File: FFT.java

package info (click to toggle)
imagej 1.52j-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,604 kB
  • sloc: java: 120,017; sh: 279; xml: 161; makefile: 6
file content (522 lines) | stat: -rw-r--r-- 15,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
package ij.plugin;
import ij.*;
import ij.process.*;
import ij.gui.*;
import ij.measure.*;
import ij.plugin.ContrastEnhancer;
import ij.measure.Calibration;
import ij.util.Tools;
import ij.plugin.frame.Recorder;
import java.awt.*;
import java.util.*;

/** 
This class implements the FFT, Inverse FFT and Redisplay Power Spectrum commands 
in the Process/FFT submenu. It is based on Arlo Reeves'	 
Pascal implementation of the Fast Hartley Transform from NIH Image 
(http://imagej.nih.gov/ij/docs/ImageFFT/). 
The Fast Hartley Transform was restricted by U.S. Patent No. 4,646,256, but was placed 
in the public domain by Stanford University in 1995 and is now freely available.

Version 2008-08-25 inverse transform: mask is always symmetrized
*/
public class FFT implements	 PlugIn, Measurements {

	static boolean displayFFT = true;
	public static boolean displayRawPS;
	public static boolean displayFHT;
	public static boolean displayComplex;
	public static String fileName;
	
	private ImagePlus imp, imp2;
	private boolean padded;
	private int originalWidth;
	private int originalHeight;
	private int stackSize = 1;
	private int slice = 1;
	private boolean doFFT;
	private boolean showOutput = true;
	
	/**
	 * Performs a forward FHT transform.
	 * @param imp  A spatial  domain image, which is not modified
	 * @return	A frequency domain version of the input image
	 * @see #filter
	 * @see #inverse
	*/
	public static ImagePlus forward(ImagePlus imp) {
		FFT fft = new FFT();
		fft.imp = imp;
		fft.showOutput = false;
		fft.run("forward");
		return fft.imp2;
	}

	/**
	 * Multiplies a Fourier domain image by a filter
	 * @param imp A frequency domain image, which is modified.
	 * @param filter  The filter, 32-bits (0-1) or 8-bits (0-255)
	 * @see #forward
	 * @see #inverse
	 * @see #filter
	*/
	public static void multiply(ImagePlus imp, ImageProcessor filter) {
		Object obj = imp.getProperty("FHT");
		FHT fht = obj!=null&&(obj instanceof FHT)?(FHT)obj:null;
		if (fht==null)
			return;
		int size = fht.getWidth();
		boolean isFloat = filter.getBitDepth()==32;
		if (!isFloat)
			filter =  filter.convertToByte(true);					
		filter = filter.resize(size, size);
		fht.swapQuadrants(filter);
		float[] fhtPixels = (float[])fht.getPixels();
		for (int i=0; i<fhtPixels.length; i++) {
			if (isFloat)
				fhtPixels[i] = fhtPixels[i]*filter.getf(i);
			else
				fhtPixels[i] = (float)(fhtPixels[i]*(filter.get(i)/255.0));
		}
		fht.swapQuadrants(filter);
		imp.setProcessor(null, fht.getPowerSpectrum());
	}
	
	/**
	 * Performs an inverse FHT transform.
	 * @param imp  A frequency domain image
	 * @return	A spatial  domain version of the input image
	 * @see #forward
	 * @see #filter
	*/
	public static ImagePlus inverse(ImagePlus imp) {
		FFT fft = new FFT();
		fft.imp = imp;
		fft.showOutput = false;
		fft.run("inverse");
		return fft.imp2;
	}

	/**
	 * Does frequency domain fitering of the speciified image
	 * @param imp The image to be filtered.
	 * @param filter  The filter, 32-bits (0-1) or 8-bits (0-255)
	 * @see #forward
	 * @see #multiply
	 * @see #inverse
	*/
	public static void filter(ImagePlus imp, ImageProcessor filter) {
		Object obj = imp.getProperty("FHT");
		FHT fht = obj!=null&&(obj instanceof FHT)?(FHT)obj:null;
		if (fht!=null) {
			FFT.multiply(imp, filter);
			return;
		}
		ImagePlus imp2 = FFT.forward(imp);
		FFT.multiply(imp2, filter);
		imp.setProcessor(FFT.inverse(imp2).getProcessor());
	}

