File: BackgroundSubtracter.java

package info (click to toggle)
imagej 1.51i%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,244 kB
  • ctags: 13,220
  • sloc: java: 113,144; sh: 285; xml: 50; makefile: 8
file content (829 lines) | stat: -rw-r--r-- 43,423 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
package ij.plugin.filter;
import ij.*;
import ij.gui.*;
import ij.process.*;
import ij.measure.*;
import ij.util.Tools;
import java.awt.*;


/** Implements ImageJ's Subtract Background command. Based on the concept of the
rolling ball algorithm described in Stanley Sternberg's article, "Biomedical Image
Processing", IEEE Computer, January 1983.

Imagine that the 2D grayscale image has a third (height) dimension by the image
value at every point in the image, creating a surface. A ball of given radius is
rolled over the bottom side of this surface; the hull of the volume reachable by
the ball is the background.

With "Sliding Parabvoloid", the rolling ball is replaced by a sliding paraboloid
of rotation with the same curvature at its apex as a ball of a given radius.
A paraboloid has the advantage that suitable paraboloids can be found for any image
values, even if the pixel values are much larger than a typical object size (in pixels).
The paraboloid of rotation is approximated as parabolae in 4 directions: x, y and
the two 45-degree directions. Lines of the image in these directions are processed
by sliding a parabola against them. Obtaining the hull needs the parabola for a
given direction to be applied multiple times (after doing the other directions);
in this respect the current code is a compromise between accuracy and speed.

For noise rejection, with the sliding paraboloid algorithm, a 3x3 maximum of the
background is applied. With both, rolling ball and sliding paraboloid,
the image used for calculating the background is slightly smoothened (3x3 average).
This can result in negative values after background subtraction. This preprocessing
can be disabled.

In the sliding paraboloid algorithm, additional code has been added to avoid
subtracting corner objects as a background (note that a paraboloid or ball would
always touch the 4 corner pixels and thus make them background pixels).
This code assumes that corner particles reach less than 1/4 of the image size
into the image.

Rolling ball code based on the NIH Image Pascal version by Michael Castle and Janice 
Keller of the University of Michigan Mental Health Research Institute.
Sliding Paraboloid by Michael Schmid, 2007.

Version 10-Jan-2008
*/
public class BackgroundSubtracter implements ExtendedPlugInFilter, DialogListener {
    /* parameters from the dialog: */
    private static double staticRadius = 50;  // default rolling ball radius
    private static boolean staticLightBackground = Prefs.get("bs.background", true);
    private static boolean staticSeparateColors; // whether to create a separate background for each color channel
    private static boolean staticCreateBackground;   // don't subtract background (e.g., for processing the background before subtracting)
    private static boolean staticUseParaboloid; // use "Sliding Paraboloid" instead of rolling ball algorithm
    private static boolean staticDoPresmooth = true; // smoothen the image before creating the background
    private double radius = staticRadius;
    private boolean lightBackground = staticLightBackground;
    private boolean separateColors = staticSeparateColors;
    private boolean createBackground = staticCreateBackground;
    private boolean useParaboloid = staticUseParaboloid;
    private boolean doPresmooth = staticDoPresmooth;
    /* more class variables */
    private boolean isRGB;              // whether we have an RGB image
    private boolean previewing;
    private final static int MAXIMUM = 0, MEAN = 1;         //filter types of filter3x3
    private final static int X_DIRECTION = 0, Y_DIRECTION = 1,
            DIAGONAL_1A = 2, DIAGONAL_1B = 3, DIAGONAL_2A = 4, DIAGONAL_2B = 5; //filter directions
    private final static int DIRECTION_PASSES = 9; //number of passes for different directions
    private int nPasses = DIRECTION_PASSES;
    private int pass;
    private int flags = DOES_ALL|FINAL_PROCESSING|KEEP_PREVIEW|PARALLELIZE_STACKS;
    private boolean calledAsPlugin;


    public int setup(String arg, ImagePlus imp) {
        if (arg.equals("final")) {
            imp.getProcessor().resetMinAndMax();
            return DONE;
        } else
            return flags;
    }

    public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) {
        isRGB = imp.getProcessor() instanceof ColorProcessor;
        calledAsPlugin = true;
        String options = Macro.getOptions();
        if  (options!=null) {  //macro
            Macro.setOptions(options.replaceAll("white", "light"));
            radius = 50;
            lightBackground = false;
            separateColors = false;
            createBackground = false;
            useParaboloid = false;
            doPresmooth = true;
        }
        GenericDialog gd = new GenericDialog(command);
        gd.addNumericField("Rolling ball radius:", radius, 1, 6, "pixels");
        gd.addCheckbox("Light background", lightBackground);
        if (isRGB) gd.addCheckbox("Separate colors", separateColors);
        gd.addCheckbox("Create background (don't subtract)", createBackground);
        gd.addCheckbox("Sliding paraboloid", useParaboloid);
        gd.addCheckbox("Disable smoothing", !doPresmooth);
        gd.addPreviewCheckbox(pfr);
        gd.addDialogListener(this);
        previewing = true;
		gd.addHelp(IJ.URL+"/docs/menus/process.html#background");
        gd.showDialog();
        previewing = false;
        if (gd.wasCanceled()) return DONE;
        IJ.register(this.getClass());       //protect static class variables (filter parameters) from garbage collection
        if ((imp.getProcessor() instanceof FloatProcessor) && !createBackground)
            flags |= SNAPSHOT;              //FloatProcessors need the original to subtract it from the background
        if  (options==null) { // not a macro
            staticRadius = radius;
            staticLightBackground = lightBackground;
            staticSeparateColors = separateColors;
            staticCreateBackground = createBackground;
            staticUseParaboloid = useParaboloid;
            staticDoPresmooth = doPresmooth;
            Prefs.set("bs.background", lightBackground);
        }
        return IJ.setupDialog(imp, flags);  //ask whether to process all slices of stack (if a stack)
    }

