File: MedianCut.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (404 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
package ij.process;

import java.awt.*;
import java.awt.image.*;
import ij.*; //??

/** Converts an RGB image to 8-bit index color using Heckbert's median-cut
    color quantization algorithm. Based on median.c by Anton Kruger from the
    September, 1994 issue of Dr. Dobbs Journal.
*/
public class MedianCut {
	
	static final int MAXCOLORS = 256;	// maximum # of output colors
	static final int HSIZE = 32768;		// size of image histogram
	private int[] hist;					// RGB histogram and reverse color lookup table
	private int[] histPtr;				// points to colors in "hist"
	private Cube[] list;				// list of cubes
	private int[] pixels32;
	private int width, height;
	private IndexColorModel cm; 

	public MedianCut(int[] pixels, int width, int height) {
		int color16;

		pixels32 = pixels;
		this.width = width;
		this.height = height;
		
		//build 32x32x32 RGB histogram
		IJ.showProgress(0.3);
		IJ.showStatus("Building 32x32x32 RGB histogram");
		hist = new int[HSIZE];
		for (int i=0; i<width*height; i++) {
			color16 = rgb(pixels32[i]);
			hist[color16]++;
		}
	}
	
	public MedianCut(ColorProcessor ip) {
		this((int[])ip.getPixels(), ip.getWidth(), ip.getHeight());
	}
	
	int getColorCount() {
		int count = 0;
		for (int i=0; i<HSIZE; i++)
			if (hist[i]>0) count++;
		return count;
	}
	

	Color getModalColor() {
		int max=0;
		int c = 0;
		for (int i=0; i<HSIZE; i++)
			if (hist[i]>max) {
				max = hist[i];
				c = i;
			}
		return new Color(red(c), green(c), blue(c));
	}
	

	// Convert from 24-bit to 15-bit color
	private final int rgb(int c) {
		int r = (c&0xf80000)>>19;
		int g = (c&0xf800)>>6;
		int b = (c&0xf8)<<7;
		return b | g | r;
	}
	
	// Get red component of a 15-bit color
	private final int red(int x) {
		return (x&31)<<3;
	}
	
	// Get green component of a 15-bit color
	private final int green(int x) {
		return (x>>2)&0xf8;
	}
	
	// Get blue component of a 15-bit color
	private final int blue(int x) {
		return (x>>7)&0xf8;
	}


	/** Uses Heckbert's median-cut algorithm to divide the color space defined by
	"hist" into "maxcubes" cubes. The centroids (average value) of each cube
	are are used to create a color table. "hist" is then updated to function
	as an inverse color map that is used to generate an 8-bit image. */
	public Image convert(int maxcubes) {
		ImageProcessor ip = convertToByte(maxcubes);
		return ip.createImage();
	}

	/** This is a version of convert that returns a ByteProcessor. */
	public ImageProcessor convertToByte(int maxcubes) {
		int lr, lg, lb;
		int i, median, color;
		int count;
		int k, level, ncubes, splitpos;
		int num, width;
		int longdim=0;	//longest dimension of cube
		Cube cube, cubeA, cubeB;
		
		// Create initial cube
		IJ.showStatus("Median cut");
		list = new Cube[MAXCOLORS];
		histPtr = new int[HSIZE];
		ncubes = 0;
		cube = new Cube();
		for (i=0,color=0; i<=HSIZE-1; i++) {
			if (hist[i] != 0) {
				histPtr[color++] = i;
				cube.count = cube.count + hist[i];
			}
		}
		cube.lower = 0; cube.upper = color-1;
		cube.level = 0;
		Shrink(cube);
		list[ncubes++] = cube;

		//Main loop
		while (ncubes < maxcubes) { 

			// Search the list of cubes for next cube to split, the lowest level cube
			level = 255; splitpos = -1; 
			for (k=0; k<=ncubes-1; k++) {
				if (list[k].lower == list[k].upper)  
					;	// single color; cannot be split
				else if (list[k].level < level) {
					level = list[k].level;
					splitpos = k;
				}
			}
			if (splitpos == -1)	// no more cubes to split
				break;

