1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
|
package ij.plugin;
import ij.*;
import ij.io.*;
import ij.gui.*;
import ij.process.*;
import ij.plugin.*;
import java.io.*;
import java.awt.*;
import java.awt.image.*;
import javax.imageio.ImageIO;
/** Saves the active image in GIF format, or as an animated GIF if the image is a stack. */
public class GifWriter implements PlugIn {
static int transparentIndex = Prefs.getTransparentIndex();
private boolean showErrors = true;
private String error;
/** Saves the specified image in GIF format or as an animated GIF if the image is a stack. */
public static String save(ImagePlus imp, String path) {
if (imp==null)
imp = IJ.getImage();
if (path==null || path.length()==0)
path = SaveDialog.getPath(imp, ".gif");
if (path==null)
return null;
GifWriter gf = new GifWriter();
gf.showErrors = false;
gf.run(imp, path);
return gf.error;
}
public void run(String path) {
ImagePlus imp = IJ.getImage();
if (path==null || path.equals("")) {
SaveDialog sd = new SaveDialog("Save as Gif", imp.getTitle(), ".gif");
if (sd.getFileName()==null) return;
path = sd.getDirectory()+sd.getFileName();
}
run(imp, path);
}
private void run(ImagePlus imp, String path) {
ImageStack stack = imp.getStack();
Overlay overlay = imp.getOverlay();
int nSlices = stack.getSize();
if (nSlices==1) { // save using ImageIO
if (overlay!=null)
imp = imp.flatten();
try {
writeImage(imp, path, transparentIndex);
} catch (Exception e) {
String msg = e.getMessage();
if (msg==null || msg.equals(""))
msg = ""+e;
error = msg;
if (showErrors) {
IJ.error("GifWriter", "An error occured writing the file.\n \n" + msg);
showErrors = false;
}
}
return;
}
AnimatedGifEncoder2 ge = new AnimatedGifEncoder2();
if (!ge.setoptions())
return;
double fps = imp.getCalibration().fps;
if (fps==0.0) fps = Animator.getFrameRate();
if (fps<=0.2) fps = 0.2;
if (fps>60.0) fps = 60.0;
ge.setDelay((int)((1.0/fps)*1000.0));
if (transparentIndex!=-1) {
ge.transparent = true;
ge.transIndex = transparentIndex;
}
ge.start(path);
ImagePlus tmp = new ImagePlus();
for (int i=1; i<=nSlices; i++) {
IJ.showStatus("writing: "+i+"/"+nSlices);
IJ.showProgress((double)i/nSlices);
tmp.setProcessor(null, stack.getProcessor(i));
if (overlay!=null) {
Overlay overlay2 = overlay.duplicate();
overlay2.crop(i, i);
if (overlay2.size()>0) {
tmp.setOverlay(overlay2);
tmp = tmp.flatten();
if (imp.getBitDepth()==8)
new ImageConverter(tmp).convertRGBtoIndexedColor(256);
}
}
try {
ge.addFrame(tmp);
} catch(Exception e) {
error = ""+e;
if (showErrors) {
IJ.error("Save as Gif: "+e);
showErrors = false;
}
}
}
ge.finish();
IJ.showStatus("");
IJ.showProgress(1.0);
}
private void writeImage(ImagePlus imp, String path, int transparentIndex) throws Exception {
if (transparentIndex>=0 && transparentIndex<=255)
writeImageWithTransparency(imp, path, transparentIndex);
else
ImageIO.write(imp.getBufferedImage(), "gif", new File(path));
}
private void writeImageWithTransparency(ImagePlus imp, String path, int transparentIndex) throws Exception {
int width = imp.getWidth();
int height = imp.getHeight();
ImageProcessor ip = imp.getProcessor();
IndexColorModel cm = (IndexColorModel)ip.getColorModel();
int size = cm.getMapSize();
//IJ.log("write: "+size+" "+transparentIndex);
byte[] reds = new byte[256];
byte[] greens = new byte[256];
byte[] blues = new byte[256];
cm.getReds(reds);
cm.getGreens(greens);
cm.getBlues(blues);
cm = new IndexColorModel(8, size, reds, greens, blues, transparentIndex);
WritableRaster wr = cm.createCompatibleWritableRaster(width, height);
DataBufferByte db = (DataBufferByte)wr.getDataBuffer();
byte[] biPixels = db.getData();
System.arraycopy(ip.getPixels(), 0, biPixels, 0, biPixels.length);
BufferedImage bi = new BufferedImage(cm, wr, false, null);
ImageIO.write(bi, "gif", new File(path));
}
}
/**
* Class AnimatedGifEncoder2 - Encodes a GIF file consisting of one or
* more frames.
* <pre>
*
*
* Extensively Modified for ImagePlus
* Extended to handle 8 bit Images with more complex Color lookup tables with transparency index
*
* Ryan Raz March 2002
* raz@rraz.ca
* Version 1.01
** Extensively Modified for ImagePlus
* Extended to handle 8 bit Images with more complex Color lookup tables with transparency index
*
* Ryan Raz March 2002
* ryan@rraz.ca
* Version 1.01 Please report any bugs
*
* Operation Manual
*
*
* 1) Load stack with 8 bit or RGB images it is possible to use the animated gif reader but because the color
* table is lost it is best to also load a separate copy of the first image in the series this will allow
* extraction of the original image color look up table (see 1below)
* 2)Check the option list to bring up the option list.
