File: EDM.java

package info (click to toggle)
imagej 1.51i%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,244 kB
  • ctags: 13,220
  • sloc: java: 113,144; sh: 285; xml: 50; makefile: 8
file content (452 lines) | stat: -rw-r--r-- 21,760 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
package ij.plugin.filter;
import ij.*;
import ij.plugin.*;
import ij.process.*;
import ij.gui.*;

/**
 * This plugin implements the Euclidean Distance Map (EDM), Watershed,
 * Ultimate Eroded Points and Voronoi commands in the Process/Binary submenu.
 *
 * - Euclidean Distance Map: The value of each pixel is the distance to the nearest
 *   background pixel (for background pixels, the EDM is 0)
 * - Ultimate Eroded Points  (UEPs) are maxima of the EDM. In the output, the points
 *   are assigned the EDM value, which is equal to the radius of the largest circle
 *   that fits into the particle, with the UEP as the center.
 * - Watershed segmentation of the EDM splits particles at "necks"; starting at
 *   maxima of the EDM.
 * - 'Voronoi' splits the image by lines of points having equal distance to the
 *   borders of the two nearest particles. Thus, the Voronoi cell of each particle
 *   includes all points that are nearer to this particle than any other particle.
 *   For the case of the priticles being single points, this is a Voronoi tessellation
 *   (also known as Dirichlet tessellation).
 *   In the output, the value inside the Voronoi cells is zero; the pixel values
 *   of the dividing lines between the cells are equal to the distance to the two
 *   nearest particles. This is similar to a medial axis transform of the background,
 *   but there are no lines in inner holes of particles.
 *
 * Watershed, Ultimate Eroded Points and Voronoi are handled by the MaximumFinder 
 * plugin applied to the EDM
 * Note: These functions do not take ROIs into account.
 * Setup is called with argument "" (empty string) for EDM,
 * "watershed" for watershed segmentation, "points" for ultimate eroded points and
 * "voronoi" for Voronoi segmentation of the background
 *
 * The EDM algorithm is similar to the 8SSEDT in
 *   F. Leymarie, M. D. Levine, in: CVGIP Image Understanding, vol. 55 (1992), pp 84-94
 *   http://dx.doi.org/10.1016/1049-9660(92)90008-Q
 *
 * The algorithm provides a fast approximation of the EDM, with the deviation from a
 * full calculation being between -0.09 and 0. The algorithm is exact for distances<13.
 * For d>=13, deviations from the true result can occur, but are very rare: typically
 * the fraction of pixels deviating from the exact result is in the 10^-5 range, with
 * most deviations between -0.03 and -0.04.
 *
 * Limitations:
 * Maximum image diagonal for EDM: 46340 pixels (sqrt(2^31)); if the particles are
 * dense enough it also works for width, height <=65534.
 *
 * Version 30-Apr-2008 Michael Schmid:  more accurate EDM algorithm,
 *                                      16-bit and float output possible,
 *                                      parallel processing for stacks
 *                                      Voronoi output added
 */
public class EDM implements ExtendedPlugInFilter {
    /** Output type: overwrite current 8-bit image */
    public static final int BYTE_OVERWRITE = 0;
    /** Output type: new 8-bit image */
    public static final int BYTE = 1;
    /** Output type: new 16-bit image */
    public static final int SHORT = 2;
    /** Output type: new 32-bit image */
    public static final int FLOAT = 3;
    /** Unit in old make16bitEDM: this pixel value corresponds to a distance of one pixel.
     *  For compatibility only. */
    public static final int ONE = 41;
    /** In old make16bitEDM this pixel value corresponds to a pixel distance of sqrt(2) */
    public static final int SQRT2 = 58; // ~ 41 * sqrt(2)
    /** In old make16bitEDM this pixel value corresponds to a pixel distance of sqrt(5) */
    public static final int SQRT5 = 92; // ~ 41 * sqrt(5)

    private ImagePlus imp;              //input
    private ImagePlus outImp;           //output if a new window is desired
    private PlugInFilterRunner pfr;     //needed to extract the stack slice if needed
    private String command;             //for showing status
    private int outImageType;           //output type; BYTE_OVERWRITE, BYTE, SHORT or FLOAT
    private ImageStack outStack;        //in case output should be a new stack
    private int processType;            //can be EDM, WATERSHED, UEP, VORONOI
    private MaximumFinder maxFinder = new MaximumFinder();    //we use only one MaximumFinder (nice progress bar)
    private double progressDone;        //for progress bar, fraction of work done so far
    private int nPasses;                //for progress bar, how many images to process (sequentially or parallel threads)
    private boolean interrupted;        //whether watershed segmentation has been interrrupted by the user

