File: FloatProcessor.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (1015 lines) | stat: -rw-r--r-- 30,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
package ij.process;

import java.util.*;
import java.awt.*;
import java.awt.image.*;
import ij.gui.*;

/** This is an 32-bit floating-point image and methods that operate on that image. */
public class FloatProcessor extends ImageProcessor {

	private float min, max, snapshotMin, snapshotMax;
	private float[] pixels;
	protected byte[] pixels8;
	private float[] snapshotPixels = null;
	private float fillColor =  Float.MAX_VALUE;
	private boolean fixedScale = false;

	/** Creates a new FloatProcessor using the specified pixel array and ColorModel.
		Set 'cm' to null to use the default grayscale LUT. */
	public FloatProcessor(int width, int height, float[] pixels, ColorModel cm) {
		if (pixels!=null && width*height!=pixels.length)
			throw new IllegalArgumentException(WRONG_LENGTH);
		this.width = width;
		this.height = height;
		this.pixels = pixels;
		this.cm = cm;
		resetRoi();
	}

	/** Creates a blank FloatProcessor using the default grayscale LUT that
		displays zero as black. Call invertLut() to display zero as white. */
	public FloatProcessor(int width, int height) {
		this(width, height, new float[width*height], null);
	}

	/** Creates a FloatProcessor from an int array using the default grayscale LUT. */
	public FloatProcessor(int width, int height, int[] pixels) {
		this(width, height);
		for (int i=0; i<pixels.length; i++)
			this.pixels[i] = (float)(pixels[i]);
	}
	
	/** Creates a FloatProcessor from a double array using the default grayscale LUT. */
	public FloatProcessor(int width, int height, double[] pixels) {
		this(width, height);
		for (int i=0; i<pixels.length; i++)
			this.pixels[i] = (float)pixels[i];
	}
	
	/** Creates a FloatProcessor from a 2D float array using the default LUT. */
	public FloatProcessor(float[][] array) {
		width = array.length;
		height = array[0].length;
		pixels = new float[width*height];
		int i=0;
		for (int y=0; y<height; y++) {
			for (int x=0; x<width; x++) {
				pixels[i++] = array[x][y];
			}
		}
		resetRoi();
	}

	/** Creates a FloatProcessor from a 2D int array. */
	public FloatProcessor(int[][] array) {
		width = array.length;
		height = array[0].length;
		pixels = new float[width*height];
		int i=0;
		for (int y=0; y<height; y++) {
			for (int x=0; x<width; x++) {
				pixels[i++] = (float)array[x][y];
			}
		}
	}

	/**
	Calculates the minimum and maximum pixel value for the entire image. 
	Returns without doing anything if fixedScale has been set true as a result
	of calling setMinAndMax(). In this case, getMin() and getMax() return the
	fixed min and max defined by setMinAndMax(), rather than the calculated min
	and max.
	@see #getMin()
	@see #getMin()
	*/
	public void findMinAndMax() {
		//ij.IJ.log("findMinAndMax: "+fixedScale);
		if (fixedScale)
			return;
		min = Float.MAX_VALUE;
		max = -Float.MAX_VALUE;
		for (int i=0; i < width*height; i++) {
			float value = pixels[i];
			if (!Float.isInfinite(value)) {
				if (value<min)
					min = value;
				if (value>max)
					max = value;
			}
		}
		minMaxSet = true;
		showProgress(1.0);
	}

	/**
	Sets the min and max variables that control how real
	pixel values are mapped to 0-255 screen values. Use
	resetMinAndMax() to enable auto-scaling;
	@see ij.plugin.frame.ContrastAdjuster 
	*/
	public void setMinAndMax(double minimum, double maximum) {
		if (minimum==0.0 && maximum==0.0)
			{resetMinAndMax(); return;}
		min = (float)minimum;
		max = (float)maximum;
		fixedScale = true;
		minMaxSet = true;
		resetThreshold();
	}

	/** Recalculates the min and max values used to scale pixel
		values to 0-255 for display. This ensures that this 
		FloatProcessor is set up to correctly display the image. */
	public void resetMinAndMax() {
		fixedScale = false;
		findMinAndMax();
		resetThreshold();
	}

	/** Returns the smallest displayed pixel value. */
	public double getMin() {
		if (!minMaxSet) findMinAndMax();
		return min;
	}