* 3)Experiment with the option list. I usually use a global color table to save space, set to do not dispose if
* each consecutive image is overlayed on the previous image.
* 4)Color table can be imported from another image or extracted from 8bit stack images or loaded as the
* first 256 RGB triplets from a RGB images, the last mode takes either a imported image or current
* stack and creates the color table from scratch.
*
*
* To do list
*
* 1) Modify existing Animated Gif reader plug in to import in 8 bit mode (currently only works in
* RGB mode. Right now the best way to alter an animated gif is to save the first image separately
* and then read the single gif and use the plugin animated reader to read the animated gif to the
* stack. Let this plugin encode the stack using the single gif's color table.
* 2) Add support for background colors easy but I have no use for them
* 3) RGB to 8 bit converter is a linear search. Needs to be replaced with sorted list and fast search. But
* this update could cause problems with some types of gifs. Easy fix get a faster computer.
* 4) Try updating NN color converter seems to be heavily weighted towards quantity of pixels.
* example:
* if there is 90% of the image covered in shades of one color or grey the 10% of other colors tend
* to be poorly represented it over fits the shades and under fits the others. Works well if the
* distribution is balanced.
* 5) Add support for all sizes of Color Look Up tables.
* 6) Re-code to be cleaner. This is my second Java program and I started with some code with too
* many global variables and I added more switches so its a bit hard to follow.
*
* Credits for the base conversion codes
* No copyright asserted on the source code of this class. May be used
* for any purpose, however, refer to the Unisys LZW patent for restrictions
* on use of the associated LZWEncoder class. Please forward any corrections
* to kweiner@fmsware.com.
*
* @author Kevin Weiner, FM Software
* @version 1.0 December 2000
*
*
* Example:
* AnimatedGifEncoder2 e = new AnimatedGifEncoder2();
* e.start(outputFileName);
* e.addFrame(image1);
* e.addFrame(image2);
* " " "
* e.finish();
* </pre>
*
*
*/
class AnimatedGifEncoder2 {
protected int width; // image size
protected int height;
protected boolean transparent = false; // transparent color if given
protected int transIndex; // transparent index in color table
protected int repeat = -1; // no repeat
protected int delay = 50; // frame delay (hundredths)
protected boolean started = false; // ready to output frames
protected OutputStream out;
protected ImagePlus image; // current frame
protected byte[] pixels; // BGR byte array from frame
protected byte[] indexedPixels; // converted frame indexed to palette
protected int colorDepth; // number of bit planes
protected byte[] colorTab; // RGB palette
protected int lctSize = 7; // local color table size (bits-1)
protected int dispose = 0; // disposal code (-1 = use default)
protected boolean closeStream = false; // close stream when finished
protected boolean firstFrame = true;
protected boolean sizeSet = false; // if false, get size from first frame
protected int sample = 2; // default sample interval for quantizer distance should be small for small icons
protected byte[] gct = null; //Global color table
protected boolean gctused = false; // Set to true to use Global color table
protected boolean autotransparent = false; // Set True if transparency index coming from image 8 bit only
protected boolean GCTextracted = false; // Set if global color table extracted from rgb image
protected boolean GCTloadedExternal = false; // Set if global color table loaded directly from external image
protected int GCTred = 0; //Transparent Color
protected int GCTgrn = 0; // green
protected int GCTbl = 0; // blue
protected int GCTcindex = 0; //index into color table
protected boolean GCTsetTransparent = false; //If true then Color table transparency index is set
protected boolean GCToverideIndex = false; //If true Transparent index is set to index with closest colors
protected boolean GCToverideColor = false; //if true Color at Transparent index is set to GCTred, GCTgrn GCTbl
/**
* Adds next GIF frame. The frame is not written immediately, but is
* actually deferred until the next frame is received so that timing
* data can be inserted. Invoking <code>finish()</code> flushes all
* frames. If <code>setSize</code> was not invoked, the size of the
* first image is used for all subsequent frames.
*
* @param im containing frame to write.
* @return true if successful.