			// Find longest dimension of this cube
			cube = list[splitpos];
			lr = cube.rmax - cube.rmin;
			lg = cube.gmax - cube.gmin;
			lb = cube.bmax - cube.bmin;
			if (lr >= lg && lr >= lb) longdim = 0;
			if (lg >= lr && lg >= lb) longdim = 1;
			if (lb >= lr && lb >= lg) longdim = 2;
			
			// Sort along "longdim"
			reorderColors(histPtr, cube.lower, cube.upper, longdim);
			quickSort(histPtr, cube.lower, cube.upper);
			restoreColorOrder(histPtr, cube.lower, cube.upper, longdim);

			// Find median
			count = 0;
			for (i=cube.lower;i<=cube.upper-1;i++) {
				if (count >= cube.count/2) break;
				color = histPtr[i];
				count = count + hist[color];
			}
			median = i;

			// Now split "cube" at the median and add the two new
			// cubes to the list of cubes.
			cubeA = new Cube();
			cubeA.lower = cube.lower; 
			cubeA.upper = median-1;
			cubeA.count = count;
			cubeA.level = cube.level + 1;
			Shrink(cubeA);
			list[splitpos] = cubeA;				// add in old slot

			cubeB = new Cube();
			cubeB.lower = median; 
			cubeB.upper = cube.upper; 
			cubeB.count = cube.count - count;
			cubeB.level = cube.level + 1;
			Shrink(cubeB);
			list[ncubes++] = cubeB;				// add in new slot */
			if (ncubes%15==0)
				IJ.showProgress(0.3 + (0.6*ncubes)/maxcubes);
		}

		// We have enough cubes, or we have split all we can. Now
		// compute the color map, the inverse color map, and return
		// an 8-bit image.
		IJ.showProgress(0.9);
		makeInverseMap(hist, ncubes);
		IJ.showProgress(0.95);
		return makeImage();
	}
	
	void Shrink(Cube cube) {
	// Encloses "cube" with a tight-fitting cube by updating the
	// (rmin,gmin,bmin) and (rmax,gmax,bmax) members of "cube".

		int r, g, b;
		int color;
		int rmin, rmax, gmin, gmax, bmin, bmax;

		rmin = 255; rmax = 0;
		gmin = 255; gmax = 0;
		bmin = 255; bmax = 0;
		for (int i=cube.lower; i<=cube.upper; i++) {
			color = histPtr[i];
			r = red(color);
			g = green(color);
			b = blue(color);
			if (r > rmax) rmax = r;
			if (r < rmin) rmin = r;
			if (g > gmax) gmax = g;
			if (g < gmin) gmin = g;
			if (b > bmax) bmax = b;
			if (b < bmin) bmin = b;
		}
		cube.rmin = rmin; cube.rmax = rmax;
		cube.gmin = gmin; cube.gmax = gmax;
		cube.bmin = bmin; cube.bmax = bmax;
	}


	void makeInverseMap(int[] hist, int ncubes) {
	// For each cube in the list of cubes, computes the centroid
	// (average value) of the colors enclosed by that cube, and
	// then loads the centroids in the color map. Next loads
	// "hist" with indices into the color map

		int r, g, b;
		int color;
		float rsum, gsum, bsum;
		Cube cube;
		byte[] rLUT = new byte[256];
		byte[] gLUT = new byte[256];
		byte[] bLUT = new byte[256];

		IJ.showStatus("Making inverse map");
		for (int k=0; k<=ncubes-1; k++) {
			cube = list[k];
			rsum = gsum = bsum = (float)0.0;
			for (int i=cube.lower; i<=cube.upper; i++) {
				color = histPtr[i];
				r = red(color);
				rsum += (float)r*(float)hist[color];
				g = green(color);
				gsum += (float)g*(float)hist[color];
				b = blue(color);
				bsum += (float)b*(float)hist[color];
			}

			// Update the color map
			r = (int)(rsum/(float)cube.count);
			g = (int)(gsum/(float)cube.count);
			b = (int)(bsum/(float)cube.count);
			if (r==248 && g==248 && b==248)
				r=g=b=255;  // Restore white (255,255,255)
			rLUT[k] = (byte)r;
			gLUT[k] = (byte)g;
			bLUT[k] = (byte)b;
		}
		cm = new IndexColorModel(8, ncubes, rLUT, gLUT, bLUT);
		