    public boolean dialogItemChanged(GenericDialog gd, AWTEvent e) {
        radius = gd.getNextNumber();
        if (radius <= 0.0001 || gd.invalidNumber())
            return false;
        lightBackground = gd.getNextBoolean();
        if (isRGB) separateColors = gd.getNextBoolean();
        createBackground = gd.getNextBoolean();
        useParaboloid = gd.getNextBoolean();
        doPresmooth = !gd.getNextBoolean();
        return true;
    }

    /** Background for any image type */
    public void run(ImageProcessor ip) {
        if (isRGB && !separateColors)
            rollingBallBrightnessBackground((ColorProcessor)ip, radius, createBackground, lightBackground, useParaboloid, doPresmooth, true);
        else
            rollingBallBackground(ip, radius, createBackground, lightBackground, useParaboloid, doPresmooth, true);
        if (previewing && (ip instanceof FloatProcessor || ip instanceof ShortProcessor)) {
            ip.resetMinAndMax();
        }
    }

    /** Depracated. For compatibility with previous ImageJ versions */
    public void subtractRGBBackround(ColorProcessor ip, int ballRadius) {
        rollingBallBrightnessBackground(ip, (double)ballRadius, false, lightBackground, false, true, true);
    }
    /** Depracated. For compatibility with previous ImageJ versions */
    public void subtractBackround(ImageProcessor ip, int ballRadius) {
        rollingBallBackground(ip, (double)ballRadius, false, lightBackground, false, true, true);
    }

    /** Create or subtract a background, based on the brightness of an RGB image (keeping
     * the hue of each pixel unchanged)
     * @param ip            The RGB image. On output, it will become the background-subtracted image or
     *                      the background (depending on <code>createBackground</code>).
     * @param radius        Radius of the rolling ball creating the background (actually a
     *                      paraboloid of rotation with the same curvature)
     * @param createBackground  Whether to create a background, not to subtract it.
     * @param lightBackground   Whether the image has a light background.
     * @param doPresmooth   Whether the image should be smoothened (3x3 mean) before creating
     *                      the background. With smoothing, the background will not necessarily
     *                      be below the image data.
     * @param correctCorners    Whether the algorithm should try to detect corner particles to avoid
     *                      subtracting them as a background.
     */
    public void rollingBallBrightnessBackground(ColorProcessor ip, double radius, boolean createBackground,
            boolean lightBackground, boolean useParaboloid, boolean doPresmooth, boolean correctCorners) {
        int width = ip.getWidth();
        int height = ip.getHeight();
        byte[] H = new byte[width*height];
        byte[] S = new byte[width*height];
        byte[] B = new byte[width*height];
        ip.getHSB(H, S, B);
        ByteProcessor bp = new ByteProcessor(width, height, B, null);
        rollingBallBackground(bp, radius, createBackground, lightBackground, useParaboloid, doPresmooth, correctCorners);
        ip.setHSB(H, S, (byte[])bp.getPixels());
    }

    /** Create or subtract a background, works for all image types. For RGB images, the
     * background is subtracted from each channel separately
     * @param ip            The image. On output, it will become the background-subtracted image or
     *                      the background (depending on <code>createBackground</code>).
     * @param radius        Radius of the rolling ball creating the background (actually a
     *                      paraboloid of rotation with the same curvature)
     * @param createBackground  Whether to create a background, not to subtract it.
     * @param lightBackground   Whether the image has a light background.
     * @param useParaboloid   Whether to use the "sliding paraboloid" algorithm.
     * @param doPresmooth   Whether the image should be smoothened (3x3 mean) before creating
     *                      the background. With smoothing, the background will not necessarily
     *                      be below the image data.
     * @param correctCorners    Whether the algorithm should try to detect corner particles to avoid
     *                      subtracting them as a background.
     */
    public void rollingBallBackground(ImageProcessor ip, double radius, boolean createBackground,
            boolean lightBackground, boolean useParaboloid, boolean doPresmooth, boolean correctCorners) {
        boolean invertedLut = ip.isInvertedLut();
        boolean invert = (invertedLut && !lightBackground) || (!invertedLut && lightBackground);
        RollingBall ball = null;
        if (!useParaboloid) ball = new RollingBall(radius);
        FloatProcessor fp = null;
        for (int channelNumber=0; channelNumber<ip.getNChannels(); channelNumber++) {
            fp = ip.toFloat(channelNumber, fp);
            if ((ip instanceof FloatProcessor) && !calledAsPlugin && !createBackground)
                fp.snapshot();  //float images need a snapshot to subtract
            if (useParaboloid)
                slidingParaboloidFloatBackground(fp, (float)radius, invert, doPresmooth, correctCorners);
            else
                rollingBallFloatBackground(fp, (float)radius, invert, doPresmooth, ball);