*/
public boolean addFrame(ImagePlus image) {
if ((image == null) || !started) return false;
boolean ok = true;
try {
if (firstFrame) {
if (!sizeSet) {
// use first frame's size
setSize(image.getWidth(), image.getHeight());
}
if(gctused)
writeLSDgct(); // logical screen descriptior
if (GCTloadedExternal){ //Using external image as color table
colorTab = gct;
TransparentIndex(colorTab); //check transparency color
writePalette(); // write global color table
if (repeat >= 0)
writeNetscapeExt(); // use NS app extension to indicate reps
}
if (!gctused) {
writeLSD();
if (repeat >= 0)
writeNetscapeExt(); // use NS app extension to indicate reps
}
firstFrame = false;
}
int type = image.getType();
// If indexed byte image then format does not need changing
int k;
if ((type == 0) ||( type == 3)) //8 bit images
Process8bitCLT(image);
else if (type==4) { //4 for RGB
packrgb(image);
OverRideQuality(image.getWidth()*image.getHeight());
if (gctused && (gct == null)) { //quality should not depend on image size
analyzePixels(); // build global color table & map pixels
colorTab = gct;
TransparentIndex(colorTab); //check transparency color
writePalette(); // write global color table
if (repeat >= 0)
writeNetscapeExt(); // use NS app extension to indicate reps
} else
analyzePixels(); // build color table & map pixels
}
else throw new IllegalArgumentException("Image must be 8-bit or RGB");
TransparentIndex(colorTab); //check transparency color
writeGraphicCtrlExt(); // write graphic control extension
writeImageDesc(); // image descriptor
if(!gctused) writePalette(); // local color table
writePixels(); // encode and write pixel data
} catch (IOException e) { ok = false; }
return ok;
}
/*
Handles transparency color Index
Assumes colors and index are already checked for validity
*/
void TransparentIndex(byte[] colorTab){
if(autotransparent|| !GCTsetTransparent) return;
if(colorTab==null)throw new IllegalArgumentException("Color Table not loaded.");
int len = colorTab.length;
setTransparent(true); //Sets color tranparency flag
if (!(GCToverideColor||GCToverideIndex)){
transIndex = GCTcindex; //sets color index
return;
}
if(GCToverideIndex)
GCTcindex= findClosest(colorTab, GCTred, GCTgrn, GCTbl);
//finds index in color Table
transIndex = GCTcindex;
int pindex = 3*GCTcindex;
if (pindex>(len-3))
throw new IllegalArgumentException("Index ("+transIndex+") too large for Color Lookup table.");
colorTab[pindex++] = (byte)GCTred; //Set Color Table[transparent index] with specified color
colorTab[pindex++] = (byte)GCTgrn;
colorTab[pindex] = (byte)GCTbl;
}
String name;
public boolean setoptions() {
String[] GCTtype = {"Do not use","Load from Current Image", "Load from another Image RGB or 8 Bit",
"Use another RGB to create a new color table " };
String[] DisposalType = { "No Disposal","Do not Dispose", "Restore to Background", "Restore to previous" };
String[] TransparencyType ={"No Transparency", "Automatically Set if Available (8 bit only)", "Set to Index",
"Set to index with specified color", "Set to the index that is closest to specified color"};
int setdelay=delay*10;
int gctType=0;
int setTrans;
if (GCTloadedExternal) gctType = 2;
if (GCTextracted&&GCTloadedExternal) gctType =3;
if (gctused&&!(GCTextracted||GCTloadedExternal))gctType=1;
setTrans=1;
if (!(autotransparent||GCTsetTransparent||GCToverideIndex||GCToverideColor)) setTrans=0;
if (GCTsetTransparent&& !(GCToverideIndex||GCToverideColor)) setTrans = 2;
if (GCTsetTransparent&& GCToverideIndex && !GCToverideColor) setTrans = 4;
if (GCTsetTransparent&& !GCToverideIndex && GCToverideColor) setTrans = 3;
int red = GCTred;
int grn = GCTgrn;
int bl = GCTbl;
int cindex =GCTcindex;
setRepeat(0);
autotransparent=false; //no transparent index
GCTsetTransparent=false;
GCToverideIndex=false;
GCToverideColor=false;
setTransparent(false);
switch (setTrans) {
case 0: break;
case 1: autotransparent=true; //Set if available from image byte images only
break;
case 2: if(cindex>-1) {
GCTsetTransparent=true; //set specified index as transparent color
GCTcindex=cindex;
} else
IJ.error("Incorrect color index must have value between 0 and 255");
break;
case 3: if((cindex>-1)&&(red>-1)) { //Set transparent index with specified color
GCTsetTransparent=true;
GCToverideColor=true;
GCTcindex=cindex;
GCTred=red;
GCTgrn=grn;
GCTbl=bl;
} else
IJ.error("Incorrect colors or color index, they must have values between 0 and 255.");
break;
case 4: if(red>-1){
GCTsetTransparent=true; //Set transparent index to
GCToverideIndex=true; //index which is closest to the specified color
GCTred=red; // and replace the color at the index with
GCTgrn=grn;
GCTbl=bl;
} else
IJ.error("Incorrect colors, they must have values between 0 and 255.");
break;
default: break;
}
gctused = false; // Set to true to use Global color table
GCTextracted = false; // Set if global color table extracted from rgb image
GCTloadedExternal = false; // Set if global color table loaded directly from external image
return true;
}
/********************************************************
* Gets Color lookup Table from 8 bit image plus pointer to image
*/
void Process8bitCLT(ImagePlus image) {
colorDepth = 8;
setTransparent(false);
ByteProcessor pg = new ByteProcessor(image.getImage());
ColorModel cm = pg.getColorModel();
if (cm instanceof IndexColorModel)
indexedPixels = (byte[])(pg.getPixels());
else
throw new IllegalArgumentException("Image must be 8-bit");
IndexColorModel m = (IndexColorModel)cm;
if (autotransparent) {
transIndex = m.getTransparentPixel();
if ((transIndex > -1) && (transIndex < 256)) setTransparent(true); //Sets color flag
else transIndex =0;
}
int mapSize = m.getMapSize();
int k;
if (gctused && (gct == null)) {
gct = new byte[mapSize*3]; //Global color table needs to be intialized
for (int i = 0; i < mapSize; i++) {
k=i*3;
colorTab[k] = (byte)m.getRed(i);
colorTab[k+1] = (byte)m.getGreen(i);
colorTab[k+2] = (byte)m.getBlue(i);
}
try {
if (! GCTloadedExternal) {
colorTab = gct;
writePalette(); // write global color table
if (repeat >= 0)
writeNetscapeExt(); // use NS app extension to indicate reps
}
} catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());
}
}
if (gctused)
colorTab = gct;
else {
colorTab = new byte[mapSize*3];
for (int i = 0; i < mapSize; i++) {
k=i*3;
colorTab[k] = (byte)m.getRed(i);
colorTab[k+1] = (byte)m.getGreen(i);
colorTab[k+2] = (byte)m.getBlue(i);
}
}
m.finalize();
}
/**
* Flushes any pending data and closes output file.