	/** Returns the largest displayed pixel value. */
	public double getMax() {
		if (!minMaxSet) findMinAndMax();
		return max;
	}

	public Image createImage() {
		boolean firstTime = pixels8==null;
		if (firstTime || !lutAnimation)
			create8BitImage();
		if (cm==null)
			makeDefaultColorModel();
		if (source==null) {
			source = new MemoryImageSource(width, height, cm, pixels8, 0, width);
			source.setAnimated(true);
			source.setFullBufferUpdates(true);
			img = Toolkit.getDefaultToolkit().createImage(source);
		} else if (newPixels) {
			source.newPixels(pixels8, cm, 0, width);
			newPixels = false;
		} else
			source.newPixels();
		lutAnimation = false;
		return img;
	}
	
	protected byte[] create8BitImage() {
		// scale from float to 8-bits
		int size = width*height;
		if (pixels8==null)
			pixels8 = new byte[size];
		float value;
		int ivalue;
		float min2=(float)getMin(), max2=(float)getMax();
		float scale = 255f/(max2-min2);
		for (int i=0; i<size; i++) {
			value = pixels[i]-min2;
			if (value<0f) value = 0f;
			ivalue = (int)((value*scale)+0.5f);
			if (ivalue>255) ivalue = 255;
			pixels8[i] = (byte)ivalue;
		}
		return pixels8;
	}
	
	/** Returns this image as an 8-bit BufferedImage. */
	public BufferedImage getBufferedImage() {
		return convertToByte(true).getBufferedImage();
	}

	/** Returns a new, blank FloatProcessor with the specified width and height. */
	public ImageProcessor createProcessor(int width, int height) {
		ImageProcessor ip2 = new FloatProcessor(width, height, new float[width*height], getColorModel());
		ip2.setMinAndMax(getMin(), getMax());
		ip2.setInterpolationMethod(interpolationMethod);
		return ip2;
	}

	public void snapshot() {
		snapshotWidth=width;
		snapshotHeight=height;
		snapshotMin=(float)getMin();
		snapshotMax=(float)getMax();
		if (snapshotPixels==null || (snapshotPixels!=null && snapshotPixels.length!=pixels.length))
			snapshotPixels = new float[width * height];
		System.arraycopy(pixels, 0, snapshotPixels, 0, width*height);
	}
	
	public void reset() {
		if (snapshotPixels==null)
			return;
		min=snapshotMin;
		max=snapshotMax;
		minMaxSet = true;
		System.arraycopy(snapshotPixels,0,pixels,0,width*height);
	}
	
	public void reset(ImageProcessor mask) {
		if (mask==null || snapshotPixels==null)
			return; 
		if (mask.getWidth()!=roiWidth||mask.getHeight()!=roiHeight)
			throw new IllegalArgumentException(maskSizeError(mask));
		byte[] mpixels = (byte[])mask.getPixels();
		for (int y=roiY, my=0; y<(roiY+roiHeight); y++, my++) {
			int i = y * width + roiX;
			int mi = my * roiWidth;
			for (int x=roiX; x<(roiX+roiWidth); x++) {
				if (mpixels[mi++]==0)
					pixels[i] = snapshotPixels[i];
				i++;
			}
		}
	}

	/** Swaps the pixel and snapshot (undo) arrays. */
	public void swapPixelArrays() {
		if (snapshotPixels==null) return;	
		float pixel;
		for (int i=0; i<pixels.length; i++) {
			pixel = pixels[i];
			pixels[i] = snapshotPixels[i];
			snapshotPixels[i] = pixel;
		}
	}

	public void setSnapshotPixels(Object pixels) {
		snapshotPixels = (float[])pixels;
		snapshotWidth=width;
		snapshotHeight=height;
	}

	public Object getSnapshotPixels() {
		return snapshotPixels;
	}

	/** Returns a pixel value that must be converted using
		Float.intBitsToFloat(). */
	public int getPixel(int x, int y) {
		if (x>=0 && x<width && y>=0 && y<height)
			return Float.floatToIntBits(pixels[y*width+x]);
		else
			return 0;
	}

	public final int get(int x, int y) {
		return Float.floatToIntBits(pixels[y*width+x]);
	}

	public final void set(int x, int y, int value) {
		pixels[y*width + x] = Float.intBitsToFloat(value);
	}

	public final int get(int index) {
		return Float.floatToIntBits(pixels[index]);
	}

	public final void set(int index, int value) {
		pixels[index] = Float.intBitsToFloat(value);
	}

	public final float getf(int x, int y) {
		return pixels[y*width+x];
	}

	public final void setf(int x, int y, float value) {
		pixels[y*width + x] = value;
	}

	public final float getf(int index) {
		return pixels[index];
	}
	
	public final void setf(int index, float value) {
		pixels[index] = value;
	}


	/** Returns the value of the pixel at (x,y) in a
		one element int array. iArray is an optiona
		preallocated array. */
	public int[] getPixel(int x, int y, int[] iArray) {
		if (iArray==null) iArray = new int[1];
		iArray[0] = (int)getPixelValue(x, y);
		return iArray;
	}

	/** Sets a pixel in the image using a one element int array. */
	public final void putPixel(int x, int y, int[] iArray) {
		putPixelValue(x, y, iArray[0]);
	}

