File: FloatStatistics.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (226 lines) | stat: -rw-r--r-- 6,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
package ij.process;
import ij.measure.Calibration;

/** 32-bit (float) image statistics, including histogram. */
public class FloatStatistics extends ImageStatistics {

	/** Constructs an ImageStatistics object from a FloatProcessor
		using the standard measurement options (area, mean,
		mode, min and max). */
	public FloatStatistics(ImageProcessor ip) {
		this(ip, AREA+MEAN+MODE+MIN_MAX, null);
	}

	/** Constructs a FloatStatistics object from a FloatProcessor
		using the specified measurement options.
	*/
	public FloatStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
		this.width = ip.getWidth();
		this.height = ip.getHeight();
		setup(ip, cal);
		double minT = ip.getMinThreshold();
		double minThreshold,maxThreshold;
		if ((mOptions&LIMIT)==0 || minT==ImageProcessor.NO_THRESHOLD)
			{minThreshold=-Float.MAX_VALUE; maxThreshold=Float.MAX_VALUE;}
		else
			{minThreshold=minT; maxThreshold=ip.getMaxThreshold();}
		getStatistics(ip, minThreshold, maxThreshold);
		if ((mOptions&MODE)!=0)
			getMode();
		if ((mOptions&ELLIPSE)!=0 || (mOptions&SHAPE_DESCRIPTORS)!=0)
			fitEllipse(ip, mOptions);
		else if ((mOptions&CENTROID)!=0)
			getCentroid(ip, minThreshold, maxThreshold);
		if ((mOptions&(CENTER_OF_MASS|SKEWNESS|KURTOSIS))!=0)
			calculateMoments(ip, minThreshold, maxThreshold);
		if ((mOptions&MEDIAN)!=0) {
			if (Double.isInfinite(binSize)||Double.isNaN(binSize))
				median = 0.0;
			else {
				calculateMedian(histogram, 0, histogram.length-1, null);
				median = histMin + median*binSize;
				if (binSize!=1.0) median += binSize/2.0; 
			}       	
		}
		if ((mOptions&AREA_FRACTION)!=0)
			calculateAreaFraction(ip);
	}

	void getStatistics(ImageProcessor ip, double minThreshold, double maxThreshold) {
		double v;
		float[] pixels = (float[])ip.getPixels();
		nBins = ip.getHistogramSize();
		histMin = ip.getHistogramMin();
		histMax = ip.getHistogramMax();
		histogram = new int[nBins];
		double sum = 0;
		double sum2 = 0;
		byte[] mask = ip.getMaskArray();
		
		// Find image min and max
		double roiMin = Double.MAX_VALUE;
		double roiMax = -Double.MAX_VALUE;
		double roiMin2 = Double.MAX_VALUE;
		double roiMax2 = -Double.MAX_VALUE;
		for (int y=ry, my=0; y<(ry+rh); y++, my++) {
			int i = y * width + rx;
			int mi = my * rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null || mask[mi++]!=0) {
					v = pixels[i];
					if (v>=minThreshold && v<=maxThreshold) {
						if (v<roiMin) roiMin = v;
						if (v>roiMax) roiMax = v;
					}
				}
				i++;
			}
		}
		min = roiMin; max = roiMax;
		if (histMin==0.0 && histMax==0.0) {
			histMin = min; 
			histMax = max;
		} else {
			if (min<histMin) min = histMin;
			if (max>histMax) max = histMax;
		}
		binSize = (histMax-histMin)/nBins;

		// Generate histogram
		double scale = nBins/(histMax-histMin);
		int index;
		pixelCount = 0;
		for (int y=ry, my=0; y<(ry+rh); y++, my++) {
			int i = y * width + rx;
			int mi = my * rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null || mask[mi++]!=0) {
					v = pixels[i];
					if (v>=minThreshold && v<=maxThreshold && v>=histMin && v<=histMax) {
						pixelCount++;
						sum += v;
						sum2 += v*v;
						index = (int)(scale*(v-histMin));
						if (index>=nBins)
							index = nBins-1;
						histogram[index]++;
					}
				}
				i++;
			}
		}
		area = pixelCount*pw*ph;
		mean = sum/pixelCount;
		umean = mean;
		calculateStdDev(pixelCount, sum, sum2);
	}

	void getMode() {
        int count;
        maxCount = 0;
        for (int i = 0; i < nBins; i++) {
        	count = histogram[i];
            if (count > maxCount) {
                maxCount = count;
                mode = i;
            }
        }
        dmode = histMin+mode*binSize;
        if (binSize!=1.0)
        	dmode += binSize/2.0;        	
	}

	void calculateMoments(ImageProcessor ip, double minThreshold, double maxThreshold) {
		float[] pixels = (float[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		int i, mi;
		double v, v2, sum1=0.0, sum2=0.0, sum3=0.0, sum4=0.0, xsum=0.0, ysum=0.0;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null || mask[mi++]!=0) {
					v = pixels[i]+Double.MIN_VALUE;
					if (v>=minThreshold && v<=maxThreshold) {
						v2 = v*v;
						sum1 += v;
						sum2 += v2;
						sum3 += v*v2;
						sum4 += v2*v2;
						xsum += x*v;
						ysum += y*v;
					}
				}
				i++;
			}
		}
	    double mean2 = mean*mean;
	    double variance = sum2/pixelCount - mean2;
	    double sDeviation = Math.sqrt(variance);
	    skewness = ((sum3 - 3.0*mean*sum2)/pixelCount + 2.0*mean*mean2)/(variance*sDeviation);
	    kurtosis = (((sum4 - 4.0*mean*sum3 + 6.0*mean2*sum2)/pixelCount - 3.0*mean2*mean2)/(variance*variance)-3.0);
		xCenterOfMass = xsum/sum1+0.5;
		yCenterOfMass = ysum/sum1+0.5;
		if (cal!=null) {
			xCenterOfMass = cal.getX(xCenterOfMass);
			yCenterOfMass = cal.getY(yCenterOfMass, height);
		}
	}

	void getCentroid(ImageProcessor ip, double minThreshold, double maxThreshold) {
		float[] pixels = (float[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		double count=0.0, xsum=0.0, ysum=0.0, v;
		int i, mi;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null||mask[mi++]!=0) {
					v = pixels[i];
					if (v>=minThreshold && v<=maxThreshold) {
						count++;
						xsum+=x;
						ysum+=y;
					}
				}
				i++;
			}
		}
		xCentroid = xsum/count+0.5;
		yCentroid = ysum/count+0.5;
		if (cal!=null) {
			xCentroid = cal.getX(xCentroid);
			yCentroid = cal.getY(yCentroid, height);
		}
	}

	void calculateAreaFraction(ImageProcessor ip) {
		int sum = 0;
		int total = 0;
		float t1 = (float)ip.getMinThreshold();
		float t2 = (float)ip.getMaxThreshold();
		float v;
		float[] pixels = (float[])ip.getPixels();
		boolean noThresh = t1==ImageProcessor.NO_THRESHOLD;
		byte[] mask = ip.getMaskArray();
		int i, mi;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null||mask[mi++]!=0) {
					v = pixels[i];
					total++;
					if (noThresh) {
						if (v!=0f) sum++;
					} else if (v>=t1 && v<=t2)
						sum++;
				}
				i++;
			}
		}
		areaFraction = sum*100.0/total;
	}

}