    private boolean background255;      //whether background for EDM is 255, not zero
    private int flags = DOES_8G | PARALLELIZE_STACKS | FINAL_PROCESSING;
    //processType can be:
    private static final int EDM = 0, WATERSHED = 1, UEP = 2, VORONOI = 3;
    //whether MaximumFinder is needed for processType:
    private static final boolean[] USES_MAX_FINDER = new boolean[] {
            false, true, true, true };
    //whether watershed segmentation is needed for processType:
    private static final boolean[] USES_WATERSHED = new boolean[] {
            false, true, false, true };
    //prefixes for titles of separate output images; for each processType:
    private static final String[] TITLE_PREFIX = new String[] {
            "EDM of ", null, "UEPs of ", "Voronoi of "};
    private static final int NO_POINT = -1; //no nearest point in array of nearest points
    private static final double MAXFINDER_TOLERANCE = 0.5; //reasonable values are 0.3 ... 0.8;
                                    //segmentation is more aggressive with smaller values
    /** Output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
    private static int outputType = BYTE_OVERWRITE;

    /** Prepare for processing; also called at the very end with argument 'final'
     *  to show any newly created output image.
     */
    public int setup (String arg, ImagePlus imp) {
        if (arg.equals("final")) {
            showOutput();
            return DONE;
        }
        this.imp = imp;
        //'arg' is processing type; default is 'EDM' (0)
        if (arg.equals("watershed")) {
            processType = WATERSHED;
            flags += KEEP_THRESHOLD;
        } else if (arg.equals("points"))
            processType = UEP;
        else if (arg.equals("voronoi"))
            processType = VORONOI;

        //output type
        if (processType != WATERSHED)           //Watershed always has output BYTE_OVERWRITE=0
            outImageType = outputType;          //otherwise use the static variable from setOutputType
        if (outImageType != BYTE_OVERWRITE)
            flags |= NO_CHANGES;

        //check image and prepare
        if (imp != null) {
            ImageProcessor ip = imp.getProcessor();
            if (!ip.isBinary()) {
                IJ.error("8-bit binary image (0 and 255) required.");
                return DONE;
            }
            ip.resetRoi();
            //processing routines assume background=0; image may be otherwise
            boolean invertedLut = imp.isInvertedLut();
            background255 = (invertedLut && Prefs.blackBackground) || (!invertedLut && !Prefs.blackBackground);
        }
        return flags;
    } //public int setup

    /** Called by the PlugInFilterRunner after setup.
     *  Asks the user in case of a stack and prepares a separate ouptut stack if required
     */

    public int showDialog (ImagePlus imp, String command, PlugInFilterRunner pfr) {
        this.pfr = pfr;
        int width = imp.getWidth();
        int height= imp.getHeight();
        //ask whether to process all slices of stack & prepare stack
        //(if required) for writing into it in parallel threads
        flags = IJ.setupDialog(imp, flags);
        if ((flags&DOES_STACKS)!=0 && outImageType!=BYTE_OVERWRITE) {
            outStack = new ImageStack(width, height, imp.getStackSize());
            maxFinder.setNPasses(imp.getStackSize());
        }
        return flags;
    } //public int showDialog

    /** Called by the PlugInFilterRunner to process the image or one frame of a stack */
    public void run (ImageProcessor ip) {
        if (interrupted) return;
        int width = ip.getWidth();
        int height = ip.getHeight();

        int backgroundValue = (processType==VORONOI) ?
                (background255 ? 0 : (byte)255) : //Voronoi needs EDM of the background
                (background255 ? (byte)255 : 0);  //all others do EDM of the foreground
        if (USES_WATERSHED[processType]) nPasses = 0; //watershed has its own progress bar
        FloatProcessor floatEdm = makeFloatEDM(ip, backgroundValue, false);