	/** Uses the current interpolation method (BILINEAR or BICUBIC) 
		to calculate the pixel value at real coordinates (x,y). */
	public double getInterpolatedPixel(double x, double y) {
		if (interpolationMethod==BICUBIC)
			return getBicubicInterpolatedPixel(x, y, this);
		else {
			if (x<0.0) x = 0.0;
			if (x>=width-1.0) x = width-1.001;
			if (y<0.0) y = 0.0;
			if (y>=height-1.0) y = height-1.001;
			return getInterpolatedPixel(x, y, pixels);
		}
	}
		
	final public int getPixelInterpolated(double x, double y) {
		if (interpolationMethod==BILINEAR) {
			if (x<0.0 || y<0.0 || x>=width-1 || y>=height-1)
				return 0;
			else
				return Float.floatToIntBits((float)getInterpolatedPixel(x, y, pixels));
		} else if (interpolationMethod==BICUBIC)
			return Float.floatToIntBits((float)getBicubicInterpolatedPixel(x, y, this));
		else
			return getPixel((int)(x+0.5), (int)(y+0.5));
	}

	/** Stores the specified value at (x,y). The value is expected to be a
		float that has been converted to an int using Float.floatToIntBits(). */
	public final void putPixel(int x, int y, int value) {
		if (x>=0 && x<width && y>=0 && y<height)
			pixels[y*width + x] = Float.intBitsToFloat(value);
	}

	/** Stores the specified real value at (x,y). */
	public void putPixelValue(int x, int y, double value) {
		if (x>=0 && x<width && y>=0 && y<height)
			pixels[y*width + x] = (float)value;
	}

	/** Returns the value of the pixel at (x,y) as a float. */
	public float getPixelValue(int x, int y) {
		if (x>=0 && x<width && y>=0 && y<height)
			return pixels[y*width + x];
		else
			return 0f;
	}

	/** Draws a pixel in the current foreground color. */
	public void drawPixel(int x, int y) {
		if (x>=clipXMin && x<=clipXMax && y>=clipYMin && y<=clipYMax)
			putPixel(x, y, Float.floatToIntBits(fillColor));
	}

	/** Returns a reference to the float array containing
		this image's pixel data. */
	public Object getPixels() {
		return (Object)pixels;
	}

	/** Returns a copy of the pixel data. Or returns a reference to the
		snapshot buffer if it is not null and 'snapshotCopyMode' is true.
		@see ImageProcessor#snapshot
		@see ImageProcessor#setSnapshotCopyMode
	*/
	public Object getPixelsCopy() {
		if (snapshotCopyMode && snapshotPixels!=null) {
			snapshotCopyMode = false;
			return snapshotPixels;
		} else {
			float[] pixels2 = new float[width*height];
			System.arraycopy(pixels, 0, pixels2, 0, width*height);
			return pixels2;
		}
	}

	public void setPixels(Object pixels) {
		this.pixels = (float[])pixels;
		resetPixels(pixels);
		if (pixels==null) snapshotPixels = null;
		if (pixels==null) pixels8 = null;
	}

	/** Copies the image contained in 'ip' to (xloc, yloc) using one of
		the transfer modes defined in the Blitter interface. */
	public void copyBits(ImageProcessor ip, int xloc, int yloc, int mode) {
		ip = ip.convertToFloat();
		new FloatBlitter(this).copyBits(ip, xloc, yloc, mode);
	}

	public void applyTable(int[] lut) {}

	private void process(int op, double value) {
		float c, v1, v2;
		//boolean resetMinMax = roiWidth==width && roiHeight==height && !(op==FILL);
		c = (float)value;
		float min2=0f, max2=0f;
		if (op==INVERT)
			{min2=(float)getMin(); max2=(float)getMax();}
		for (int y=roiY; y<(roiY+roiHeight); y++) {
			int i = y * width + roiX;
			for (int x=roiX; x<(roiX+roiWidth); x++) {
				v1 = pixels[i];
				switch(op) {
					case INVERT:
						v2 = max2 - (v1 - min2);
						break;
					case FILL:
						v2 = fillColor;
						break;
					case ADD:
						v2 = v1 + c;
						break;
					case MULT:
						v2 = v1 * c;
						break;
					case GAMMA:
						if (v1<=0f)
							v2 = 0f;
						else
							v2 = (float)Math.exp(c*Math.log(v1));
						break;
					case LOG:
						if (v1<=0f)
							v2 = 0f;
						else
							v2 = (float)Math.log(v1);
						break;
					case EXP:
						v2 = (float)Math.exp(v1);
						break;
					case SQR:
							v2 = v1*v1;
						break;
					case SQRT:
						if (v1<=0f)
							v2 = 0f;
						else
							v2 = (float)Math.sqrt(v1);
						break;
					case ABS:
							v2 = (float)Math.abs(v1);
						break;
					case MINIMUM:
						if (v1<value)
							v2 = (float)value;
						else
							v2 = v1;
						break;
					case MAXIMUM:
						if (v1>value)
							v2 = (float)value;
						else
							v2 = v1;
						break;
					 default:
						v2 = v1;
				}
				pixels[i++] = v2;
			}
		}
	}

