1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
package ij.plugin.filter;
import ij.*;
import ij.plugin.*;
import ij.process.*;
import ij.gui.*;
/**
* This plugin implements the Euclidean Distance Map (EDM), Watershed,
* Ultimate Eroded Points and Voronoi commands in the Process/Binary submenu.
*
* - Euclidean Distance Map: The value of each pixel is the distance to the nearest
* background pixel (for background pixels, the EDM is 0)
* - Ultimate Eroded Points (UEPs) are maxima of the EDM. In the output, the points
* are assigned the EDM value, which is equal to the radius of the largest circle
* that fits into the particle, with the UEP as the center.
* - Watershed segmentation of the EDM splits particles at "necks"; starting at
* maxima of the EDM.
* - 'Voronoi' splits the image by lines of points having equal distance to the
* borders of the two nearest particles. Thus, the Voronoi cell of each particle
* includes all points that are nearer to this particle than any other particle.
* For the case of the priticles being single points, this is a Voronoi tessellation
* (also known as Dirichlet tessellation).
* In the output, the value inside the Voronoi cells is zero; the pixel values
* of the dividing lines between the cells are equal to the distance to the two
* nearest particles. This is similar to a medial axis transform of the background,
* but there are no lines in inner holes of particles.
*
* Watershed, Ultimate Eroded Points and Voronoi are handled by the MaximumFinder
* plugin applied to the EDM
* Note: These functions do not take ROIs into account.
* Setup is called with argument "" (empty string) for EDM,
* "watershed" for watershed segmentation, "points" for ultimate eroded points and
* "voronoi" for Voronoi segmentation of the background
*
* The EDM algorithm is similar to the 8SSEDT in
* F. Leymarie, M. D. Levine, in: CVGIP Image Understanding, vol. 55 (1992), pp 84-94
* http://dx.doi.org/10.1016/1049-9660(92)90008-Q
*
* The algorithm provides a fast approximation of the EDM, with the deviation from a
* full calculation being between -0.09 and 0. The algorithm is exact for distances<13.
* For d>=13, deviations from the true result can occur, but are very rare: typically
* the fraction of pixels deviating from the exact result is in the 10^-5 range, with
* most deviations between -0.03 and -0.04.
*
* Limitations:
* Maximum image diagonal for EDM: 46340 pixels (sqrt(2^31)); if the particles are
* dense enough it also works for width, height <=65534.
*
* Version 30-Apr-2008 Michael Schmid: more accurate EDM algorithm,
* 16-bit and float output possible,
* parallel processing for stacks
* Voronoi output added
*/
public class EDM implements ExtendedPlugInFilter {
/** Output type: overwrite current 8-bit image */
public static final int BYTE_OVERWRITE = 0;
/** Output type: new 8-bit image */
public static final int BYTE = 1;
/** Output type: new 16-bit image */
public static final int SHORT = 2;
/** Output type: new 32-bit image */
public static final int FLOAT = 3;
/** Unit in old make16bitEDM: this pixel value corresponds to a distance of one pixel.