* If writing to an OutputStream, the stream is not
* closed.
*/
public boolean finish() {
if (!started) return false;
boolean ok = true;
started = false;
try {
out.write(0x3b); // gif trailer
out.flush();
if (closeStream)
out.close();
} catch (IOException e) { ok = false; }
// reset for subsequent use
GCTextracted = false; // Set if global color table extracted from rgb image
GCTloadedExternal = false; // Set if global color table loaded directly from external image
transIndex = 0;
transparent = false;
gct = null; //Global color table
out = null;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true;
return ok;
}
/*
* Function to load Global Color Table from 8 bit ImagePlus
* This function has to be called before addFrame
*/
public void loadGCT8bit(ImagePlus image){
int type = image.getType();
if (!(((type == 0) ||( type == 3))&&(image!=null)))
throw new IllegalArgumentException("Color Table Image must be 8 bit");
gctused = true;
GCTloadedExternal = true;
gct = null;
Process8bitCLT(image);
}
/*
* Function to extract Global Color Table from RGB ImagePlus
* This function has to be called before addFrame
*/
public void extractGCTrgb(ImagePlus image){
if((image== null)||(4!=image.getType()))
throw new IllegalArgumentException("Color Table Image must be RGB");
packrgb(image);
gctused = true;
GCTextracted = true;
GCTloadedExternal =true;
gct = null;
OverRideQuality(image.getWidth()*image.getHeight());
analyzePixels(); // build color table
pixels = null;
}
void packrgb(ImagePlus image){
int len = image.getWidth()*image.getHeight();
ImageProcessor imp = image.getProcessor();
int[] pix = (int[]) imp.getPixels();
pixels = new byte[len*3];
//pack pixels
for(int i=0; i<len; i++){
int k=i*3;
pixels[k+2] = (byte)((pix[i] & 0xff0000)>>16); //red
pixels[k+1] = (byte)((pix[i] & 0x00ff00)>>8); //green
pixels[k] = (byte)(pix[i] & 0x0000ff); //blue
}
}
/*
* Function to use the first up to 255 elements of a RGB ImagePlus to construct
* a global color table
* This function has to be called before addFrame
*/
public void loadGCTrgb(ImagePlus image){
if((image == null)||(4!=image.getType()))
throw new IllegalArgumentException("Color Table Image must be RGB");
int len = image.getWidth()*image.getHeight();
if(len>255)len=255;
ImageProcessor imp = image.getProcessor();
int[] pix = (int[]) imp.getPixels();
gct = new byte[len*3];
//pack pixels into color Table
for(int i=0; i<len; i++){
int k=i*3;
gct[k] = (byte)((pix[i] & 0xff0000)>>16); //red
gct[k+1] = (byte)((pix[i] & 0x00ff00)>>8); //green
gct[k+2] = (byte)(pix[i] & 0x0000ff); //blue
}
gctused = true;
GCTloadedExternal = true;
}
/*
* If gct = true then a global color table is use
*
*/
public void setGCT(boolean flag){
gctused = flag;
}
/**
* Sets the delay time between each frame, or changes it
* for subsequent frames (applies to last frame added).
*
* @param ms int delay time in milliseconds
*/
public void setDelay(int ms) {
delay = Math.round(ms / 10.0f);
}
/**
* Sets the GIF frame disposal code for the last added frame
* and any subsequent frames. Default is 0 if no transparent
* color has been set, otherwise 2.
* @param code int disposal code.
*/
public void setDispose(int code) {
if (code >= 0)
dispose = code;
}
/**
* Sets frame rate in frames per second. Equivalent to
* <code>setDelay(1000/fps)</code>.
*
* @param fps float frame rate (frames per second)
*/
public void setFrameRate(float fps) {
if (fps != 0f) {
delay = Math.round(100f/fps);
}
}
/**
* Sets quality of color quantization (conversion of images
* to the maximum 256 colors allowed by the GIF specification).
* Lower values (minimum = 1) produce better colors, but slow
* processing significantly. 10 is the default, and produces
* good color mapping at reasonable speeds. Values greater
* than 20 do not yield significant improvements in speed.
*
* @param quality int greater than 0.
* @return
*/
public void setQuality(int quality) {
if (quality < 1) quality = 1;
sample = quality;
}
/**
* Set True for Global Color Table use
* This saves space in the output file but colors may not be so goodif the stack uses
* True color images
*/
public void GlobalColorTableused(boolean gtu){
gctused = gtu;
}
/**
* Sets the number of times the set of GIF frames
* should be played. Default is 1; 0 means play
* indefinitely. Must be invoked before the first
* image is added.