	public void invert() {process(INVERT, 0.0);}
	public void add(int value) {process(ADD, value);}
	public void add(double value) {process(ADD, value);}
	public void multiply(double value) {process(MULT, value);}
	public void and(int value) {}
	public void or(int value) {}
	public void xor(int value) {}
	public void gamma(double value) {process(GAMMA, value);}
	public void log() {process(LOG, 0.0);}
	public void exp() {process(EXP, 0.0);}
	public void sqr() {process(SQR, 0.0);}
	public void sqrt() {process(SQRT, 0.0);}
	public void abs() {process(ABS, 0.0);}
	public void min(double value) {process(MINIMUM, value);}
	public void max(double value) {process(MAXIMUM, value);}


	/** Fills the current rectangular ROI. */
	public void fill() {process(FILL, 0.0);}

	/** Fills pixels that are within roi and part of the mask.
		Does nothing if the mask is not the same as the the ROI. */
	public void fill(ImageProcessor mask) {
		if (mask==null)
			{fill(); return;}
		int roiWidth=this.roiWidth, roiHeight=this.roiHeight;
		int roiX=this.roiX, roiY=this.roiY;
		if (mask.getWidth()!=roiWidth||mask.getHeight()!=roiHeight)
			return;
		byte[] mpixels = (byte[])mask.getPixels();
		for (int y=roiY, my=0; y<(roiY+roiHeight); y++, my++) {
			int i = y * width + roiX;
			int mi = my * roiWidth;
			for (int x=roiX; x<(roiX+roiWidth); x++) {
				if (mpixels[mi++]!=0)
					pixels[i] = fillColor;
				i++;
			}
		}
	}

	/** Does 3x3 convolution. */
	public void convolve3x3(int[] kernel) {
		filter3x3(CONVOLVE, kernel);
	}

	/** Filters using a 3x3 neighborhood. */
	public void filter(int type) {
		filter3x3(type, null);
	}

	/** 3x3 filter operations, code partly based on 3x3 convolution code
	 *	contributed by Glynne Casteel. */
	void filter3x3(int type, int[] kernel) {
		float v1, v2, v3;			//input pixel values around the current pixel
		float v4, v5, v6;
		float v7, v8, v9;
		float k1=0f, k2=0f, k3=0f;	//kernel values (used for CONVOLVE only)
		float k4=0f, k5=0f, k6=0f;
		float k7=0f, k8=0f, k9=0f;
		float scale = 0f;
		if (type==CONVOLVE) {
			k1=kernel[0]; k2=kernel[1]; k3=kernel[2];
			k4=kernel[3]; k5=kernel[4]; k6=kernel[5];
			k7=kernel[6]; k8=kernel[7]; k9=kernel[8];
			for (int i=0; i<kernel.length; i++)
				scale += kernel[i];
			if (scale==0) scale = 1f;
			scale = 1f/scale; //multiplication factor (multiply is faster than divide)
		}
		int inc = roiHeight/25;
		if (inc<1) inc = 1;
		
		float[] pixels2 = (float[])getPixelsCopy();
		//float[] pixels2 = (float[])getPixelsCopy();
		int xEnd = roiX + roiWidth;
		int yEnd = roiY + roiHeight;
		for (int y=roiY; y<yEnd; y++) {
			int p  = roiX + y*width;			//points to current pixel
			int p6 = p - (roiX>0 ? 1 : 0);		//will point to v6, currently lower
			int p3 = p6 - (y>0 ? width : 0);	//will point to v3, currently lower
			int p9 = p6 + (y<height-1 ? width : 0); // ...	to v9, currently lower
			v2 = pixels2[p3];
			v5 = pixels2[p6];
			v8 = pixels2[p9];
			if (roiX>0) { p3++; p6++; p9++; }
			v3 = pixels2[p3];
			v6 = pixels2[p6];
			v9 = pixels2[p9];