* For compatibility only. */
public static final int ONE = 41;
/** In old make16bitEDM this pixel value corresponds to a pixel distance of sqrt(2) */
public static final int SQRT2 = 58; // ~ 41 * sqrt(2)
/** In old make16bitEDM this pixel value corresponds to a pixel distance of sqrt(5) */
public static final int SQRT5 = 92; // ~ 41 * sqrt(5)
private ImagePlus imp; //input
private ImagePlus outImp; //output if a new window is desired
private PlugInFilterRunner pfr; //needed to extract the stack slice if needed
private String command; //for showing status
private int outImageType; //output type; BYTE_OVERWRITE, BYTE, SHORT or FLOAT
private ImageStack outStack; //in case output should be a new stack
private int processType; //can be EDM, WATERSHED, UEP, VORONOI
private MaximumFinder maxFinder = new MaximumFinder(); //we use only one MaximumFinder (nice progress bar)
private double progressDone; //for progress bar, fraction of work done so far
private int nPasses; //for progress bar, how many images to process (sequentially or parallel threads)
private boolean interrupted; //whether watershed segmentation has been interrrupted by the user
private boolean background255; //whether background for EDM is 255, not zero
private int flags = DOES_8G | PARALLELIZE_STACKS | FINAL_PROCESSING;
//processType can be:
private static final int EDM = 0, WATERSHED = 1, UEP = 2, VORONOI = 3;
//whether MaximumFinder is needed for processType:
private static final boolean[] USES_MAX_FINDER = new boolean[] {
false, true, true, true };
//whether watershed segmentation is needed for processType:
private static final boolean[] USES_WATERSHED = new boolean[] {
false, true, false, true };
//prefixes for titles of separate output images; for each processType:
private static final String[] TITLE_PREFIX = new String[] {
"EDM of ", null, "UEPs of ", "Voronoi of "};
private static final int NO_POINT = -1; //no nearest point in array of nearest points
private static final double MAXFINDER_TOLERANCE = 0.5; //reasonable values are 0.3 ... 0.8;
//segmentation is more aggressive with smaller values
/** Output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
private static int outputType = BYTE_OVERWRITE;
/** Prepare for processing; also called at the very end with argument 'final'
* to show any newly created output image.
*/
public int setup (String arg, ImagePlus imp) {
if (arg.equals("final")) {
showOutput();
return DONE;
}
this.imp = imp;
//'arg' is processing type; default is 'EDM' (0)
if (arg.equals("watershed")) {
processType = WATERSHED;
flags += KEEP_THRESHOLD;
} else if (arg.equals("points"))
processType = UEP;
else if (arg.equals("voronoi"))
processType = VORONOI;
//output type
if (processType != WATERSHED) //Watershed always has output BYTE_OVERWRITE=0
outImageType = outputType; //otherwise use the static variable from setOutputType
if (outImageType != BYTE_OVERWRITE)
flags |= NO_CHANGES;
//check image and prepare
if (imp != null) {
ImageProcessor ip = imp.getProcessor();
if (!ip.isBinary()) {
IJ.error("8-bit binary image (0 and 255) required.");
return DONE;
}
ip.resetRoi();
//processing routines assume background=0; image may be otherwise
boolean invertedLut = imp.isInvertedLut();
background255 = (invertedLut && Prefs.blackBackground) || (!invertedLut && !Prefs.blackBackground);
}
return flags;
} //public int setup
/** Called by the PlugInFilterRunner after setup.
* Asks the user in case of a stack and prepares a separate ouptut stack if required
*/
public int showDialog (ImagePlus imp, String command, PlugInFilterRunner pfr) {
this.pfr = pfr;
int width = imp.getWidth();
int height= imp.getHeight();
//ask whether to process all slices of stack & prepare stack
//(if required) for writing into it in parallel threads
flags = IJ.setupDialog(imp, flags);
if ((flags&DOES_STACKS)!=0 && outImageType!=BYTE_OVERWRITE) {
outStack = new ImageStack(width, height, imp.getStackSize());
maxFinder.setNPasses(imp.getStackSize());
}
return flags;
} //public int showDialog
/** Called by the PlugInFilterRunner to process the image or one frame of a stack */
public void run (ImageProcessor ip) {
if (interrupted) return;
int width = ip.getWidth();
int height = ip.getHeight();
int backgroundValue = (processType==VORONOI) ?
(background255 ? 0 : (byte)255) : //Voronoi needs EDM of the background
(background255 ? (byte)255 : 0); //all others do EDM of the foreground
if (USES_WATERSHED[processType]) nPasses = 0; //watershed has its own progress bar
FloatProcessor floatEdm = makeFloatEDM(ip, backgroundValue, false);
ByteProcessor maxIp = null;
if (USES_MAX_FINDER[processType]) {
if (processType == VORONOI) floatEdm.multiply(-1); //Voronoi starts from minima of EDM
int maxOutputType = USES_WATERSHED[processType] ? MaximumFinder.SEGMENTED : MaximumFinder.SINGLE_POINTS;
boolean isEDM = processType!=VORONOI;
maxIp = maxFinder.findMaxima(floatEdm, MAXFINDER_TOLERANCE,
ImageProcessor.NO_THRESHOLD, maxOutputType, false, isEDM);
if (maxIp == null) { //segmentation cancelled by user?
