ip, AREA+MEAN+MODE+MIN_MAX, null);
	}

	/** Constructs a ByteStatistics object from a ByteProcessor using
		the specified measurement and calibration. */
	public ByteStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
		ByteProcessor bp = (ByteProcessor)ip;
		histogram = bp.getHistogram();
		setup(ip, cal);
		double minT = ip.getMinThreshold();
		int minThreshold,maxThreshold;
		if ((mOptions&LIMIT)==0 || minT==ImageProcessor.NO_THRESHOLD)
			{minThreshold=0; maxThreshold=255;}
		else
			{minThreshold=(int)minT; maxThreshold=(int)ip.getMaxThreshold();}
		float[] cTable = cal!=null?cal.getCTable():null;
		if (cTable!=null)
			getCalibratedStatistics(minThreshold,maxThreshold,cTable);
		else
			getRawStatistics(minThreshold,maxThreshold);
		if ((mOptions&MIN_MAX)!=0) {
			if (cTable!=null)
				getCalibratedMinAndMax(minThreshold, maxThreshold, cTable);
			else
				getRawMinAndMax(minThreshold, maxThreshold);
		}
		if ((mOptions&ELLIPSE)!=0 || (mOptions&SHAPE_DESCRIPTORS)!=0)
			fitEllipse(ip, mOptions);
		else if ((mOptions&CENTROID)!=0)
			getCentroid(ip, minThreshold, maxThreshold);
		if ((mOptions&(CENTER_OF_MASS|SKEWNESS|KURTOSIS))!=0)
			calculateMoments(ip, minThreshold, maxThreshold, cTable);
		if ((mOptions&MEDIAN)!=0)
			calculateMedian(histogram, minThreshold, maxThreshold, cal);
		if ((mOptions&AREA_FRACTION)!=0)
			calculateAreaFraction(ip, histogram);
	}

	void getCalibratedStatistics(int minThreshold, int maxThreshold, float[] cTable) {
		int count;
		double value;
		double sum = 0;
		double sum2 = 0.0;
		double isum = 0.0;
		
		for (int i=minThreshold; i<=maxThreshold; i++) {
			count = histogram[i];
			value = cTable[i];
			if (count>0 && !Double.isNaN(value)) {
				pixelCount += count;
				sum += value*count;
				isum += i*count;
				sum2 += (value*value)*count;
				if (count>maxCount) {
					maxCount = count;
					mode = i;
				}
			}
		}
		area = pixelCount*pw*ph;
		mean = sum/pixelCount;
		umean = isum/pixelCount;
		dmode = cTable[mode];
		calculateStdDev(pixelCount,sum,sum2);
		histMin = 0.0;
		histMax = 255.0;
	}
	
	void getCentroid(ImageProcessor ip, int minThreshold, int maxThreshold) {
		byte[] pixels = (byte[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		boolean limit = minThreshold>0 || maxThreshold<255;
		double xsum=0, ysum=0;
		int count=0,i,mi,v;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null||mask[mi++]!=0) {
					if (limit) {
						v = pixels[i]&255;
						if (v>=minThreshold&&v<=maxThreshold) {
							count++;
							xsum+=x;
							ysum+=y;
						}
					} else {
						count++;
						xsum+=x;
						ysum+=y;
					}
				}
				i++;
			}
		}
		xCentroid = xsum/count+0.5;
		yCentroid = ysum/count+0.5;
		if (cal!=null) {
			xCentroid = cal.getX(xCentroid);
			yCentroid = cal.getY(yCentroid, height);
		}
	}

	void calculateMoments(ImageProcessor ip,  int minThreshold, int maxThreshold, float[] cTable) {
		byte[] pixels = (byte[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		int v, i, mi;
		double dv, dv2, sum1=0.0, sum2=0.0, sum3=0.0, sum4=0.0, xsum=0.0, ysum=0.0;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null || mask[mi++]!=0) {
					v = pixels[i]&255;
					if (v>=minThreshold&&v<=maxThreshold) {
						dv = ((cTable!=null)?cTable[v]:v)+Double.MIN_VALUE;
						dv2 = dv*dv;
						sum1 += dv;
						sum2 += dv2;
						sum3 += dv*dv2;
						sum4 += dv2*dv2;
						xsum += x*dv;
						ysum += y*dv;
					}
				}
				i++;
			}
		}
	    double mean2 = mean*mean;
	    double variance = sum2/pixelCount - mean2;
	    double sDeviation = Math.sqrt(variance);
	    skewness = ((sum3 - 3.0*mean*sum2)/pixelCount + 2.0*mean*mean2)/(variance*sDeviation);
	    kurtosis = (((sum4 - 4.0*mean*sum3 + 6.0*mean2*sum2)/pixelCount - 3.0*mean2*mean2)/(variance*variance)-3.0);
		xCenterOfMass = xsum/sum1+0.5;
		yCenterOfMass = ysum/sum1+0.5;
		if (cal!=null) {
			xCenterOfMass = cal.getX(xCenterOfMass);
			yCenterOfMass = cal.getY(yCenterOfMass, height);
		}
	}
	
	void getCalibratedMinAndMax(int minThreshold, int maxThreshold, float[] cTable) {
		if (pixelCount==0)
			{min=0.0; max=0.0; return;}
		min = Double.MAX_VALUE;
		max = -Double.MAX_VALUE;
		double v = 0.0;
		for (int i=minThreshold; i<=maxThreshold; i++) {
			if (histogram[i]>0) {
				v = cTable[i];
				if (v<min) min = v;
				if (v>max) max = v;
			}
		}
	}
	
}