			switch (type) {
				case BLUR_MORE:
				for (int x=roiX; x<xEnd; x++,p++) {
					if (x<width-1) { p3++; p6++; p9++; }
					v1 = v2; v2 = v3;
					v3 = pixels2[p3];
					v4 = v5; v5 = v6;
					v6 = pixels2[p6];
					v7 = v8; v8 = v9;
					v9 = pixels2[p9];
					pixels[p] = (v1+v2+v3+v4+v5+v6+v7+v8+v9)*0.11111111f; //0.111... = 1/9
				}
				break;
				case FIND_EDGES:
				for (int x=roiX; x<xEnd; x++,p++) {
					if (x<width-1) { p3++; p6++; p9++; }
					v1 = v2; v2 = v3;
					v3 = pixels2[p3];
					v4 = v5; v5 = v6;
					v6 = pixels2[p6];
					v7 = v8; v8 = v9;
					v9 = pixels2[p9];
					float sum1 = v1 + 2*v2 + v3 - v7 - 2*v8 - v9;
					float sum2 = v1	 + 2*v4 + v7 - v3 - 2*v6 - v9;
					pixels[p] = (float)Math.sqrt(sum1*sum1 + sum2*sum2);
				}
				break;
				case CONVOLVE:
				for (int x=roiX; x<xEnd; x++,p++) {
					if (x<width-1) { p3++; p6++; p9++; }
					v1 = v2; v2 = v3;
					v3 = pixels2[p3];
					v4 = v5; v5 = v6;
					v6 = pixels2[p6];
					v7 = v8; v8 = v9;
					v9 = pixels2[p9];
					float sum = k1*v1 + k2*v2 + k3*v3
							  + k4*v4 + k5*v5 + k6*v6
							  + k7*v7 + k8*v8 + k9*v9;
					sum *= scale;
					pixels[p] = sum;
				}
				break;
			}
			if (y%inc==0)
				showProgress((double)(y-roiY)/roiHeight);
		}
		showProgress(1.0);
	}

	/** Rotates the image or ROI 'angle' degrees clockwise.
		@see ImageProcessor#setInterpolate
	*/
	public void rotate(double angle) {
		float[] pixels2 = (float[])getPixelsCopy();
		ImageProcessor ip2 = null;
		if (interpolationMethod==BICUBIC)
			ip2 = new FloatProcessor(getWidth(), getHeight(), pixels2, null);
		double centerX = roiX + (roiWidth-1)/2.0;
		double centerY = roiY + (roiHeight-1)/2.0;
		int xMax = roiX + this.roiWidth - 1;
		
		double angleRadians = -angle/(180.0/Math.PI);
		double ca = Math.cos(angleRadians);
		double sa = Math.sin(angleRadians);
		double tmp1 = centerY*sa-centerX*ca;
		double tmp2 = -centerX*sa-centerY*ca;
		double tmp3, tmp4, xs, ys;
		int index, ixs, iys;
		
		if (interpolationMethod==BICUBIC) {
			for (int y=roiY; y<(roiY + roiHeight); y++) {
				index = y*width + roiX;
				tmp3 = tmp1 - y*sa + centerX;
				tmp4 = tmp2 + y*ca + centerY;
				for (int x=roiX; x<=xMax; x++) {
					xs = x*ca + tmp3;
					ys = x*sa + tmp4;
					pixels[index++] = (float)getBicubicInterpolatedPixel(xs, ys, ip2);
				}
				if (y%30==0) showProgress((double)(y-roiY)/roiHeight);
			}
		} else {
			double dwidth=width,dheight=height;
			double xlimit = width-1.0, xlimit2 = width-1.001;
			double ylimit = height-1.0, ylimit2 = height-1.001;
			for (int y=roiY; y<(roiY + roiHeight); y++) {
				index = y*width + roiX;
				tmp3 = tmp1 - y*sa + centerX;
				tmp4 = tmp2 + y*ca + centerY;
				for (int x=roiX; x<=xMax; x++) {
					xs = x*ca + tmp3;
					ys = x*sa + tmp4;
					if ((xs>=-0.01) && (xs<dwidth) && (ys>=-0.01) && (ys<dheight)) {
						if (interpolationMethod==BILINEAR) {
							if (xs<0.0) xs = 0.0;
							if (xs>=xlimit) xs = xlimit2;
							if (ys<0.0) ys = 0.0;			
							if (ys>=ylimit) ys = ylimit2;
							pixels[index++] = (float)getInterpolatedPixel(xs, ys, pixels2);
						} else {
							ixs = (int)(xs+0.5);
							iys = (int)(ys+0.5);
							if (ixs>=width) ixs = width - 1;
							if (iys>=height) iys = height -1;
							pixels[index++] = pixels2[width*iys+ixs];
						}
					} else
						pixels[index++] = 0;
				}
				if (y%30==0)
				showProgress((double)(y-roiY)/roiHeight);
			}
		}
		showProgress(1.0);
	}

	public void flipVertical() {
		int index1,index2;
		float tmp;
		for (int y=0; y<roiHeight/2; y++) {
			index1 = (roiY+y)*width+roiX;
			index2 = (roiY+roiHeight-1-y)*width+roiX;
			for (int i=0; i<roiWidth; i++) {
				tmp = pixels[index1];
				pixels[index1++] = pixels[index2];
				pixels[index2++] = tmp;
			}
		}
	}
	