            if (createBackground)
                ip.setPixels(channelNumber, fp);
            else {                                          //subtract the background now
                float[] bgPixels = (float[])fp.getPixels(); //currently holds the background
                if (ip instanceof FloatProcessor) {         //here ip and fp are the same (bgPixels will be output)
                    float[] snapshotPixels = (float[])fp.getSnapshotPixels(); //original data in the snapshot
                    for (int p=0; p<bgPixels.length; p++)
                        bgPixels[p] = snapshotPixels[p]-bgPixels[p];
                //for all others, the image data are in ip, the background is in fp
                } else if (ip instanceof ShortProcessor) {
                    float offset = invert ? 65535.5f : 0.5f;//includes 0.5 for rounding when converting float to short
                    short[] pixels = (short[])ip.getPixels();
                    for (int p=0; p<bgPixels.length; p++) {
                        float value = (pixels[p]&0xffff) - bgPixels[p] + offset;
                        if (value<0f) value = 0f;

                        if (value>65535f) value = 65535f;

                        pixels[p] = (short)(value);
                    }
                } else if (ip instanceof ByteProcessor) {
                    float offset = invert ? 255.5f : 0.5f;  //includes 0.5 for rounding when converting float to byte
                    byte[] pixels = (byte[])ip.getPixels();
                    for (int p=0; p<bgPixels.length; p++) {
                        float value = (pixels[p]&0xff) - bgPixels[p] + offset;
                        if (value<0f) value = 0f;

                        if (value>255f) value = 255f;

                        pixels[p] = (byte)(value);
                    }
                } else if (ip instanceof ColorProcessor) {
                    float offset = invert ? 255.5f : 0.5f;
                    int[] pixels = (int[])ip.getPixels();
            		int shift = 16 - 8*channelNumber;

            		int byteMask = 255<<shift;
            		int resetMask = 0xffffffff^(255<<shift);

                    for (int p=0; p<bgPixels.length; p++) {
                        int pxl = pixels[p];
                        float value = ((pxl&byteMask)>>shift) - bgPixels[p] + offset;
                        if (value<0f) value = 0f;

                        if (value>255f) value = 255f;
                        pixels[p] = (pxl&resetMask) | ((int)value<<shift);

                    }
                }
            }
        }
    }

    //  S L I D E   P A R A B O L O I D   S E C T I O N

    /** Create background for a float image by sliding a paraboloid over
     * the image. */
    void slidingParaboloidFloatBackground(FloatProcessor fp, float radius, boolean invert,
            boolean doPresmooth, boolean correctCorners) {
        float[] pixels = (float[])fp.getPixels();   //this will become the background
        int width = fp.getWidth();
        int height = fp.getHeight();
        float[] cache = new float[Math.max(width, height)]; //work array for lineSlideParabola
        int[] nextPoint = new int[Math.max(width, height)]; //work array for lineSlideParabola
        float coeff2 = 0.5f/radius;                 //2nd-order coefficient of the polynomial approximating the ball
        float coeff2diag = 1.f/radius;              //same for diagonal directions where step is sqrt2

        showProgress(0.000001);                     //start the progress bar (only filter1D will increment it)
        if (invert)
            for (int i=0; i<pixels.length; i++)
                pixels[i] = -pixels[i];

        float shiftBy = 0;
        if (doPresmooth) {
            shiftBy = (float)filter3x3(fp, MAXIMUM);//3x3 maximum to remove dust etc.
            showProgress(0.5);
            filter3x3(fp, MEAN);                    //smoothing to remove noise
            pass++;
        }
        if (correctCorners)
            correctCorners(fp, coeff2, cache, nextPoint);   //modify corner data, avoids subtracting corner particles

        /* Slide the parabola over the image in different directions */
        /* Doing the diagonal directions at the end is faster (diagonal lines are denser,
         * so there are more such lines, and the algorithm gets faster with each iteration) */
        filter1D(fp, X_DIRECTION, coeff2, cache, nextPoint);
        filter1D(fp, Y_DIRECTION, coeff2, cache, nextPoint);
        filter1D(fp, X_DIRECTION, coeff2, cache, nextPoint);    //redo for better accuracy
        filter1D(fp, DIAGONAL_1A, coeff2diag, cache, nextPoint);
        filter1D(fp, DIAGONAL_1B, coeff2diag, cache, nextPoint);
        filter1D(fp, DIAGONAL_2A, coeff2diag, cache, nextPoint);
        filter1D(fp, DIAGONAL_2B, coeff2diag, cache, nextPoint);
        filter1D(fp, DIAGONAL_1A, coeff2diag, cache, nextPoint);//redo for better accuracy
        filter1D(fp, DIAGONAL_1B, coeff2diag, cache, nextPoint);

        if (invert)
            for (int i=0; i<pixels.length; i++)
                pixels[i] = -(pixels[i] - shiftBy);
        else if (doPresmooth)
            for (int i=0; i<pixels.length; i++)
                pixels[i] -= shiftBy;   //correct for shift by 3x3 maximum