*
* @param iter int number of iterations.
* @return
*/
public void setRepeat(int iter) {
if (iter >= 0)
repeat = iter;
}
/**
* Sets the GIF frame size. The default size is the
* size of the first frame added if this method is
* not invoked.
*
* @param w int frame width.
* @param h int frame width.
*/
public void setSize(int w, int h) {
if (started && !firstFrame) return;
width = w;
height = h;
if (width < 1) width = 320;
if (height < 1) height = 240;
sizeSet = true;
}
/**
* Sets the transparent color for the last added frame
* and any subsequent frames.
* Since all colors are subject to modification
* in the quantization process, the color in the final
* palette for each frame closest to the given color
* becomes the transparent color for that frame.
* May be set to null to indicate no transparent color.
*
* @param c Color to be treated as transparent on display.
*/
public void setTransparent(boolean c) {
transparent = c;
}
/**
* Initiates GIF file creation on the given stream. The stream
* is not closed automatically.
*
* @param os OutputStream on which GIF images are written.
* @return false if initial write failed.
*/
public boolean start(OutputStream os) {
if (os == null) return false;
boolean ok = true;
closeStream = false;
out = os;
try {
writeString("GIF89a"); // header
} catch (IOException e) { ok = false; }
return started = ok;
}
/**
* Initiates writing of a GIF file with the specified name.
*
* @param file String containing output file name.
* @return false if open or initial write failed.
*/
public boolean start(String file) {
boolean ok = true;
try {
out = new BufferedOutputStream(new FileOutputStream(file));
ok = start(out);
closeStream = true;
} catch (IOException e) { ok = false; }
return started = ok;
}
/**
Sets Net sample size depending on image size
**/
public void OverRideQuality(int npixs){
if(npixs>100000) sample = 10;
else sample = npixs/10000;
if(sample < 1) sample = 1;
}
/**
* Analyzes image colors and creates color map.
*/
protected void analyzePixels() {
int len = pixels.length;
int nPix = len / 3;
indexedPixels = new byte[nPix];
if (gctused && (gct == null)) {
NeuQuant nq = new NeuQuant(pixels, len, sample); // initialize quantizer
colorTab = nq.process(); // create reduced palette
gct = new byte[colorTab.length];
// convert map from BGR to RGB
for (int i = 0; i < colorTab.length; i+=3) {
byte temp = colorTab[i];
colorTab[i] = colorTab[i+2];
colorTab[i+2] = temp;
gct[i] = colorTab[i];
gct[i+1] = colorTab[i+1];
gct[i+2] =colorTab[i+2];
}
if(GCTextracted){
indexedPixels= null;
return;
}
}
if (!gctused){
NeuQuant nq = new NeuQuant(pixels, len, sample); // initialize quantizer
colorTab = nq.process(); // create reduced palette
// convert map from BGR to RGB
for (int i = 0; i < colorTab.length; i+=3) {
byte temp = colorTab[i];
colorTab[i] = colorTab[i+2];
colorTab[i+2] = temp;
}
// map image pixels to new palette
int k = 0;
for (int i = 0; i < nPix; i++)
indexedPixels[i] =
(byte) nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
pixels = null;
colorDepth = 8;
lctSize = 7;
}
if(gctused){
// find closest match for all pixels This routine is not optimized real slow linear search.
colorTab = gct;
int k = 0;
int minpos;
for (int j = 0; j < nPix; j++){
int b = pixels[k++] & 0xff;
int g = pixels[k++] & 0xff;
int r = pixels[k++] & 0xff;
minpos = 0;
int dmin = 256*256*256;
int lenct = colorTab.length;
for (int i = 0; i < lenct; ) {
int dr = r - (colorTab[i++] & 0xff);
int dg = g - (colorTab[i++] & 0xff);
int db = b - (colorTab[i] & 0xff);
int d = dr*dr + dg*dg + db*db;
if (d < dmin) {
dmin = d;
minpos = i/3;
}
i++;
}//end inside for
indexedPixels[j]=(byte)minpos;
}//end for
pixels = null;
colorDepth = 8;
lctSize = 7;
} //end if
}
/**
* Returns index of palette color closest to c
*
*/
protected int findClosest(byte[] colorTab, int r, int g, int b) {
if (colorTab == null) return -1;
int minpos = 0;
int dmin = 256*256*256;
int len = colorTab.length;
for (int i = 0; i < len; ) {
int dr = r - (colorTab[i++] & 0xff);
int dg = g - (colorTab[i++] & 0xff);
int db = b - (colorTab[i] & 0xff);
int d = dr*dr + dg*dg + db*db;
if (d < dmin) {
dmin = d;
minpos = i/3;
}
i++;
}
return minpos;
}
/**
* Writes Graphic Control Extension
*/
protected void writeGraphicCtrlExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xf9); // GCE label
out.write(4); // data block size
int transp, disp;
if (!transparent) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0)
disp = dispose & 7; // user override
disp <<= 2;
// packed fields
out.write( 0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp); // 8 transparency flag
writeShort(delay); // delay x 1/100 sec
out.write(transIndex); // transparent color index
out.write(0); // block terminator
}
/**
* Writes Image Descriptor
*/
protected void writeImageDesc() throws IOException {
out.write(0x2c); // image separator
writeShort(0); // image position x,y = 0,0
writeShort(0);
writeShort(width); // image size
writeShort(height);
// packed fields
if(gctused)
out.write(0x00); //global color table
else
out.write(0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
lctSize); // size of local color table
}
/**
* Writes Logical Screen Descriptor with global color table
*/
protected void writeLSDgct() throws IOException {
// logical screen size
writeShort(width);
writeShort(height);
// packed fields
out.write((0x80 | // 1 : global color table flag = 0 (nn
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
lctSize)); // 6-8 : gct size = 0
out.write(0); // background color index
out.write(0); // pixel aspect ratio - assume 1:1
}
/**
* Writes Logical Screen Descriptor without global color table
*/
protected void writeLSD() throws IOException {
// logical screen size
writeShort(width);
writeShort(height);
// packed fields
out.write((0x00 | // 1 : global color table flag = 0 (none)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
0x00)); // 6-8 : gct size = 0
out.write(0); // background color index
out.write(0); // pixel aspect ratio - assume 1:1
}
/**
* Writes Netscape application extension to define
* repeat count.