        ByteProcessor maxIp = null;
        if (USES_MAX_FINDER[processType]) {
            if (processType == VORONOI) floatEdm.multiply(-1); //Voronoi starts from minima of EDM
            int maxOutputType = USES_WATERSHED[processType] ? MaximumFinder.SEGMENTED : MaximumFinder.SINGLE_POINTS;
            boolean isEDM = processType!=VORONOI;
            maxIp = maxFinder.findMaxima(floatEdm, MAXFINDER_TOLERANCE,
                ImageProcessor.NO_THRESHOLD, maxOutputType, false, isEDM);
            if (maxIp == null) {  //segmentation cancelled by user?
                interrupted = true;
                return;
            } else if (processType != WATERSHED) {
                if (processType == VORONOI) floatEdm.multiply(-1);
                resetMasked(floatEdm, maxIp, processType == VORONOI ? -1 : 0);
            }
        }

        ImageProcessor outIp = null;
        if (processType==WATERSHED) {
            if (background255) maxIp.invert();
            ip.copyBits(maxIp, 0, 0, Blitter.COPY);
            ip.setBinaryThreshold();
        } else switch (outImageType) {          //for all these, output contains the values of the EDM
            case FLOAT:
                outIp = floatEdm;
                break;
            case SHORT:
                floatEdm.setMinAndMax(0., 65535.);
                outIp = floatEdm.convertToShort(true);
                break;
            case BYTE:
                floatEdm.setMinAndMax(0., 255.);
                outIp = floatEdm.convertToByte(true);
                break;
            case BYTE_OVERWRITE:
                ip.setPixels(0, floatEdm);
                if (floatEdm.getMax() > 255.)
                    ip.resetMinAndMax();        //otherwise we have max of floatEdm
        }

        if (outImageType != BYTE_OVERWRITE) {   //new output image
            if (outStack==null) {
                outImp = new ImagePlus(TITLE_PREFIX[processType]+imp.getShortTitle(), outIp);
            } else
                outStack.setPixels(outIp.getPixels(), pfr.getSliceNumber());
        }
    } //public void run

    /** Prepare the progress bar.
     *  Without calling it or if nPasses=0, no progress bar will be shown.
     *  @param nPasses Number of images that this EDM will process.
     */
    public void setNPasses (int nPasses) {
        this.nPasses = nPasses;
        progressDone = 0;
        if (USES_MAX_FINDER[processType]) maxFinder.setNPasses(nPasses);
    }

    /** Converts a binary image into a 8-bit grayscale Euclidean Distance Map
     *  (EDM). Each foreground (nonzero) pixel in the binary image is
     *  assigned a value equal to its distance from the nearest
     *  background (zero) pixel.
     */
    public void toEDM (ImageProcessor ip) {
        ip.setPixels(0, makeFloatEDM(ip, 0, false));
        ip.resetMinAndMax();
    }

    /** Do watershed segmentation based on the EDM of the
     *  foreground objects (nonzero pixels) in an 8-bit image.
     *  Particles are segmented by their shape; segmentation
     *  lines added are background pixels (value = 0);
     */
    public void toWatershed (ImageProcessor ip) {
        FloatProcessor floatEdm = makeFloatEDM(ip, 0, false);
        ByteProcessor maxIp = maxFinder.findMaxima(floatEdm, MAXFINDER_TOLERANCE,
                ImageProcessor.NO_THRESHOLD, MaximumFinder.SEGMENTED, false, true);
        if (maxIp != null) ip.copyBits(maxIp, 0, 0, Blitter.AND);
    }

    /** Calculates a 16-bit grayscale Euclidean Distance Map for a binary 8-bit image.
     * Each foreground (nonzero) pixel in the binary image is assigned a value equal to
     * its distance from the nearest background (zero) pixel, multiplied by EDM.ONE.
     * For compatibility with previous versions of ImageJ only.
     */
    public ShortProcessor make16bitEDM (ImageProcessor ip) {
        FloatProcessor floatEdm = makeFloatEDM(ip, 0, false);
        floatEdm.setMinAndMax(0, 65535./ONE);
        return (ShortProcessor)floatEdm.convertToShort(true);
    }