	/** Version of filter() that accepts an ImagePlus for the filter. */
	public static void filter(ImagePlus imp, ImagePlus filter) {
		filter(imp, filter.getProcessor());
	}

	public void run(String arg) {
		if (arg.equals("options")) {
			showDialog();
			if (doFFT)
				arg="fft";
			else
				return;
		}
		if (imp==null)
			imp = IJ.getImage();
		if (arg.equals("fft") && imp.isComposite()) {
			if (!GUI.showCompositeAdvisory(imp,"FFT"))
				return;
		}
		if (arg.equals("redisplay")) {
			redisplayPowerSpectrum();
			return;
		}
		if (arg.equals("swap"))	 {
			swapQuadrants(imp.getStack());
			imp.updateAndDraw();
			return;
		}
	   if (arg.equals("inverse")) {
			if (imp.getTitle().startsWith("FHT of")) {
				doFHTInverseTransform();
				return;
			}
			if (imp.getStackSize()==2) {
				doComplexInverseTransform();
				return;
			}
		}
		ImageProcessor ip = imp.getProcessor();
		Object obj = imp.getProperty("FHT");
		FHT fht = (obj instanceof FHT)?(FHT)obj:null;
		stackSize = imp.getStackSize();
		boolean inverse;
		if (fht==null && arg.equals("inverse")) {
			IJ.error("FFT", "Frequency domain image required");
			return;
		}
		if (fht!=null) {
			inverse = true;
			imp.deleteRoi();
		} else {
			if (imp.getRoi()!=null)
				ip = ip.crop();
			fht = newFHT(ip);
			inverse = false;
		}
		if (inverse)
			doInverseTransform(fht);
		else {
			fileName = imp.getTitle();
			doForwardTransform(fht);   
		}	 
		IJ.showProgress(1.0);
		if (Recorder.record) {
			if (inverse)
   				Recorder.recordCall("imp = FFT.inverse(imp);");
   			else
   				Recorder.recordCall("imp = FFT.forward(imp); //see Help/Examples/JavaScript/FFT Filter");
   		}
	}
	
	void doInverseTransform(FHT fht) {
		fht = fht.getCopy();
		doMasking(fht);
		showStatus("Inverse transform");
		fht.inverseTransform();
		if (fht.quadrantSwapNeeded)
			fht.swapQuadrants();
		fht.resetMinAndMax();
		ImageProcessor ip2 = fht;
		if (fht.originalWidth>0) {
			fht.setRoi(0, 0, fht.originalWidth, fht.originalHeight);
			ip2 = fht.crop();
		}
		int bitDepth = fht.originalBitDepth>0?fht.originalBitDepth:imp.getBitDepth();
		if (!showOutput && bitDepth!=24)
			bitDepth = 32;
		switch (bitDepth) {
			case 8: ip2 = ip2.convertToByte(false); break;
			case 16: ip2 = ip2.convertToShort(false); break;
			case 24:
				showStatus("Setting brightness");
				if (fht.rgb==null || ip2==null) {
					IJ.error("FFT", "Unable to set brightness");
					return;
				}
				ColorProcessor rgb = (ColorProcessor)fht.rgb.duplicate();
				rgb.setBrightness((FloatProcessor)ip2);
				ip2 = rgb; 
				fht.rgb = null;
				break;
			case 32: break;
		}
		if (bitDepth!=24 && fht.originalColorModel!=null)
			ip2.setColorModel(fht.originalColorModel);
		String title = imp.getTitle();
		if (title.startsWith("FFT of "))
			title = title.substring(7, title.length());
		ImagePlus imp2 = new ImagePlus("Inverse FFT of "+title, ip2);
		imp2.setCalibration(imp.getCalibration());
		if (showOutput)
			imp2.show();
		else
			this.imp2 = imp2;
	}