    }

    /** Filter by subtracting a sliding parabola for all lines in one direction, x, y or one of
     *  the two diagonal directions (diagonals are processed only for half the image per call). */
    void filter1D(FloatProcessor fp, int direction, float coeff2, float[] cache, int[] nextPoint) {
        float[] pixels = (float[])fp.getPixels();   //this will become the background
        int width = fp.getWidth();
        int height = fp.getHeight();
        int startLine = 0;          //index of the first line to handle
        int nLines = 0;             //index+1 of the last line to handle (initialized to avoid compile-time error)
        int lineInc = 0;            //increment from one line to the next in pixels array
        int pointInc = 0;           //increment from one point to the next along the line
        int length = 0;             //length of the line
        switch (direction) {
            case X_DIRECTION:       //lines parallel to x direction
                nLines = height;
                lineInc = width;
                pointInc = 1;
                length = width;
            break;
            case Y_DIRECTION:       //lines parallel to y direction
                nLines = width;
                lineInc = 1;
                pointInc = width;
                length = height;
            break;
            case DIAGONAL_1A:       //lines parallel to x=y, starting at x axis
                nLines = width-2;   //the algorithm makes no sense for lines shorter than 3 pixels
                lineInc = 1;
                pointInc = width + 1;
            break;
            case DIAGONAL_1B:       //lines parallel to x=y, starting at y axis
                startLine = 1;
                nLines = height-2;
                lineInc = width;
                pointInc = width + 1;
            break;
            case DIAGONAL_2A:       //lines parallel to x=-y, starting at x axis
                startLine = 2;
                nLines = width;
                lineInc = 1;
                pointInc = width - 1;
            break;
            case DIAGONAL_2B:       //lines parallel to x=-y, starting at x=width-1, y=variable
                startLine = 0;
                nLines = height-2;
                lineInc = width;
                pointInc = width - 1;
            break;
        }
        for (int i=startLine; i<nLines; i++) {
            if (i%50==0) {
                if (Thread.currentThread().isInterrupted()) return;
                showProgress(i/(double)nLines);
            }
            int startPixel = i*lineInc;
            if (direction == DIAGONAL_2B) startPixel += width-1;
            switch (direction) {
                case DIAGONAL_1A: length = Math.min(height, width-i); break;
                case DIAGONAL_1B: length = Math.min(width, height-i); break;
                case DIAGONAL_2A: length = Math.min(height, i+1);     break;
                case DIAGONAL_2B: length = Math.min(width, height-i); break;
            }
            lineSlideParabola(pixels, startPixel, pointInc, length, coeff2, cache, nextPoint, null);
        }
        pass++;
    } //void filter1D

    /** Process one straight line in the image by sliding a parabola along the line
     *  (from the bottom) and setting the values to make all points reachable by
     *  the parabola
     * @param pixels    Image data, will be modified by parabolic interpolation
     *                  where the parabola does not touch.
     * @param start     Index of first pixel of the line in pixels array
     * @param inc       Increment of index in pixels array
     * @param length    Number of points the line consists of
     * @param coeff2    2nd order coefficient of the polynomial describing the parabola,
     *                  must be positive (although a parabola with negative curvature is
     *                  actually used)
     * @param cache     Work array, length at least <code>length</code>. Will usually remain
     *                  in the CPU cache and may therefore speed up the code.
     * @param nextPoint Work array. Will hold the index of the next point with sufficient local
     *                  curvature to get touched by the parabola.
     * @param correctedEdges Should be a 2-element array used for output or null.
     * @return          The correctedEdges array (if non-null on input) with the two estimated
     *                  edge pixel values corrected for edge particles.
     */
    static float[] lineSlideParabola(float[] pixels, int start, int inc, int length, float coeff2, float[] cache, int[] nextPoint, float[] correctedEdges) {
        float minValue = Float.MAX_VALUE;
        int lastpoint = 0;
        int firstCorner = length-1;             // the first point except the edge that is touched
        int lastCorner = 0;                     // the last point except the edge that is touched
        float vPrevious1 = 0f;
        float vPrevious2 = 0f;
        float curvatureTest = 1.999f*coeff2;     //not 2: numeric scatter of 2nd derivative
        /* copy data to cache, determine the minimum, and find points with local curvature such
         * that the parabola can touch them - only these need to be examined futher on */
        for (int i=0, p=start; i<length; i++, p+=inc) {
            float v = pixels[p];
            cache[i] = v;
            if (v < minValue) minValue = v;
            if (i >= 2 && vPrevious1+vPrevious1-vPrevious2-v < curvatureTest) {
                nextPoint[lastpoint] = i-1;     // point i-1 may be touched
                lastpoint = i-1;
            }
            vPrevious2 = vPrevious1;
            vPrevious1 = v;
        }
        nextPoint[lastpoint] = length-1;
        nextPoint[length-1] = Integer.MAX_VALUE;// breaks the search loop