    /**
     * Creates the Euclidian Distance Map of a (binary) byte image.
     * @param ip                The input image, not modified; must be a ByteProcessor.
     * @param backgroundValue   Pixels in the input with this value are interpreted as background.
     *                          Note: for pixel value 255, write either -1 or (byte)255.
     * @param edgesAreBackground Whether out-of-image pixels are considered background
     * @return                  The EDM, containing the distances to the nearest background pixel.
     *                          Returns null if the thread is interrupted.
     */
    public FloatProcessor makeFloatEDM (ImageProcessor ip, int backgroundValue, boolean edgesAreBackground) {
        int width = ip.getWidth();
        int height = ip.getHeight();
        FloatProcessor fp = new FloatProcessor(width, height);
        byte[] bPixels = (byte[])ip.getPixels();
        float[] fPixels = (float[])fp.getPixels();
        final int progressInterval = 100;
        int nProgressUpdates = height/progressInterval;  //how often the progress bar is updated when passing once through y range
        double progressAddendum = (nProgressUpdates>0) ? 0.5/nProgressUpdates : 0;

        for (int i=0; i<width*height; i++)
            if (bPixels[i]!=backgroundValue) fPixels[i] = Float.MAX_VALUE;

        int[][] pointBufs = new int[2][width];  //two buffers for two passes; low short contains x, high short y
        int yDist = Integer.MAX_VALUE;          //this value is used only if edges are not background
        // pass 1 & 2: increasing y
        for (int x=0; x<width; x++) {
            pointBufs[0][x] = NO_POINT;
            pointBufs[1][x] = NO_POINT;
        }
        for (int y=0; y<height; y++) {
            if (edgesAreBackground) yDist = y+1; //distance to nearest background point (along y)
            edmLine(bPixels, fPixels, pointBufs, width, y*width, y, backgroundValue, yDist);
            if (y%progressInterval == 0) {
                if (Thread.currentThread().isInterrupted()) return null;
                addProgress(progressAddendum);
            }
        }
        //pass 3 & 4: decreasing y
        for (int x=0; x<width; x++) {
            pointBufs[0][x] = NO_POINT;
            pointBufs[1][x] = NO_POINT;
        }
        for (int y=height-1; y>=0; y--) {
            if (edgesAreBackground) yDist = height-y;
            edmLine(bPixels, fPixels, pointBufs, width, y*width, y, backgroundValue, yDist);
            if (y%progressInterval == 0) {
                if (Thread.currentThread().isInterrupted()) return null;
                addProgress(progressAddendum);
            }
        }

        fp.sqrt();
        return fp;
    } //public FloatProcessor makeFloatEDM

    // Handle a line; two passes: left-to-right and right-to-left
    private void edmLine(byte[] bPixels, float[] fPixels, int[][] pointBufs, int width,
            int offset, int y, int backgroundValue, int yDist) {
        int[] points = pointBufs[0];        // the buffer for the left-to-right pass
        int pPrev = NO_POINT;
        int pDiag = NO_POINT;               // point at (-/+1, -/+1) to current one (-1,-1 in the first pass)
        int pNextDiag;
        boolean edgesAreBackground = yDist != Integer.MAX_VALUE;
        int distSqr = Integer.MAX_VALUE;    // this value is used only if edges are not background
        for (int x=0; x<width; x++, offset++) {
            pNextDiag = points[x];
            if (bPixels[offset] == backgroundValue) {
                points[x] = x | y<<16;      // remember coordinates as a candidate for nearest background point
            } else {                        // foreground pixel:
                if (edgesAreBackground)
                    distSqr = (x+1 < yDist) ? (x+1)*(x+1) : yDist*yDist; //distance from edge
                float dist2 = minDist2(points, pPrev, pDiag, x, y, distSqr);
                if (fPixels[offset] > dist2) fPixels[offset] = dist2;
            }
            pPrev = points[x];
            pDiag = pNextDiag;
        }
        offset--; //now points to the last pixel in the line
        points = pointBufs[1];              // the buffer for the right-to-left pass. Low short contains x, high short y
        pPrev = NO_POINT;
        pDiag = NO_POINT;
        for (int x=width-1; x>=0; x--, offset--) {
            pNextDiag = points[x];
            if (bPixels[offset] == backgroundValue) {
                points[x] = x | y<<16;      // remember coordinates as a candidate for nearest background point
            } else {                        // foreground pixel:
                if (edgesAreBackground)
                    distSqr = (width-x < yDist) ? (width-x)*(width-x) : yDist*yDist;
                float dist2 = minDist2(points, pPrev, pDiag, x, y, distSqr);
                if (fPixels[offset] > dist2) fPixels[offset] = dist2;
            }
            pPrev = points[x];
            pDiag = pNextDiag;
        }
    } //private void edmLine