interrupted = true;
return;
} else if (processType != WATERSHED) {
if (processType == VORONOI) floatEdm.multiply(-1);
resetMasked(floatEdm, maxIp, processType == VORONOI ? -1 : 0);
}
}
ImageProcessor outIp = null;
if (processType==WATERSHED) {
if (background255) maxIp.invert();
ip.copyBits(maxIp, 0, 0, Blitter.COPY);
ip.setBinaryThreshold();
} else switch (outImageType) { //for all these, output contains the values of the EDM
case FLOAT:
outIp = floatEdm;
break;
case SHORT:
floatEdm.setMinAndMax(0., 65535.);
outIp = floatEdm.convertToShort(true);
break;
case BYTE:
floatEdm.setMinAndMax(0., 255.);
outIp = floatEdm.convertToByte(true);
break;
case BYTE_OVERWRITE:
ip.setPixels(0, floatEdm);
if (floatEdm.getMax() > 255.)
ip.resetMinAndMax(); //otherwise we have max of floatEdm
}
if (outImageType != BYTE_OVERWRITE) { //new output image
if (outStack==null) {
outImp = new ImagePlus(TITLE_PREFIX[processType]+imp.getShortTitle(), outIp);
} else
outStack.setPixels(outIp.getPixels(), pfr.getSliceNumber());
}
} //public void run
/** Prepare the progress bar.
* Without calling it or if nPasses=0, no progress bar will be shown.
* @param nPasses Number of images that this EDM will process.
*/
public void setNPasses (int nPasses) {
this.nPasses = nPasses;
progressDone = 0;
if (USES_MAX_FINDER[processType]) maxFinder.setNPasses(nPasses);
}
/** Converts a binary image into a 8-bit grayscale Euclidean Distance Map
* (EDM). Each foreground (nonzero) pixel in the binary image is
* assigned a value equal to its distance from the nearest
* background (zero) pixel.
*/
public void toEDM (ImageProcessor ip) {
ip.setPixels(0, makeFloatEDM(ip, 0, false));
ip.resetMinAndMax();
}
/** Do watershed segmentation based on the EDM of the
* foreground objects (nonzero pixels) in an 8-bit image.
* Particles are segmented by their shape; segmentation
* lines added are background pixels (value = 0);
*/
public void toWatershed (ImageProcessor ip) {
FloatProcessor floatEdm = makeFloatEDM(ip, 0, false);
ByteProcessor maxIp = maxFinder.findMaxima(floatEdm, MAXFINDER_TOLERANCE,
ImageProcessor.NO_THRESHOLD, MaximumFinder.SEGMENTED, false, true);
if (maxIp != null) ip.copyBits(maxIp, 0, 0, Blitter.AND);
}
/** Calculates a 16-bit grayscale Euclidean Distance Map for a binary 8-bit image.
* Each foreground (nonzero) pixel in the binary image is assigned a value equal to
* its distance from the nearest background (zero) pixel, multiplied by EDM.ONE.
* For compatibility with previous versions of ImageJ only.
*/
public ShortProcessor make16bitEDM (ImageProcessor ip) {
FloatProcessor floatEdm = makeFloatEDM(ip, 0, false);
floatEdm.setMinAndMax(0, 65535./ONE);
return (ShortProcessor)floatEdm.convertToShort(true);
}
/**
* Creates the Euclidian Distance Map of a (binary) byte image.
* @param ip The input image, not modified; must be a ByteProcessor.
* @param backgroundValue Pixels in the input with this value are interpreted as background.
* Note: for pixel value 255, write either -1 or (byte)255.
* @param edgesAreBackground Whether out-of-image pixels are considered background
* @return The EDM, containing the distances to the nearest background pixel.
* Returns null if the thread is interrupted.