        int i1 = 0;                             // i1 and i2 will be the two points where the parabola touches
        while (i1<length-1) {
            float v1 = cache[i1];
            float minSlope = Float.MAX_VALUE;
            int i2 = 0;                         //(initialized to avoid compile-time error)
            int searchTo = length;
            int recalculateLimitNow = 0;        // when 0, limits for searching will be recalculated
            /* find the second point where the parabola through point i1,v1 touches: */
            for (int j=nextPoint[i1]; j<searchTo; j=nextPoint[j], recalculateLimitNow++) {
                float v2 = cache[j];
                float slope = (v2-v1)/(j-i1)+coeff2*(j-i1);
                if (slope < minSlope) {
                    minSlope = slope;
                    i2 = j;
                    recalculateLimitNow = -3;
                }
                if (recalculateLimitNow==0) {   //time-consuming recalculation of search limit: wait a bit after slope is updated
                    double b = 0.5f*minSlope/coeff2;
                    int maxSearch = i1+(int)(b+Math.sqrt(b*b+(v1-minValue)/coeff2)+1); //(numeric overflow may make this negative)
                    if (maxSearch < searchTo && maxSearch > 0) searchTo = maxSearch;
                }
            }
            if (i1 == 0) firstCorner = i2;
            if (i2 == length-1) lastCorner = i1;
            /* interpolate between the two points where the parabola touches: */
            for (int j=i1+1, p=start+j*inc; j<i2; j++, p+=inc)
                pixels[p] = v1 + (j-i1)*(minSlope - (j-i1)*coeff2);
            i1 = i2;                            // continue from this new point
        } //while (i1<length-1)
        /* Now calculate estimated edge values without an edge particle, allowing for vignetting
         * described as a 6th-order polynomial: */
        if (correctedEdges != null) {
            if (4*firstCorner >= length) firstCorner = 0; // edge particles must be < 1/4 image size
            if (4*(length - 1 - lastCorner) >= length) lastCorner = length - 1;
            float v1 = cache[firstCorner];
            float v2 = cache[lastCorner];
            float slope = (v2-v1)/(lastCorner-firstCorner); // of the line through the two outermost non-edge touching points
            float value0 = v1 - slope * firstCorner;        // offset of this line
            float coeff6 = 0;                               // coefficient of 6th order polynomial
            float mid = 0.5f * (lastCorner + firstCorner);
            for (int i=(length+2)/3; i<=(2*length)/3; i++) {// compare with mid-image pixels to detect vignetting
                float dx = (i-mid)*2f/(lastCorner-firstCorner);
                float poly6 = dx*dx*dx*dx*dx*dx - 1f;       // the 6th order polynomial, zero at firstCorner and lastCorner
                if (cache[i] < value0 + slope*i + coeff6*poly6) {
                    coeff6 = -(value0 + slope*i - cache[i])/poly6;
                }
            }
            float dx = (firstCorner-mid)*2f/(lastCorner-firstCorner);
            correctedEdges[0] = value0 + coeff6*(dx*dx*dx*dx*dx*dx - 1f) + coeff2*firstCorner*firstCorner;
            dx = (lastCorner-mid)*2f/(lastCorner-firstCorner);
            correctedEdges[1] = value0 + (length-1)*slope + coeff6*(dx*dx*dx*dx*dx*dx - 1f) + coeff2*(length-1-lastCorner)*(length-1-lastCorner);
        }
        return correctedEdges;
    } //void lineSlideParabola

    /** Detect corner particles and adjust corner pixels if a particle is there.
     *  Analyzing the directions parallel to the edges and the diagonals, we
     *  average over the 3 correction values (found for the 3 directions)
     */
    void correctCorners(FloatProcessor fp, float coeff2, float[] cache, int[] nextPoint) {
        int width = fp.getWidth();
        int height = fp.getHeight();
        float[] pixels = (float[])fp.getPixels();
        float[] corners = new float[4];         //(0,0); (xmax,0); (ymax,0); (xmax,ymax)
        float[] correctedEdges = new float[2];
        correctedEdges = lineSlideParabola(pixels, 0, 1, width, coeff2, cache, nextPoint, correctedEdges);
        corners[0] = correctedEdges[0];
        corners[1] = correctedEdges[1];
        correctedEdges = lineSlideParabola(pixels, (height-1)*width, 1, width, coeff2, cache, nextPoint, correctedEdges);
        corners[2] = correctedEdges[0];
        corners[3] = correctedEdges[1];
        correctedEdges = lineSlideParabola(pixels, 0, width, height, coeff2, cache, nextPoint, correctedEdges);
        corners[0] += correctedEdges[0];
        corners[2] += correctedEdges[1];
        correctedEdges = lineSlideParabola(pixels, width-1, width, height, coeff2, cache, nextPoint, correctedEdges);
        corners[1] += correctedEdges[0];
        corners[3] += correctedEdges[1];
        int diagLength = Math.min(width,height);        //length of a 45-degree line from a corner
        float coeff2diag = 2 * coeff2;
        correctedEdges = lineSlideParabola(pixels, 0, 1+width, diagLength, coeff2diag, cache, nextPoint, correctedEdges);
        corners[0] += correctedEdges[0];
        correctedEdges = lineSlideParabola(pixels, width-1, -1+width, diagLength, coeff2diag, cache, nextPoint, correctedEdges);
        corners[1] += correctedEdges[0];
        correctedEdges = lineSlideParabola(pixels, (height-1)*width, 1-width, diagLength, coeff2diag, cache, nextPoint, correctedEdges);
        corners[2] += correctedEdges[0];
        correctedEdges = lineSlideParabola(pixels, width*height-1, -1-width, diagLength, coeff2diag, cache, nextPoint, correctedEdges);
        corners[3] += correctedEdges[0];
        if (pixels[0] > corners[0]/3) pixels[0] = corners[0]/3;
        if (pixels[width-1] > corners[1]/3) pixels[width-1] = corners[1]/3;
        if (pixels[(height-1)*width] > corners[2]/3) pixels[(height-1)*width] = corners[2]/3;
        if (pixels[width*height-1] > corners[3]/3) pixels[width*height-1] = corners[3]/3;
        //new ImagePlus("corner corrected",fp.duplicate()).show();
    } //void correctCorners