*/
protected void writeNetscapeExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xff); // app extension label
out.write(11); // block size
writeString("NETSCAPE"+"2.0"); // app id + auth code
out.write(3); // sub-block size
out.write(1); // loop sub-block id
writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.write(0); // block terminator
}
/**
* Writes color table
*/
protected void writePalette() throws IOException {
out.write(colorTab, 0, colorTab.length);
int n = (3 * 256) - colorTab.length;
for (int i = 0; i < n; i++)
out.write(0);
}
/**
* Encodes and writes pixel data
*/
protected void writePixels() throws IOException {
LZWEncoder2 encoder =
new LZWEncoder2(width, height, indexedPixels, colorDepth);
encoder.encode(out);
}
/**
* Write 16-bit value to output stream, LSB first
*/
protected void writeShort(int value) throws IOException {
out.write(value & 0xff);
out.write((value >> 8) & 0xff);
}
/**
* Writes string to output stream
*/
protected void writeString(String s) throws IOException {
for (int i = 0; i < s.length(); i++)
out.write((byte) s.charAt(i));
}
}
//==============================================================================
// Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
// K Weiner 12/00
class LZWEncoder2 {
private static final int EOF = -1;
private int imgW, imgH;
private byte[] pixAry;
private int initCodeSize;
private int remaining;
private int curPixel;
// GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
static final int BITS = 12;
static final int HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
int n_bits; // number of bits/code
int maxbits = BITS; // user settable max # bits/code
int maxcode; // maximum code, given n_bits
int maxmaxcode = 1 << BITS; // should NEVER generate this code
int[] htab = new int[HSIZE];
int[] codetab = new int[HSIZE];
int hsize = HSIZE; // for dynamic table sizing
int free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
boolean clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
int g_init_bits;
int ClearCode;
int EOFCode;
// output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
int cur_accum = 0;
int cur_bits = 0;
int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F,
0x001F, 0x003F, 0x007F, 0x00FF,
0x01FF, 0x03FF, 0x07FF, 0x0FFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };
// Number of characters so far in this 'packet'
int a_count;
// Define the storage for the packet accumulator
byte[] accum = new byte[256];
//----------------------------------------------------------------------------
LZWEncoder2(int width, int height, byte[] pixels, int color_depth)
{
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void char_out( byte c, OutputStream outs ) throws IOException
{
accum[a_count++] = c;
if ( a_count >= 254 )
flush_char( outs );
}
// Clear out the hash table
// table clear for block compress
void cl_block( OutputStream outs ) throws IOException
{
cl_hash( hsize );
free_ent = ClearCode + 2;
clear_flg = true;
output( ClearCode, outs );
}
// reset code table
void cl_hash( int hsize )
{
for ( int i = 0; i < hsize; ++i )
htab[i] = -1;
}
void compress( int init_bits, OutputStream outs ) throws IOException
{
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE( n_bits );
ClearCode = 1 << ( init_bits - 1 );
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for ( fcode = hsize; fcode < 65536; fcode *= 2 )
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash( hsize_reg ); // clear hash table
output( ClearCode, outs );
outer_loop:
while ( (c = nextPixel()) != EOF )
{
fcode = ( c << maxbits ) + ent;
i = ( c << hshift ) ^ ent; // xor hashing
if ( htab[i] == fcode )
{
ent = codetab[i];
continue;
}
else if ( htab[i] >= 0 ) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if ( i == 0 )
disp = 1;
do
{
if ( (i -= disp) < 0 )
i += hsize_reg;
if ( htab[i] == fcode )
{
ent = codetab[i];
continue outer_loop;
}
}
while ( htab[i] >= 0 );
}
output( ent, outs );
ent = c;
if ( free_ent < maxmaxcode )
{
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
}
else
cl_block( outs );
}
// Put out the final code.