*/
public FloatProcessor makeFloatEDM (ImageProcessor ip, int backgroundValue, boolean edgesAreBackground) {
int width = ip.getWidth();
int height = ip.getHeight();
FloatProcessor fp = new FloatProcessor(width, height);
byte[] bPixels = (byte[])ip.getPixels();
float[] fPixels = (float[])fp.getPixels();
final int progressInterval = 100;
int nProgressUpdates = height/progressInterval; //how often the progress bar is updated when passing once through y range
double progressAddendum = (nProgressUpdates>0) ? 0.5/nProgressUpdates : 0;
for (int i=0; i<width*height; i++)
if (bPixels[i]!=backgroundValue) fPixels[i] = Float.MAX_VALUE;
int[][] pointBufs = new int[2][width]; //two buffers for two passes; low short contains x, high short y
int yDist = Integer.MAX_VALUE; //this value is used only if edges are not background
// pass 1 & 2: increasing y
for (int x=0; x<width; x++) {
pointBufs[0][x] = NO_POINT;
pointBufs[1][x] = NO_POINT;
}
for (int y=0; y<height; y++) {
if (edgesAreBackground) yDist = y+1; //distance to nearest background point (along y)
edmLine(bPixels, fPixels, pointBufs, width, y*width, y, backgroundValue, yDist);
if (y%progressInterval == 0) {
if (Thread.currentThread().isInterrupted()) return null;
addProgress(progressAddendum);
}
}
//pass 3 & 4: decreasing y
for (int x=0; x<width; x++) {
pointBufs[0][x] = NO_POINT;
pointBufs[1][x] = NO_POINT;
}
for (int y=height-1; y>=0; y--) {
if (edgesAreBackground) yDist = height-y;
edmLine(bPixels, fPixels, pointBufs, width, y*width, y, backgroundValue, yDist);
if (y%progressInterval == 0) {
if (Thread.currentThread().isInterrupted()) return null;
addProgress(progressAddendum);
}
}
fp.sqrt();
return fp;
} //public FloatProcessor makeFloatEDM
// Handle a line; two passes: left-to-right and right-to-left
private void edmLine(byte[] bPixels, float[] fPixels, int[][] pointBufs, int width,
int offset, int y, int backgroundValue, int yDist) {
int[] points = pointBufs[0]; // the buffer for the left-to-right pass
int pPrev = NO_POINT;
int pDiag = NO_POINT; // point at (-/+1, -/+1) to current one (-1,-1 in the first pass)
int pNextDiag;
boolean edgesAreBackground = yDist != Integer.MAX_VALUE;
int distSqr = Integer.MAX_VALUE; // this value is used only if edges are not background
for (int x=0; x<width; x++, offset++) {
pNextDiag = points[x];
if (bPixels[offset] == backgroundValue) {
points[x] = x | y<<16; // remember coordinates as a candidate for nearest background point
} else { // foreground pixel:
if (edgesAreBackground)
distSqr = (x+1 < yDist) ? (x+1)*(x+1) : yDist*yDist; //distance from edge
float dist2 = minDist2(points, pPrev, pDiag, x, y, distSqr);
if (fPixels[offset] > dist2) fPixels[offset] = dist2;
}
pPrev = points[x];
pDiag = pNextDiag;
}
offset--; //now points to the last pixel in the line
points = pointBufs[1]; // the buffer for the right-to-left pass. Low short contains x, high short y
pPrev = NO_POINT;
pDiag = NO_POINT;
for (int x=width-1; x>=0; x--, offset--) {
pNextDiag = points[x];
if (bPixels[offset] == backgroundValue) {
points[x] = x | y<<16; // remember coordinates as a candidate for nearest background point
} else { // foreground pixel:
if (edgesAreBackground)
distSqr = (width-x < yDist) ? (width-x)*(width-x) : yDist*yDist;
float dist2 = minDist2(points, pPrev, pDiag, x, y, distSqr);
if (fPixels[offset] > dist2) fPixels[offset] = dist2;