	public void noise(double range) {
		Random rnd=new Random();
		for (int y=roiY; y<(roiY+roiHeight); y++) {
			int i = y * width + roiX;
			for (int x=roiX; x<(roiX+roiWidth); x++) {
				float RandomBrightness = (float)(rnd.nextGaussian()*range);
				pixels[i] = pixels[i] + RandomBrightness;
				i++;
			}
		}
		resetMinAndMax();
	}

	public ImageProcessor crop() {
		ImageProcessor ip2 = createProcessor(roiWidth, roiHeight);
		float[] pixels2 = (float[])ip2.getPixels();
		for (int ys=roiY; ys<roiY+roiHeight; ys++) {
			int offset1 = (ys-roiY)*roiWidth;
			int offset2 = ys*width+roiX;
			for (int xs=0; xs<roiWidth; xs++)
				pixels2[offset1++] = pixels[offset2++];
		}
		return ip2;
	}
	
	/** Returns a duplicate of this image. */ 
	public synchronized ImageProcessor duplicate() { 
		ImageProcessor ip2 = createProcessor(width, height); 
		float[] pixels2 = (float[])ip2.getPixels(); 
		System.arraycopy(pixels, 0, pixels2, 0, width*height); 
		return ip2; 
	} 

	/** Scales the image or selection using the specified scale factors.
		@see ImageProcessor#setInterpolate
	*/
	public void scale(double xScale, double yScale) {
		double xCenter = roiX + roiWidth/2.0;
		double yCenter = roiY + roiHeight/2.0;
		int xmin, xmax, ymin, ymax;
		
		if ((xScale>1.0) && (yScale>1.0)) {
			//expand roi
			xmin = (int)(xCenter-(xCenter-roiX)*xScale);
			if (xmin<0) xmin = 0;
			xmax = xmin + (int)(roiWidth*xScale) - 1;
			if (xmax>=width) xmax = width - 1;
			ymin = (int)(yCenter-(yCenter-roiY)*yScale);
			if (ymin<0) ymin = 0;
			ymax = ymin + (int)(roiHeight*yScale) - 1;
			if (ymax>=height) ymax = height - 1;
		} else {
			xmin = roiX;
			xmax = roiX + roiWidth - 1;
			ymin = roiY;
			ymax = roiY + roiHeight - 1;
		}
		float[] pixels2 = (float[])getPixelsCopy();
		ImageProcessor ip2 = null;
		if (interpolationMethod==BICUBIC)
			ip2 = new FloatProcessor(getWidth(), getHeight(), pixels2, null);
		boolean checkCoordinates = (xScale < 1.0) || (yScale < 1.0);
		int index1, index2, xsi, ysi;
		double ys, xs;
		if (interpolationMethod==BICUBIC) {
			for (int y=ymin; y<=ymax; y++) {
				ys = (y-yCenter)/yScale + yCenter;
				index1 = y*width + xmin;
				for (int x=xmin; x<=xmax; x++) {
					xs = (x-xCenter)/xScale + xCenter;
					pixels[index1++] = (float)getBicubicInterpolatedPixel(xs, ys, ip2);
				}
				if (y%30==0) showProgress((double)(y-ymin)/height);
			}
		} else {
			double xlimit = width-1.0, xlimit2 = width-1.001;
			double ylimit = height-1.0, ylimit2 = height-1.001;
			for (int y=ymin; y<=ymax; y++) {
				ys = (y-yCenter)/yScale + yCenter;
				ysi = (int)ys;
				if (ys<0.0) ys = 0.0;			
				if (ys>=ylimit) ys = ylimit2;
				index1 = y*width + xmin;
				index2 = width*(int)ys;
				for (int x=xmin; x<=xmax; x++) {
					xs = (x-xCenter)/xScale + xCenter;
					xsi = (int)xs;
					if (checkCoordinates && ((xsi<xmin) || (xsi>xmax) || (ysi<ymin) || (ysi>ymax)))
						pixels[index1++] = (float)getMin();
					else {
						if (interpolationMethod==BILINEAR) {
							if (xs<0.0) xs = 0.0;
							if (xs>=xlimit) xs = xlimit2;
							pixels[index1++] = (float)getInterpolatedPixel(xs, ys, pixels2);
						} else
							pixels[index1++] = pixels2[index2+xsi];
					}
				}
				if (y%30==0) showProgress((double)(y-ymin)/height);
			}
		}
		showProgress(1.0);
	}