		// For each color in each cube, load the corre- 
		// sponding slot in "hist" with the centroid of the cube.
		for (int k=0; k<=ncubes-1; k++) {
			cube = list[k];
			for (int i=cube.lower; i<=cube.upper; i++) {
				color = histPtr[i];
				hist[color] = k;
			}
		}
	}
	

	void reorderColors(int[] a, int lo, int hi, int longDim) {
	// Change the ordering of the 5-bit colors in each word of int[]
	// so we can sort on the 'longDim' color
	
		int c, r, g, b;
		switch (longDim) {
			case 0: //red
				for (int i=lo; i<=hi; i++) {
					c = a[i];
					r = c & 31;
					a[i] = (r<<10) | (c>>5);
					}
				break;
			case 1: //green
				for (int i=lo; i<=hi; i++) {
					c = a[i];
					r = c & 31;
					g = (c>>5) & 31;
					b = c>>10;
					a[i] = (g<<10) | (b<<5) | r;
					}
				break;
			case 2: //blue; already in the needed order
				break;
		}
	}
	

	void restoreColorOrder(int[] a, int lo, int hi, int longDim) {
	// Restore the 5-bit colors to the original order
	
		int c, r, g, b;
		switch (longDim){
			case 0: //red
				for (int i=lo; i<=hi; i++) {
					c = a[i];
					r = c >> 10;
					a[i] = ((c&1023)<<5) | r;
				}
				break;
			case 1: //green
				for (int i=lo; i<=hi; i++) {
					c = a[i];
					r = c & 31;
					g = c>>10;
					b = (c>>5) & 31;
					a[i] = (b<<10) | (g<<5) | r;
				}
				break;
			case 2: //blue
				break;
		}
	}
	
	
	void quickSort(int a[], int lo0, int hi0) {
   // Based on the QuickSort method by James Gosling from Sun's SortDemo applet
   
      int lo = lo0;
      int hi = hi0;
      int mid, t;

      if ( hi0 > lo0) {
         mid = a[ ( lo0 + hi0 ) / 2 ];
         while( lo <= hi ) {
            while( ( lo < hi0 ) && ( a[lo] < mid ) )
               ++lo;
            while( ( hi > lo0 ) && ( a[hi] > mid ) )
               --hi;
            if( lo <= hi ) {
		      t = a[lo]; 
		      a[lo] = a[hi];
		      a[hi] = t;
               ++lo;
               --hi;
            }
         }
         if( lo0 < hi )
            quickSort( a, lo0, hi );
         if( lo < hi0 )
            quickSort( a, lo, hi0 );

      }
   }


	ImageProcessor makeImage() {
	// Generate 8-bit image
	
		Image img8;
		byte[] pixels8;
		int color16;
		
		IJ.showStatus("Creating 8-bit image");
	    pixels8 = new byte[width*height];
	    for (int i=0; i<width*height; i++) {
	    	color16 = rgb(pixels32[i]);
	    	pixels8[i] = (byte)hist[color16];
	    }
	    ImageProcessor ip = new ByteProcessor(width, height, pixels8, cm);
        IJ.showProgress(1.0);
		return ip;
	}
	
	
} //class MedianCut


class Cube {			// structure for a cube in color space
	int  lower;			// one corner's index in histogram
	int  upper;			// another corner's index in histogram
	int  count;			// cube's histogram count
	int  level;			// cube's level
	int  rmin, rmax;
	int  gmin, gmax;
	int  bmin, bmax;
	
	Cube() {
		count = 0;
	}   

	public String toString() {
		String s = "lower=" + lower + " upper=" + upper;
		s = s + " count=" + count + " level=" + level;
		s = s + " rmin=" + rmin + " rmax=" + rmax;
		s = s + " gmin=" + gmin + " gmax=" + gmax;
		s = s + " bmin=" + bmin + " bmax=" + bmax;
		return s;
	}
	
}