}
pPrev = points[x];
pDiag = pNextDiag;
}
} //private void edmLine
// Calculates minimum distance^2 of x,y from the following three points:
// - points[x] (nearest point found for previous line, same x)
// - pPrev (nearest point found for same line, previous x), and
// - pDiag (nearest point found for diagonal, i.e., previous line, previous x)
// Sets array element points[x] to the coordinates of the point having the minimum distance to x,y
// If the distSqr parameter is lower than the distance^2, then distSqr is used
// Returns to the minimum distance^2 obtained
private float minDist2 (int[] points, int pPrev, int pDiag, int x, int y, int distSqr) {
int p0 = points[x]; // the nearest background point for the same x in the previous line
int nearestPoint = p0;
if (p0 != NO_POINT) {
int x0 = p0& 0xffff; int y0 = (p0>>16)&0xffff;
int dist1Sqr = (x-x0)*(x-x0)+(y-y0)*(y-y0);
if (dist1Sqr < distSqr)
distSqr = dist1Sqr;
}
if (pDiag!=p0 && pDiag!=NO_POINT) {
int x1 = pDiag&0xffff; int y1 = (pDiag>>16)&0xffff;
int dist1Sqr = (x-x1)*(x-x1)+(y-y1)*(y-y1);
if (dist1Sqr < distSqr) {
nearestPoint = pDiag;
distSqr = dist1Sqr;
}
}
if (pPrev!=pDiag && pPrev!=NO_POINT) {
int x1 = pPrev& 0xffff; int y1 = (pPrev>>16)&0xffff;
int dist1Sqr = (x-x1)*(x-x1)+(y-y1)*(y-y1);
if (dist1Sqr < distSqr) {
nearestPoint = pPrev;
distSqr = dist1Sqr;
}
}
points[x] = nearestPoint;
return (float)distSqr;
} //private float minDist2
// overwrite ip with floatEdm converted to bytes
private void byteFromFloat(ImageProcessor ip, FloatProcessor floatEdm) {
int width = ip.getWidth();
int height = ip.getHeight();
byte[] bPixels = (byte[])ip.getPixels();
float[] fPixels = (float[])floatEdm.getPixels();
for (int i=0; i<width*height; i++) {
float v = fPixels[i];
bPixels[i] = v<255f ? (byte)(v+0.5) : (byte)255;
}
}
// set values in floatEdm to zero if pixel in mask equals 'resetOnThis'
private void resetMasked(FloatProcessor floatEdm, ImageProcessor mask, int resetOnThis) {
int width = mask.getWidth();
int height = mask.getHeight();
byte[] mPixels = (byte[])mask.getPixels();
float[] fPixels = (float[])floatEdm.getPixels();
for (int i=0; i<width*height; i++)
if (mPixels[i] == resetOnThis) fPixels[i] = 0;
}
// at the very end - show output image (if the is a separate one)
private void showOutput() {
if (interrupted) return;
if (outStack!=null) {
outImp = new ImagePlus(TITLE_PREFIX[processType]+imp.getShortTitle(), outStack);
int[] d = imp.getDimensions();
outImp.setDimensions(d[2], d[3], d[4]);
for (int i=1; i<=imp.getStackSize(); i++)
outStack.setSliceLabel(imp.getStack().getSliceLabel(i), i);
}
if (outImageType != BYTE_OVERWRITE) {
ImageProcessor ip = outImp.getProcessor();
if (!Prefs.blackBackground) ip.invertLut();
ip.resetMinAndMax();
outImp.show();
}
}
/** add work done in the meanwhile and show progress */
private void addProgress(double deltaProgress) {
if (nPasses == 0) return;
progressDone += deltaProgress;
IJ.showProgress(progressDone/nPasses);
}
/** Sets the output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
public static void setOutputType(int type) {
if (type<BYTE_OVERWRITE || type>FLOAT)
throw new IllegalArgumentException("Invalid type: "+type);
outputType = type;
}
/** Returns the current output type (BYTE_OVERWRITE, BYTE, SHORT or FLOAT) */
public static int getOutputType() {
return outputType;
}
}
|