	void doForwardTransform(FHT fht) {
		showStatus("Forward transform");
		fht.transform();
		showStatus("Calculating power spectrum");
		long t0 = System.currentTimeMillis();
		ImageProcessor ps = fht.getPowerSpectrum();
		if (!(displayFHT||displayComplex||displayRawPS))
			displayFFT = true;
		if (displayFFT) {
			ImagePlus imp2 = new ImagePlus("FFT of "+imp.getTitle(), ps);
			if (showOutput)
				imp2.show((System.currentTimeMillis()-t0)+" ms");
			imp2.setProperty("FHT", fht);
			imp2.setCalibration(imp.getCalibration());
			String properties = "Fast Hartley Transform\n";
			properties += "width: "+fht.originalWidth + "\n";
			properties += "height: "+fht.originalHeight + "\n";
			properties += "bitdepth: "+fht.originalBitDepth + "\n";
			imp2.setProperty("Info", properties);
			if (!showOutput)
				this.imp2 = imp2;

		}
	}
	
	FHT newFHT(ImageProcessor ip) {
		FHT fht;
		if (ip instanceof ColorProcessor) {
			showStatus("Extracting brightness");
			ImageProcessor ip2 = ((ColorProcessor)ip).getBrightness();
			fht = new FHT(pad(ip2));
			fht.rgb = (ColorProcessor)ip.duplicate(); // save so we can later update the brightness
		} else
			fht = new FHT(pad(ip));
		if (padded) {
			fht.originalWidth = originalWidth;
			fht.originalHeight = originalHeight;
		}
		int bitDepth = imp.getBitDepth();
		fht.originalBitDepth = bitDepth;
		if (bitDepth!=24)
			fht.originalColorModel = ip.getColorModel();
		return fht;
	}
	
	ImageProcessor pad(ImageProcessor ip) {
		originalWidth = ip.getWidth();
		originalHeight = ip.getHeight();
		int maxN = Math.max(originalWidth, originalHeight);
		int i = 2;
		while(i<maxN) i *= 2;
		if (i==maxN && originalWidth==originalHeight) {
			padded = false;
			return ip;
		}
		maxN = i;
		showStatus("Padding to "+ maxN + "x" + maxN);
		if (maxN>=65536) {
			IJ.error("FFT", "Padded image is too large ("+maxN+"x"+maxN+")");
			return null;
		}
		ImageStatistics stats = ImageStatistics.getStatistics(ip, MEAN, null);
		ImageProcessor ip2 = ip.createProcessor(maxN, maxN);
		ip2.setValue(stats.mean);
		ip2.fill();
		ip2.insert(ip, 0, 0);
		padded = true;
		Undo.reset();
		//new ImagePlus("padded", ip2.duplicate()).show();
		return ip2;
	}
	
	void showStatus(String msg) {
		if (stackSize>1)
			IJ.showStatus("FFT: " + slice+"/"+stackSize);
		else
			IJ.showStatus(msg);
	}
	
	void doMasking(FHT ip) {
		if (stackSize>1)
			return;
		float[] fht = (float[])ip.getPixels();
		ImageProcessor mask = imp.getProcessor();
		mask = mask.convertToByte(false);
		if (mask.getWidth()!=ip.getWidth() || mask.getHeight()!=ip.getHeight())
			return;
		ImageStatistics stats = ImageStatistics.getStatistics(mask, MIN_MAX, null);
		if (stats.histogram[0]==0 && stats.histogram[255]==0)
			return;
		boolean passMode = stats.histogram[255]!=0;
		IJ.showStatus("Masking: "+(passMode?"pass":"filter"));
		mask = mask.duplicate();
		if (passMode)
			changeValuesAndSymmetrize(mask, (byte)255, (byte)0); //0-254 become 0
		else
			changeValuesAndSymmetrize(mask, (byte)0, (byte)255); //1-255 become 255
		//long t0=System.currentTimeMillis();
		for (int i=0; i<3; i++)
			smooth(mask);
		//IJ.log("smoothing time:"+(System.currentTimeMillis()-t0));
		if (IJ.debugMode || IJ.altKeyDown())
			new ImagePlus("mask", mask.duplicate()).show();
		ip.swapQuadrants(mask);
		byte[] maskPixels = (byte[])mask.getPixels();
		for (int i=0; i<fht.length; i++) {
			fht[i] = (float)(fht[i]*(maskPixels[i]&255)/255.0);
		}
		//FloatProcessor fht2 = new FloatProcessor(mask.getWidth(),mask.getHeight(),fht,null);
		//new ImagePlus("fht", fht2.duplicate()).show();
	}