    //  R O L L   B A L L   S E C T I O N

    /** Create background for a float image by rolling a ball over
     * the image. */
    void rollingBallFloatBackground(FloatProcessor fp, float radius, boolean invert,
            boolean doPresmooth, RollingBall ball) {
        float[] pixels = (float[])fp.getPixels();   //this will become the background
        boolean shrink = ball.shrinkFactor >1;

        showProgress(0.0);
        if (invert)
            for (int i=0; i<pixels.length; i++)
                pixels[i] = -pixels[i];
        if (doPresmooth)
            filter3x3(fp, MEAN);
        double[] minmax = Tools.getMinMax(pixels);
        if (Thread.currentThread().isInterrupted()) return;
        FloatProcessor smallImage = shrink ? shrinkImage(fp, ball.shrinkFactor) : fp;
        if (Thread.currentThread().isInterrupted()) return;
        rollBall(ball, smallImage);
        if (Thread.currentThread().isInterrupted()) return;
        showProgress(0.9);
        if (shrink)
            enlargeImage(smallImage, fp, ball.shrinkFactor);
        if (Thread.currentThread().isInterrupted()) return;

        if (invert)
            for (int i=0; i<pixels.length; i++)
                pixels[i] = -pixels[i];
        pass++;
    }

    /** Creates a lower resolution image for ball-rolling. */
    FloatProcessor shrinkImage(FloatProcessor ip, int shrinkFactor) {
        int width = ip.getWidth();
        int height = ip.getHeight();
        float[] pixels = (float[])ip.getPixels();
        int sWidth = (width+shrinkFactor-1)/shrinkFactor;
        int sHeight = (height+shrinkFactor-1)/shrinkFactor;
        showProgress(0.1);
        FloatProcessor smallImage = new FloatProcessor(sWidth, sHeight);
        float[] sPixels = (float[])smallImage.getPixels();
        float min, thispixel;
        for (int ySmall=0; ySmall<sHeight; ySmall++) {
            for (int xSmall=0; xSmall<sWidth; xSmall++) {
                min = Float.MAX_VALUE;
                for (int j=0, y=shrinkFactor*ySmall; j<shrinkFactor&&y<height; j++, y++) {
                    for (int k=0, x=shrinkFactor*xSmall; k<shrinkFactor&&x<width; k++, x++) {
                        thispixel = pixels[x+y*width];
                        if (thispixel<min)
                            min = thispixel;
                    }
                }
                sPixels[xSmall+ySmall*sWidth] = min; // each point in small image is minimum of its neighborhood
            }
        }
        //new ImagePlus("smallImage", smallImage).show();
        return smallImage;
    }

    /** 'Rolls' a filtering object over a (shrunken) image in order to find the
        image's smooth continuous background.  For the purpose of explaining this
        algorithm, imagine that the 2D grayscale image has a third (height) dimension
        defined by the intensity value at every point in the image.  The center of
        the filtering object, a patch from the top of a sphere having radius BallRadius,
        is moved along each scan line of the image so that the patch is tangent to the
        image at one or more points with every other point on the patch below the
        corresponding (x,y) point of the image.  Any point either on or below the patch
        during this process is considered part of the background.  Shrinking the image
        before running this procedure is advised for large ball radii because the
        processing time increases with ball radius^2.
    */
    void rollBall(RollingBall ball, FloatProcessor fp) {
        float[] pixels = (float[])fp.getPixels();   //the input pixels
        int width = fp.getWidth();
        int height = fp.getHeight();
        float[] zBall = ball.data;
        int ballWidth = ball.width;
        int radius = ballWidth/2;
        float[] cache = new float[width*ballWidth]; //temporarily stores the pixels we work on