output( ent, outs );
output( EOFCode, outs );
}
//----------------------------------------------------------------------------
void encode(OutputStream os) throws IOException
{
os.write(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.write(0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
void flush_char( OutputStream outs ) throws IOException
{
if ( a_count > 0 )
{
outs.write( a_count );
outs.write( accum, 0, a_count );
a_count = 0;
}
}
final int MAXCODE( int n_bits )
{
return ( 1 << n_bits ) - 1;
}
//----------------------------------------------------------------------------
// Return the next pixel from the image
//----------------------------------------------------------------------------
private int nextPixel()
{
if (remaining == 0)
return EOF;
--remaining;
byte pix = pixAry[curPixel++];
return pix & 0xff;
}
void output( int code, OutputStream outs ) throws IOException
{
cur_accum &= masks[cur_bits];
if ( cur_bits > 0 )
cur_accum |= ( code << cur_bits );
else
cur_accum = code;
cur_bits += n_bits;
while ( cur_bits >= 8 )
{
char_out( (byte) ( cur_accum & 0xff ), outs );
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if ( free_ent > maxcode || clear_flg )
{
if ( clear_flg )
{
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
}
else
{
++n_bits;
if ( n_bits == maxbits )
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
}
if ( code == EOFCode )
{
// At EOF, write the rest of the buffer.
while ( cur_bits > 0 )
{
char_out( (byte) ( cur_accum & 0xff ), outs );
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char( outs );
}
}
}
/* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
* See "Kohonen neural networks for optimal colour quantization"
* in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
* for a discussion of the algorithm.
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal
* in this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons who receive
* copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/
// Ported to Java 12/00 K Weiner
class NeuQuant {
protected static final int netsize = 256; /* number of colours used */
/* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
protected static final int prime1 = 499;
protected static final int prime2 = 491;
protected static final int prime3 = 487;
protected static final int prime4 = 503;
protected static final int minpicturebytes = (3 * prime4);
/* minimum size for input image */
/* Program Skeleton
----------------
[select samplefac in range 1..30]
[read image from input file]
pic = (unsigned char*) malloc(3*width*height);
initnet(pic,3*width*height,samplefac);
learn();
unbiasnet();
[write output image header, using writecolourmap(f)]
inxbuild();
write output image using inxsearch(b,g,r) */
/* Network Definitions
------------------- */
protected static final int maxnetpos = (netsize - 1);
protected static final int netbiasshift = 4; /* bias for colour values */
protected static final int ncycles = 100; /* no. of learning cycles */
/* defs for freq and bias */
protected static final int intbiasshift = 16; /* bias for fractions */
protected static final int intbias = (((int) 1) << intbiasshift);
protected static final int gammashift = 10; /* gamma = 1024 */
protected static final int gamma = (((int) 1) << gammashift);
protected static final int betashift = 10;
protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
protected static final int betagamma = (intbias << (gammashift - betashift));
/* defs for decreasing radius factor */
protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
protected static final int radiusbias = (((int) 1) << radiusbiasshift);
protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
protected static final int initalpha = (((int) 1) << alphabiasshift);
protected int alphadec; /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
protected static final int radbiasshift = 8;
protected static final int radbias = (((int) 1) << radbiasshift);
protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
protected static final int alpharadbias = (((int) 1) << alpharadbshift);
/* Types and Global Variables
-------------------------- */
protected byte[] thepicture; /* the input image itself */
protected int lengthcount; /* lengthcount = H*W*3 */
protected int samplefac; /* sampling factor 1..30 */
// typedef int pixel[4]; /* BGRc */
protected int[][] network; /* the network itself - [netsize][4] */
protected int[] netindex = new int[256]; /* for network lookup - really 256 */
protected int[] bias = new int[netsize]; /* bias and freq arrays for learning */
protected int[] freq = new int[netsize];
protected int[] radpower = new int[initrad]; /* radpower for precomputation */
/* Initialise network in range (0,0,0) to (255,255,255) and set parameters
----------------------------------------------------------------------- */
public NeuQuant(byte[] thepic, int len, int sample) {
int i;
int[] p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
network = new int[netsize][];
for (i = 0; i < netsize; i++) {
network[i] = new int[4];
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
}
public byte[] colorMap() {
byte[] map = new byte[3*netsize];
int[] index = new int[netsize];
for (int i = 0; i < netsize; i++)
index[network[i][3]] = i;
int k = 0;
for (int i = 0; i < netsize; i++) {
int j = index[i];
map[k++] = (byte) (network[j][0]);
map[k++] = (byte) (network[j][1]);
map[k++] = (byte) (network[j][2]);
}
return map;
}
/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
------------------------------------------------------------------------------- */
public void inxbuild() {
int i, j, smallpos, smallval;
int[] p;
int[] q;
int previouscol, startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0]; q[0] = p[0]; p[0] = j;
j = q[1]; q[1] = p[1]; p[1] = j;
j = q[2]; q[2] = p[2]; p[2] = j;
j = q[3]; q[3] = p[3]; p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; /* really 256 */
}
/* Main Learning Loop
------------------ */
public void learn() {
int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
byte[] p;
int pix, lim;
if (lengthcount < minpicturebytes)
samplefac = 1;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
//fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
if (lengthcount < minpicturebytes)
step = 3;
else if ((lengthcount % prime1) != 0)
step = 3 * prime1;
else {
if ((lengthcount % prime2) != 0)
step = 3 * prime2;
else {
if ((lengthcount % prime3) != 0)