	// Change pixels not equal to v1 to the new value v2.
	// For pixels equal to v1, also the symmetry-equivalent pixel is set to v1
	// Requires a quadratic 8-bit image.
	void changeValuesAndSymmetrize(ImageProcessor ip, byte v1, byte v2) {
		byte[] pixels = (byte[])ip.getPixels();
		int n = ip.getWidth();
		for (int i=0; i<pixels.length; i++) {
			if (pixels[i] == v1) {	//pixel has been edited for pass or filter, set symmetry-equivalent
				if (i%n==0) {		//left edge
					if (i>0) pixels[n*n-i] = v1;
				} else if (i<n)		//top edge
					pixels[n-i] = v1;
				else				//no edge
					pixels[n*(n+1)-i] = v1;
			} else
				pixels[i] = v2;		//reset all other pixel values
		}
	}

	// Smooth an 8-bit square image with periodic boundary conditions
	// by averaging over 3x3 pixels
	// Requires a quadratic 8-bit image.
	static void smooth(ImageProcessor ip) {
		byte[] pixels = (byte[])ip.getPixels();
		byte[] pixels2 = (byte[])pixels.clone();
		int n = ip.getWidth();
		int[] iMinus = new int[n];	//table of previous index modulo n
		int[] iPlus = new int[n];	//table of next index modulo n
		for (int i=0; i<n; i++) {	//creating the tables in advance is faster calculating each time
			iMinus[i] = (i-1+n)%n;
			iPlus[i] = (i+1)%n;
		}
		for (int y=0; y<n; y++) {
			int offset1 = n*iMinus[y];
			int offset2 = n*y;
			int offset3 = n*iPlus[y];
			for (int x=0; x<n; x++) {
				int sum = (pixels2[offset1+iMinus[x]]&255)
						+ (pixels2[offset1+x]&255)
						+ (pixels2[offset1+iPlus[x]]&255)
						+ (pixels2[offset2+iMinus[x]]&255)
						+ (pixels2[offset2+x]&255)
						+ (pixels2[offset2+iPlus[x]]&255)
						+ (pixels2[offset3+iMinus[x]]&255)
						+ (pixels2[offset3+x]&255)
						+ (pixels2[offset3+iPlus[x]]&255);
				pixels[offset2 + x] = (byte)((sum+4)/9);
			}
		}
	}

	void redisplayPowerSpectrum() {
		FHT fht = (FHT)imp.getProperty("FHT");
		if (fht==null)
			{IJ.error("FFT", "Frequency domain image required"); return;}
		ImageProcessor ps = fht.getPowerSpectrum();
		imp.setProcessor(null, ps);
	}
	
	void swapQuadrants(ImageStack stack) {
		FHT fht = new FHT(new FloatProcessor(1, 1));
		for (int i=1; i<=stack.getSize(); i++)
			fht.swapQuadrants(stack.getProcessor(i));
	}

	void showDialog() {
		GenericDialog gd = new GenericDialog("FFT Options");
		gd.setInsets(0, 20, 0);
		gd.addMessage("Display:");
		gd.setInsets(5, 35, 0);
		gd.addCheckbox("FFT window", displayFFT);
		gd.setInsets(0, 35, 0);
		gd.addCheckbox("Raw power spectrum", displayRawPS);
		gd.setInsets(0, 35, 0);
		gd.addCheckbox("Fast Hartley Transform", displayFHT);
		gd.setInsets(0, 35, 0);
		gd.addCheckbox("Complex Fourier Transform", displayComplex);
		gd.setInsets(8, 20, 0);
		gd.addCheckbox("Do forward transform", false);
		gd.addHelp(IJ.URL+"/docs/menus/process.html#fft-options");
		gd.showDialog();
		if (gd.wasCanceled())
			return;
		displayFFT = gd.getNextBoolean();
		displayRawPS = gd.getNextBoolean();
		displayFHT = gd.getNextBoolean();
		displayComplex = gd.getNextBoolean();
		doFFT = gd.getNextBoolean();
	}
	