	/** Uses bilinear interpolation to find the pixel value at real coordinates (x,y). */
	private final double getInterpolatedPixel(double x, double y, float[] pixels) {
		int xbase = (int)x;
		int ybase = (int)y;
		double xFraction = x - xbase;
		double yFraction = y - ybase;
		int offset = ybase * width + xbase;
		double lowerLeft = pixels[offset];
		double lowerRight = pixels[offset + 1];
		double upperRight = pixels[offset + width + 1];
		double upperLeft = pixels[offset + width];
		double upperAverage = upperLeft + xFraction * (upperRight - upperLeft);
		double lowerAverage = lowerLeft + xFraction * (lowerRight - lowerLeft);
		return lowerAverage + yFraction * (upperAverage - lowerAverage);
	}

	/** Creates a new FloatProcessor containing a scaled copy of this image or selection. */
	public ImageProcessor resize(int dstWidth, int dstHeight) {
		double srcCenterX = roiX + roiWidth/2.0;
		double srcCenterY = roiY + roiHeight/2.0;
		double dstCenterX = dstWidth/2.0;
		double dstCenterY = dstHeight/2.0;
		double xScale = (double)dstWidth/roiWidth;
		double yScale = (double)dstHeight/roiHeight;
		if (interpolationMethod!=NONE) {
			dstCenterX += xScale/2.0;
			dstCenterY += yScale/2.0;
		}
		ImageProcessor ip2 = createProcessor(dstWidth, dstHeight);
		float[] pixels2 = (float[])ip2.getPixels();
		double xs, ys;
		if (interpolationMethod==BICUBIC) {
			for (int y=0; y<=dstHeight-1; y++) {
				ys = (y-dstCenterY)/yScale + srcCenterY;
				int index = y*dstWidth;
				for (int x=0; x<=dstWidth-1; x++) {
					xs = (x-dstCenterX)/xScale + srcCenterX;
					pixels2[index++] = (float)getBicubicInterpolatedPixel(xs, ys, this);
				}
				if (y%30==0) showProgress((double)y/dstHeight);
			}
		} else {
			double xlimit = width-1.0, xlimit2 = width-1.001;
			double ylimit = height-1.0, ylimit2 = height-1.001;
			int index1, index2;
			for (int y=0; y<=dstHeight-1; y++) {
				ys = (y-dstCenterY)/yScale + srcCenterY;
				if (interpolationMethod==BILINEAR) {
					if (ys<0.0) ys = 0.0;
					if (ys>=ylimit) ys = ylimit2;
				}
				index1 = width*(int)ys;
				index2 = y*dstWidth;
				for (int x=0; x<=dstWidth-1; x++) {
					xs = (x-dstCenterX)/xScale + srcCenterX;
					if (interpolationMethod==BILINEAR) {
						if (xs<0.0) xs = 0.0;
						if (xs>=xlimit) xs = xlimit2;
						pixels2[index2++] = (float)getInterpolatedPixel(xs, ys, pixels);
					} else
						pixels2[index2++] = pixels[index1+(int)xs];
				}
				if (y%30==0) showProgress((double)y/dstHeight);
			}
		}
		showProgress(1.0);
		return ip2;
	}
	
	FloatProcessor downsize(int dstWidth, int dstHeight) {
		FloatProcessor ip2 = this;
		if (dstWidth<roiWidth) {	  //downsizing in x
			ip2 = ip2.downsize1D(dstWidth, roiHeight, true);
			ip2.setRoi(0, 0, dstWidth, roiHeight);	//prepare roi for resizing in y
		}
		if (dstHeight<roiHeight)	  //downsizing in y
			ip2 = ip2.downsize1D(ip2.getRoi().width, dstHeight, false);
		if (ip2.getWidth()!=dstWidth || ip2.getHeight()!=dstHeight)
			ip2 = (FloatProcessor)ip2.resize(dstWidth, dstHeight);	//do any upsizing if required
		return ip2;
	}
	
	// Downsizing in one direction.
	private FloatProcessor downsize1D(int dstWidth, int dstHeight, boolean xDirection) {
		int srcPointInc = xDirection ? 1 : width;	//increment of array index for next point along direction
		int srcLineInc = xDirection ? width : 1;	//increment of array index for next line to be downscaled
		int dstPointInc = xDirection ? 1 : dstWidth;
		int dstLineInc = xDirection ? dstWidth : 1;
		int srcLine0 = xDirection ? roiY : roiX;
		int dstLines = xDirection ? dstHeight : dstWidth;
		DownsizeTable dt = xDirection ?
			new DownsizeTable(getWidth(), roiX, roiWidth, dstWidth, interpolationMethod) : 
			new DownsizeTable(getHeight(), roiY, roiHeight, dstHeight, interpolationMethod);
		FloatProcessor ip2 = (FloatProcessor)createProcessor(dstWidth, dstHeight);
		float[] pixels = (float[])getPixels();
		float[] pixels2 = (float[])ip2.getPixels();
		for (int srcLine=srcLine0, dstLine=0; dstLine<dstLines; srcLine++,dstLine++) {
			int dstLineOffset = dstLine * dstLineInc;
			int tablePointer = 0;
			for (int srcPoint=dt.srcStart, p=srcPoint*srcPointInc+srcLine*srcLineInc;
			srcPoint<=dt.srcEnd; srcPoint++, p+=srcPointInc) {
				float v = pixels[p];
				for (int i=0; i<dt.kernelSize; i++, tablePointer++)
				pixels2[dstLineOffset+dt.indices[tablePointer]*dstPointInc] += v * dt.weights[tablePointer];
			}
		}
		return ip2;
	}