		Thread thread = Thread.currentThread();
		long lastTime = System.currentTimeMillis();
        for (int y=-radius; y<height+radius; y++) { //for all positions of the ball center:
			long time = System.currentTimeMillis();
			if (time-lastTime > 100) {
				lastTime = time;
				if (thread.isInterrupted()) return;
				showProgress(0.1+0.8*y/(height+ballWidth));
            }
            int nextLineToWriteInCache = (y+radius)%ballWidth;
            int nextLineToRead = y + radius;        //line of the input not touched yet
            if (nextLineToRead<height) {
                System.arraycopy(pixels, nextLineToRead*width, cache, nextLineToWriteInCache*width, width);
                for (int x=0, p=nextLineToRead*width; x<width; x++,p++)
                    pixels[p] = -Float.MAX_VALUE;   //unprocessed pixels start at minus infinity
            }
            int y0 = y-radius;                      //the first line to see whether the ball touches
            if (y0 < 0) y0 = 0;
            int yBall0 = y0-y+radius;               //y coordinate in the ball corresponding to y0
            int yend = y+radius;                    //the last line to see whether the ball touches
            if (yend>=height) yend = height-1;
            for (int x=-radius; x<width+radius; x++) {
                float z = Float.MAX_VALUE;          //the height of the ball (ball is in position x,y)
                int x0 = x-radius;
                if (x0 < 0) x0 = 0;
                int xBall0 = x0-x+radius;
                int xend = x+radius;
                if (xend>=width) xend = width-1;
                for (int yp=y0, yBall=yBall0; yp<=yend; yp++,yBall++) { //for all points inside the ball
                    int cachePointer = (yp%ballWidth)*width+x0;
                    for (int xp=x0, bp=xBall0+yBall*ballWidth; xp<=xend; xp++, cachePointer++, bp++) {
                        float zReduced = cache[cachePointer] - zBall[bp];
                        if (z > zReduced)           //does this point imply a greater height?
                            z = zReduced;
                    }
                }
                for (int yp=y0, yBall=yBall0; yp<=yend; yp++,yBall++) //raise pixels to ball surface
                    for (int xp=x0, p=xp+yp*width, bp=xBall0+yBall*ballWidth; xp<=xend; xp++, p++, bp++) {
                        float zMin = z + zBall[bp];
                        if (pixels[p] < zMin)
                            pixels[p] = zMin;
                    }
            // if (x>=0&&y>=0&&x<width&&y<height) bgPixels[x+y*width] = z; //debug, ball height output
            }
        }
        
        //new ImagePlus("bg rolled", fp.duplicate()).show();
    }
    
    /** Uses bilinear interpolation to find the points in the full-scale background
        given the points from the shrunken image background. (At the edges, it is
        actually extrapolation.)
    */                                 
    void enlargeImage(FloatProcessor smallImage, FloatProcessor fp, int shrinkFactor) {
        int width = fp.getWidth();
        int height = fp.getHeight();
        int smallWidth = smallImage.getWidth();
        int smallHeight = smallImage.getHeight();
        float[] pixels = (float[])fp.getPixels();
        float[] sPixels = (float[])smallImage.getPixels();
        int[] xSmallIndices = new int[width];         //index of first point in smallImage
        float[] xWeights = new float[width];        //weight of this point
        makeInterpolationArrays(xSmallIndices, xWeights, width, smallWidth, shrinkFactor);
        int[] ySmallIndices = new int[height];
        float[] yWeights = new float[height];
        makeInterpolationArrays(ySmallIndices, yWeights, height, smallHeight, shrinkFactor);
        float[] line0 = new float[width];
        float[] line1 = new float[width];
        for (int x=0; x<width; x++)                 //x-interpolation of the first smallImage line
            line1[x] = sPixels[xSmallIndices[x]] * xWeights[x] +
                    sPixels[xSmallIndices[x]+1] * (1f - xWeights[x]);
        int ySmallLine0 = -1;                       //line0 corresponds to this y of smallImage
        for (int y=0; y<height; y++) {
            if (ySmallLine0 < ySmallIndices[y]) {
                float[] swap = line0;               //previous line1 -> line0
                line0 = line1;
                line1 = swap;                       //keep the other array for filling with new data
                ySmallLine0++;
                int sYPointer = (ySmallIndices[y]+1)*smallWidth; //points to line0 + 1 in smallImage
                for (int x=0; x<width; x++)         //x-interpolation of the new smallImage line -> line1
                    line1[x] = sPixels[sYPointer+xSmallIndices[x]] * xWeights[x] +
                            sPixels[sYPointer+xSmallIndices[x]+1] * (1f - xWeights[x]);
            }
            float weight = yWeights[y];
            for (int x=0, p=y*width; x<width; x++,p++)
                pixels[p] = line0[x]*weight + line1[x]*(1f - weight);
        }
    }