	void doFHTInverseTransform() {
		FHT fht = new FHT(imp.getProcessor().duplicate());
		fht.inverseTransform();
		fht.resetMinAndMax();
		String name = WindowManager.getUniqueName(imp.getTitle().substring(7));
		new ImagePlus(name, fht).show();
	}

	void doComplexInverseTransform() {
		ImageStack stack = imp.getStack();
		if (!stack.getSliceLabel(1).equals("Real"))
			return;
		int maxN = imp.getWidth();
		swapQuadrants(stack);
		float[] rein = (float[])stack.getPixels(1);
		float[] imin = (float[])stack.getPixels(2);
		float[] reout= new float[maxN*maxN];
		float[] imout = new float[maxN*maxN];
		c2c2DFFT(rein, imin, maxN, reout, imout);
		ImageStack stack2 = new ImageStack(maxN, maxN);
		swapQuadrants(stack);
		stack2.addSlice("Real", reout);
		stack2.addSlice("Imaginary", imout);
		stack2 = unpad(stack2);
		String name = WindowManager.getUniqueName(imp.getTitle().substring(10));
		ImagePlus imp2 = new ImagePlus(name, stack2);
		imp2.getProcessor().resetMinAndMax();
		imp2.show();
	}
	
	ImageStack unpad(ImageStack stack) {
		Object w = imp.getProperty("FFT width");
		Object h = imp.getProperty("FFT height");
		if (w==null || h==null) return stack;
		int width = (int)Tools.parseDouble((String)w, 0.0);
		int height = (int)Tools.parseDouble((String)h, 0.0);
		if (width==0 || height==0 || (width==stack.getWidth()&&height==stack.getHeight()))
			return stack;
		StackProcessor sp = new StackProcessor(stack, null);
		ImageStack stack2 = sp.crop(0, 0, width, height);
		return stack2;
	}
	
	/** Complex to Complex Inverse Fourier Transform
	*	Author: Joachim Wesner
	*/
	void c2c2DFFT(float[] rein, float[] imin, int maxN, float[] reout, float[] imout) {
			FHT fht = new FHT(new FloatProcessor(maxN,maxN));
			float[] fhtpixels = (float[])fht.getPixels();
			// Real part of inverse transform
			for (int iy = 0; iy < maxN; iy++)
				  cplxFHT(iy, maxN, rein, imin, false, fhtpixels);
			fht.inverseTransform();
			// Save intermediate result, so we can do a "in-place" transform
			float[] hlp = new float[maxN*maxN];
			System.arraycopy(fhtpixels, 0, hlp, 0, maxN*maxN);
			// Imaginary part of inverse transform
			for (int iy = 0; iy < maxN; iy++)
				  cplxFHT(iy, maxN, rein, imin, true, fhtpixels);
			fht.inverseTransform();
			System.arraycopy(hlp, 0, reout, 0, maxN*maxN);
			System.arraycopy(fhtpixels, 0, imout, 0, maxN*maxN);
	  }

	/** Build FHT input for equivalent inverse FFT
	*	Author: Joachim Wesner
	*/
	void cplxFHT(int row, int maxN, float[] re, float[] im, boolean reim, float[] fht) {
			int base = row*maxN;
			int offs = ((maxN-row)%maxN) * maxN;
			if (!reim) {
				  for (int c=0; c<maxN; c++) {
						int l =	 offs + (maxN-c)%maxN;
						fht[base+c] = ((re[base+c]+re[l]) - (im[base+c]-im[l]))*0.5f;
				  }
			} else {
				  for (int c=0; c<maxN; c++) {
						int l = offs + (maxN-c)%maxN;
						fht[base+c] = ((im[base+c]+im[l]) + (re[base+c]-re[l]))*0.5f;
				  }
			}
	  }

}