File: ShortStatistics.java

package info (click to toggle)
imagej 1.46a-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,248 kB
  • sloc: java: 89,778; sh: 311; xml: 51; makefile: 6
file content (207 lines) | stat: -rw-r--r-- 5,958 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
package ij.process;
import ij.measure.Calibration;

/** 16-bit image statistics, including histogram. */
public class ShortStatistics extends ImageStatistics {

	/** Construct an ImageStatistics object from a ShortProcessor
		using the standard measurement options (area, mean,
		mode, min and max). */
	public ShortStatistics(ImageProcessor ip) {
		this(ip, AREA+MEAN+MODE+MIN_MAX, null);
	}

	/** Constructs a ShortStatistics object from a ShortProcessor using
		the specified measurement options. The 'cal' argument, which
		can be null, is currently ignored. */
	public ShortStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
		this.width = ip.getWidth();
		this.height = ip.getHeight();
		setup(ip, cal);
		nBins = 256;
		double minT = ip.getMinThreshold();
		int minThreshold,maxThreshold;
		if ((mOptions&LIMIT)==0 || minT==ImageProcessor.NO_THRESHOLD)
			{minThreshold=0; maxThreshold=65535;}
		else
			{minThreshold=(int)minT; maxThreshold=(int)ip.getMaxThreshold();}
		int[] hist = ip.getHistogram(); // 65536 bin histogram
		histogram16 =hist;
		float[] cTable = cal!=null?cal.getCTable():null;
		getRawMinAndMax(hist, minThreshold, maxThreshold);
		histMin = min;
		histMax = max;
		getStatistics(ip, hist, (int)min, (int)max, cTable);
		if ((mOptions&MODE)!=0)
			getMode();
		if ((mOptions&ELLIPSE)!=0 || (mOptions&SHAPE_DESCRIPTORS)!=0)
			fitEllipse(ip, mOptions);
		else if ((mOptions&CENTROID)!=0)
			getCentroid(ip, minThreshold, maxThreshold);
		if ((mOptions&(CENTER_OF_MASS|SKEWNESS|KURTOSIS))!=0)
			calculateMoments(ip, minThreshold, maxThreshold, cTable);
		if ((mOptions&MIN_MAX)!=0 && cTable!=null)
			getCalibratedMinAndMax(hist, (int)min, (int)max, cTable);
		if ((mOptions&MEDIAN)!=0)
			calculateMedian(hist, minThreshold, maxThreshold, cal);
		if ((mOptions&AREA_FRACTION)!=0)
			calculateAreaFraction(ip, hist);
	}

	void getRawMinAndMax(int[] hist, int minThreshold, int maxThreshold) {
		int min = minThreshold;
		while ((hist[min]==0) && (min<65535))
			min++;
		this.min = min;
		int max = maxThreshold;
		while ((hist[max]==0) && (max>0))
			max--;
		this.max = max;
	}

	void getStatistics(ImageProcessor ip, int[] hist, int min, int max, float[] cTable) {
		int count;
		double value;
		double sum = 0.0;
		double sum2 = 0.0;
		nBins = ip.getHistogramSize();
		histMin = ip.getHistogramMin();
		histMax = ip.getHistogramMax();
		if (histMin==0.0 && histMax==0.0) {
			histMin = min; 
			histMax = max;
		} else {
			if (min<histMin) min = (int)histMin;
			if (max>histMax) max = (int)histMax;
		}
		binSize = (histMax-histMin)/nBins;
		double scale = 1.0/binSize;
		int hMin = (int)histMin;
		histogram = new int[nBins]; // 256 bin histogram
		int index;
        int maxCount = 0;
				
		for (int i=min; i<=max; i++) {
			count = hist[i];
            if (count>maxCount) {
                maxCount = count;
                dmode = i;
            }
			pixelCount += count;
			value = cTable==null?i:cTable[i];
			sum += value*count;
			sum2 += (value*value)*count;
			index = (int)(scale*(i-hMin));
			if (index>=nBins)
				index = nBins-1;
			histogram[index] += count;
		}
		area = pixelCount*pw*ph;
		mean = sum/pixelCount;
		umean = mean;
		calculateStdDev(pixelCount, sum, sum2);
        if (cTable!=null)
        	dmode = cTable[(int)dmode];
	}
	
	void getMode() {
        int count;
        maxCount = 0;
        for (int i=0; i<nBins; i++) {
        	count = histogram[i];
            if (count > maxCount) {
                maxCount = count;
                mode = i;
            }
        }
		//ij.IJ.write("mode2: "+mode+" "+dmode+" "+maxCount);
	}


	void getCentroid(ImageProcessor ip, int minThreshold, int maxThreshold) {
		short[] pixels = (short[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		boolean limit = minThreshold>0 || maxThreshold<65535;
		int count=0, i, mi, v;
		double xsum=0.0, ysum=0.0;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null||mask[mi++]!=0) {
					if (limit) {
						v = pixels[i]&0xffff;
						if (v>=minThreshold&&v<=maxThreshold) {
							count++;
							xsum+=x;
							ysum+=y;
						}
					} else {
						count++;
						xsum+=x;
						ysum+=y;
					}
				}
				i++;
			}
		}
		xCentroid = xsum/count+0.5;
		yCentroid = ysum/count+0.5;
		if (cal!=null) {
			xCentroid = cal.getX(xCentroid);
			yCentroid = cal.getY(yCentroid, height);
		}
	}

	void calculateMoments(ImageProcessor ip,  int minThreshold, int maxThreshold, float[] cTable) {
		short[] pixels = (short[])ip.getPixels();
		byte[] mask = ip.getMaskArray();
		int i, mi, iv;
		double v, v2, sum1=0.0, sum2=0.0, sum3=0.0, sum4=0.0, xsum=0.0, ysum=0.0;
		for (int y=ry,my=0; y<(ry+rh); y++,my++) {
			i = y*width + rx;
			mi = my*rw;
			for (int x=rx; x<(rx+rw); x++) {
				if (mask==null || mask[mi++]!=0) {
					iv = pixels[i]&0xffff;
					if (iv>=minThreshold&&iv<=maxThreshold) {
						v = cTable!=null?cTable[iv]:iv;
						v2 = v*v;
						sum1 += v;
						sum2 += v2;
						sum3 += v*v2;
						sum4 += v2*v2;
						xsum += x*v;
						ysum += y*v;
					}
				}
				i++;
			}
		}
	    double mean2 = mean*mean;
	    double variance = sum2/pixelCount - mean2;
	    double sDeviation = Math.sqrt(variance);
	    skewness = ((sum3 - 3.0*mean*sum2)/pixelCount + 2.0*mean*mean2)/(variance*sDeviation);
	    kurtosis = (((sum4 - 4.0*mean*sum3 + 6.0*mean2*sum2)/pixelCount - 3.0*mean2*mean2)/(variance*variance)-3.0);
		xCenterOfMass = xsum/sum1+0.5;
		yCenterOfMass = ysum/sum1+0.5;
		if (cal!=null) {
			xCenterOfMass = cal.getX(xCenterOfMass);
			yCenterOfMass = cal.getY(yCenterOfMass, height);
		}
	}

	void getCalibratedMinAndMax(int[] hist, int minValue, int maxValue, float[] cTable) {
		min = Double.MAX_VALUE;
		max = -Double.MAX_VALUE;
		double v = 0.0;
		for (int i=minValue; i<=maxValue; i++) {
			if (hist[i]>0) {
				v = cTable[i];
				if (v<min) min = v;
				if (v>max) max = v;
			}
		}
	}

}