    /** Create arrays of indices and weigths for interpolation.
     <pre>
     Example for shrinkFactor = 4:
        small image pixel number         |       0       |       1       |       2       | ...
        full image pixel number          | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 | ...
        smallIndex for interpolation(0)  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | ...
     (0) Note: This is smallIndex for the left pixel; for the right pixel used for interpolation
               it is higher by one
     </pre>
     */
    void makeInterpolationArrays(int[] smallIndices, float[] weights, int length, int smallLength, int shrinkFactor) {
        for (int i=0; i<length; i++) {
            int smallIndex = (i - shrinkFactor/2)/shrinkFactor;
            if (smallIndex >= smallLength-1) smallIndex = smallLength - 2;
            smallIndices[i] = smallIndex;
            float distance = (i + 0.5f)/shrinkFactor - (smallIndex + 0.5f); //distance of pixel centers (in smallImage pixels)
            weights[i] = 1f - distance;
        }
    }

    //   C O M M O N   S E C T I O N   F O R   B O T H   A L G O R I T H M S

    /** Replace the pixels by the mean or maximum in a 3x3 neighborhood.
     *  No snapshot is required (less memory needed than e.g., fp.smooth()).
     *  When used as maximum filter, it returns the average change of the
     *  pixel value by this operation
     */
    double filter3x3(FloatProcessor fp, int type) {
        int width = fp.getWidth();
        int height = fp.getHeight();
        double shiftBy = 0;
        float[] pixels = (float[])fp.getPixels();
        for (int y=0; y<height; y++)
            shiftBy += filter3(pixels, width, y*width, 1, type);
        for (int x=0; x<width; x++)
            shiftBy += filter3(pixels, height, x, width, type);
        return shiftBy/width/height;
    }

    /** Filter a line: maximum or average of 3-pixel neighborhood */
    double filter3(float[] pixels, int length, int pixel0, int inc, int type) {
        double shiftBy = 0;
        float v3 = pixels[pixel0];  //will be pixel[i+1]
        float v2 = v3;              //will be pixel[i]
        float v1;                   //will be pixel[i-1]
        for (int i=0, p=pixel0; i<length; i++,p+=inc) {
            v1 = v2;
            v2 = v3;
            if (i<length-1) v3 = pixels[p+inc];
            if (type == MAXIMUM) {
                float max = v1 > v3 ? v1 : v3;
                if (v2 > max) max = v2;
                shiftBy += max - v2;
                pixels[p] = max;
            } else
                pixels[p] = (v1+v2+v3)*0.33333333f;
        }
        return shiftBy;
    }


    public void setNPasses(int nPasses) {
        if (isRGB && separateColors)
        	nPasses *= 3;
        if (useParaboloid)
        	nPasses*= (doPresmooth) ? DIRECTION_PASSES+2 : DIRECTION_PASSES;
        this.nPasses = nPasses;
        pass = 0;
    }

    private void showProgress(double percent) {
        if (nPasses <= 0) return;
        percent = (double)pass/nPasses + percent/nPasses;
        IJ.showProgress(percent);
    }
}

//  C L A S S   R O L L I N G B A L L

/** A rolling ball (or actually a square part thereof)
 *  Here it is also determined whether to shrink the image
 */
class RollingBall {

    float[] data;
    int width;
    int shrinkFactor;
    
    RollingBall(double radius) {
        int arcTrimPer;
        if (radius<=10) {
            shrinkFactor = 1;
            arcTrimPer = 24; // trim 24% in x and y
        } else if (radius<=30) {
            shrinkFactor = 2;
            arcTrimPer = 24; // trim 24% in x and y
        } else if (radius<=100) {
            shrinkFactor = 4;
            arcTrimPer = 32; // trim 32% in x and y
        } else {
            shrinkFactor = 8;
            arcTrimPer = 40; // trim 40% in x and y
        }
        buildRollingBall(radius, arcTrimPer);
    }
    
    /** Computes the location of each point on the rolling ball patch relative to the 
    center of the sphere containing it.  The patch is located in the top half 
    of this sphere.  The vertical axis of the sphere passes through the center of 
    the patch.  The projection of the patch in the xy-plane below is a square.
    */
    void buildRollingBall(double ballradius, int arcTrimPer) {
        double rsquare;     // rolling ball radius squared
        int xtrim;          // # of pixels trimmed off each end of ball to make patch
        int xval, yval;     // x,y-values on patch relative to center of rolling ball
        double smallballradius; // radius of rolling ball (downscaled in x,y and z when image is shrunk)
        int halfWidth;      // distance in x or y from center of patch to any edge (patch "radius")
        
        this.shrinkFactor = shrinkFactor;
        smallballradius = ballradius/shrinkFactor;
        if (smallballradius<1)
            smallballradius = 1;
        rsquare = smallballradius*smallballradius;
        xtrim = (int)(arcTrimPer*smallballradius)/100; // only use a patch of the rolling ball
        halfWidth = (int)Math.round(smallballradius - xtrim);
        width = 2*halfWidth+1;
        data = new float[width*width];

        for (int y=0, p=0; y<width; y++)
            for (int x=0; x<width; x++, p++) {
                xval = x - halfWidth;
                yval = y - halfWidth;
                double temp = rsquare - xval*xval - yval*yval;
                data[p] = temp>0. ? (float)(Math.sqrt(temp)) : 0f;
                //-Float.MAX_VALUE might be better than 0f, but gives different results than earlier versions
            }
    }

}