    // Calculates minimum distance^2 of x,y from the following three points:
    //  - points[x] (nearest point found for previous line, same x)
    //  - pPrev (nearest point found for same line, previous x), and
    //  - pDiag (nearest point found for diagonal, i.e., previous line, previous x)
    // Sets array element points[x] to the coordinates of the point having the minimum distance to x,y
    // If the distSqr parameter is lower than the distance^2, then distSqr is used
    // Returns to the minimum distance^2 obtained
    private float minDist2 (int[] points, int pPrev, int pDiag, int x, int y, int distSqr) {
        int p0 = points[x];              // the nearest background point for the same x in the previous line
        int nearestPoint = p0;
        if (p0 != NO_POINT) {
            int x0 = p0& 0xffff; int y0 = (p0>>16)&0xffff;
            int dist1Sqr = (x-x0)*(x-x0)+(y-y0)*(y-y0);
            if (dist1Sqr < distSqr)
                distSqr = dist1Sqr;
        }
        if (pDiag!=p0 && pDiag!=NO_POINT) {
            int x1 = pDiag&0xffff; int y1 = (pDiag>>16)&0xffff;
            int dist1Sqr = (x-x1)*(x-x1)+(y-y1)*(y-y1);
            if (dist1Sqr < distSqr) {
                nearestPoint = pDiag;
                distSqr = dist1Sqr;
            }
        }
        if (pPrev!=pDiag && pPrev!=NO_POINT) {
            int x1 = pPrev& 0xffff; int y1 = (pPrev>>16)&0xffff;
            int dist1Sqr = (x-x1)*(x-x1)+(y-y1)*(y-y1);
            if (dist1Sqr < distSqr) {
                nearestPoint = pPrev;
                distSqr = dist1Sqr;
            }
        }
        points[x] = nearestPoint;
        return (float)distSqr;
    } //private float minDist2

    // overwrite ip with floatEdm converted to bytes
    private void byteFromFloat(ImageProcessor ip, FloatProcessor floatEdm) {
        int width = ip.getWidth();
        int height = ip.getHeight();
        byte[] bPixels = (byte[])ip.getPixels();
        float[] fPixels = (float[])floatEdm.getPixels();
        for (int i=0; i<width*height; i++) {
            float v = fPixels[i];
            bPixels[i] = v<255f ? (byte)(v+0.5) : (byte)255;
        }
    }

    // set values in floatEdm to zero if pixel in mask equals 'resetOnThis'
    private void resetMasked(FloatProcessor floatEdm, ImageProcessor mask, int resetOnThis) {
        int width = mask.getWidth();
        int height = mask.getHeight();
        byte[] mPixels = (byte[])mask.getPixels();
        float[] fPixels = (float[])floatEdm.getPixels();
        for (int i=0; i<width*height; i++)
            if (mPixels[i] == resetOnThis) fPixels[i] = 0;
    }

    // at the very end - show output image (if the is a separate one)
    private void showOutput() {
        if (interrupted) return;
        if (outStack!=null) {
            outImp = new ImagePlus(TITLE_PREFIX[processType]+imp.getShortTitle(), outStack);
            int[] d = imp.getDimensions();
            outImp.setDimensions(d[2], d[3], d[4]);
            for (int i=1; i<=imp.getStackSize(); i++)
                outStack.setSliceLabel(imp.getStack().getSliceLabel(i), i);
        }
        if (outImageType != BYTE_OVERWRITE) {
            ImageProcessor ip = outImp.getProcessor();
            if (!Prefs.blackBackground) ip.invertLut();
            ip.resetMinAndMax();
            outImp.show();
        }
    }

    /** add work done in the meanwhile and show progress */
    private void addProgress(double deltaProgress) {
        if (nPasses == 0) return;
        progressDone += deltaProgress;
        IJ.showProgress(progressDone/nPasses);
    }
    
    /** Sets the output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
    public static void setOutputType(int type) {
        if (type<BYTE_OVERWRITE || type>FLOAT)
            throw new IllegalArgumentException("Invalid type: "+type);
        outputType = type;
    }

    /** Returns the current output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
    public static int getOutputType() {
        return outputType;
    }

}