	/** This method is from Chapter 16 of "Digital Image Processing:
		An Algorithmic Introduction Using Java" by Burger and Burge
		(http://www.imagingbook.com/). */
	public double getBicubicInterpolatedPixel(double x0, double y0, ImageProcessor ip2) {
		int u0 = (int) Math.floor(x0);	//use floor to handle negative coordinates too
		int v0 = (int) Math.floor(y0);
		if (u0<=0 || u0>=width-2 || v0<=0 || v0>=height-2)
			return ip2.getBilinearInterpolatedPixel(x0, y0);
		double q = 0;
		for (int j = 0; j <= 3; j++) {
			int v = v0 - 1 + j;
			double p = 0;
			for (int i = 0; i <= 3; i++) {
				int u = u0 - 1 + i;
				p = p + ip2.getf(u,v) * cubic(x0 - u);
			}
			q = q + p * cubic(y0 - v);
		}
		return q;
	}
	
	/** Sets the foreground fill/draw color. */
	public void setColor(Color color) {
		drawingColor = color;
		int bestIndex = getBestIndex(color);
		if (bestIndex>0 && getMin()==0.0 && getMax()==0.0) {
			fillColor = bestIndex;
			setMinAndMax(0.0,255.0);
		} else if (bestIndex==0 && getMin()>0.0 && (color.getRGB()&0xffffff)==0)
			fillColor = 0f;
		else
			fillColor = (float)(getMin() + (getMax()-getMin())*(bestIndex/255.0));
	}
	
	/** Sets the default fill/draw value. */
	public void setValue(double value) {
		fillColor = (float)value;
	}

	/** Does nothing. The rotate() and scale() methods always zero fill. */
	public void setBackgroundValue(double value) {
	}

	/** Always returns 0. */
	public double getBackgroundValue() {
		return 0.0;
	}

	public void setThreshold(double minThreshold, double maxThreshold, int lutUpdate) {
		if (minThreshold==NO_THRESHOLD)
			{resetThreshold(); return;}
		if (getMax()>getMin()) {
			double minT = Math.round(((minThreshold-getMin())/(getMax()-getMin()))*255.0);
			double maxT = Math.round(((maxThreshold-getMin())/(getMax()-getMin()))*255.0);
			super.setThreshold(minT, maxT, lutUpdate); // update LUT
		} else
			super.resetThreshold();
		this.minThreshold = minThreshold;
		this.maxThreshold = maxThreshold;
	}

	/** Performs a convolution operation using the specified kernel. */
	public void convolve(float[] kernel, int kernelWidth, int kernelHeight) {
		snapshot();
		new ij.plugin.filter.Convolver().convolve(this, kernel, kernelWidth, kernelHeight);
	}

	/** Not implemented. */
	public void threshold(int level) {}
	/** Not implemented. */
	public void autoThreshold() {}
	/** Not implemented. */
	public void medianFilter() {}
	/** Not implemented. */
	public int[] getHistogram() {return null;}
	/** Not implemented. */
	public void erode() {}
	/** Not implemented. */
	public void dilate() {}

	/** Returns this FloatProcessor.
	*  @param channelNumber	  Ignored (needed for compatibility with ColorProcessor.toFloat)
	*  @param fp			  Ignored (needed for compatibility with the other ImageProcessor types).
	*  @return This FloatProcessor
	*/
	public FloatProcessor toFloat(int channelNumber, FloatProcessor fp) {
		return this;
	}
	
	/** Sets the pixels, and min&max values from a FloatProcessor.
	*  Also the	 values are taken from the FloatProcessor.
	*  @param channelNumber	  Ignored (needed for compatibility with ColorProcessor.toFloat)
	*  @param fp			  The FloatProcessor where the image data are read from.
	*/
	public void setPixels(int channelNumber, FloatProcessor fp) {
		if (fp.getPixels() != getPixels())
		setPixels(fp.getPixels());
		setMinAndMax(fp.getMin(), fp.getMax());
	}
	
	/** Returns the smallest possible positive nonzero pixel value. */
	public double minValue() {
		return Float.MIN_VALUE;
	}

	/** Returns the largest possible positive finite pixel value. */
	public double maxValue() {
		return Float.MAX_VALUE;
	}
	

}