step = 3 * prime3;
else
step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels) {
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad != 0)
alterneigh(rad, j, b, g, r); /* alter neighbours */
pix += step;
if (pix >= lim)
pix -= lengthcount;
i++;
if (i % delta == 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
//fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
}
/* Search for BGR values 0..255 (after net is unbiased) and return colour index
---------------------------------------------------------------------------- */
public int map(int b, int g, int r) {
int i, j, dist, a, bestd;
int[] p;
int best;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd)
i = netsize; /* stop iter */
else {
i++;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd)
j = -1; /* stop iter */
else {
j--;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
}
public byte[] process() {
learn();
unbiasnet();
inxbuild();
return colorMap();
}
/* Unbias network to give byte values 0..255 and record position i to prepare for sort
----------------------------------------------------------------------------------- */
public void unbiasnet() {
int i, j;
for (i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
}
/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
--------------------------------------------------------------------------------- */
protected void alterneigh(int rad, int i, int b, int g, int r) {
int j, k, lo, hi, a, m;
int[] p;
lo = i - rad;
if (lo < -1)
lo = -1;
hi = i + rad;
if (hi > netsize)
hi = netsize;
j = i + 1;
k = i - 1;
m = 1;
while ((j < hi) || (k > lo)) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {} // prevents 1.3 miscompilation
}
if (k > lo) {
p = network[k--];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {}
}
}
}
/* Move neuron i towards biased (b,g,r) by factor alpha
---------------------------------------------------- */
protected void altersingle(int alpha, int i, int b, int g, int r) {
/* alter hit neuron */
int[] n = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
}
/* Search for biased BGR values
---------------------------- */
protected int contest(int b, int g, int r) {
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
int[] n;
bestd = ~(((int) 1) << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0)
dist = -dist;
a = n[1] - g;
if (a < 0)
a = -a;
dist += a;
a = n[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
}
//==============================================================================
// Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
// K Weiner 12/00
class LZWEncoder {
private static final int EOF = -1;
private int imgW, imgH;
private byte[] pixAry;
private int initCodeSize;
private int remaining;
private int curPixel;
// GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
static final int BITS = 12;
static final int HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
int n_bits; // number of bits/code
int maxbits = BITS; // user settable max # bits/code
int maxcode; // maximum code, given n_bits
int maxmaxcode = 1 << BITS; // should NEVER generate this code
int[] htab = new int[HSIZE];
int[] codetab = new int[HSIZE];
int hsize = HSIZE; // for dynamic table sizing
int free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
boolean clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
int g_init_bits;
int ClearCode;
int EOFCode;
// output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
int cur_accum = 0;
int cur_bits = 0;
int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F,
0x001F, 0x003F, 0x007F, 0x00FF,
0x01FF, 0x03FF, 0x07FF, 0x0FFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };
// Number of characters so far in this 'packet'
int a_count;
// Define the storage for the packet accumulator
byte[] accum = new byte[256];
//----------------------------------------------------------------------------
LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void char_out( byte c, OutputStream outs ) throws IOException
{
accum[a_count++] = c;
if ( a_count >= 254 )
flush_char( outs );
}
// Clear out the hash table
// table clear for block compress
void cl_block( OutputStream outs ) throws IOException
{
cl_hash( hsize );
free_ent = ClearCode + 2;
clear_flg = true;
output( ClearCode, outs );
}
// reset code table
void cl_hash( int hsize )
{
for ( int i = 0; i < hsize; ++i )
htab[i] = -1;
}
void compress( int init_bits, OutputStream outs ) throws IOException
{
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE( n_bits );
ClearCode = 1 << ( init_bits - 1 );
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for ( fcode = hsize; fcode < 65536; fcode *= 2 )
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash( hsize_reg ); // clear hash table
output( ClearCode, outs );
outer_loop:
while ( (c = nextPixel()) != EOF )
{
fcode = ( c << maxbits ) + ent;
i = ( c << hshift ) ^ ent; // xor hashing
if ( htab[i] == fcode )
{
ent = codetab[i];
continue;
}
else if ( htab[i] >= 0 ) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if ( i == 0 )
disp = 1;
do
{
if ( (i -= disp) < 0 )
i += hsize_reg;
if ( htab[i] == fcode )
{
ent = codetab[i];
continue outer_loop;
}
}
while ( htab[i] >= 0 );
}
output( ent, outs );
ent = c;
if ( free_ent < maxmaxcode )
{
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
}
else
cl_block( outs );
}
// Put out the final code.
output( ent, outs );
output( EOFCode, outs );
}
//----------------------------------------------------------------------------
void encode(OutputStream os) throws IOException
{
os.write(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.write(0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
void flush_char( OutputStream outs ) throws IOException
{
if ( a_count > 0 )
{
outs.write( a_count );
outs.write( accum, 0, a_count );
a_count = 0;
}
}
final int MAXCODE( int n_bits )
{
return ( 1 << n_bits ) - 1;
}
//----------------------------------------------------------------------------
// Return the next pixel from the image
//----------------------------------------------------------------------------
private int nextPixel()
{
if (remaining == 0)
return EOF;
--remaining;
byte pix = pixAry[curPixel++];
return pix & 0xff;
}
void output( int code, OutputStream outs ) throws IOException
{
cur_accum &= masks[cur_bits];
if ( cur_bits > 0 )
cur_accum |= ( code << cur_bits );
else
cur_accum = code;
cur_bits += n_bits;
while ( cur_bits >= 8 )
{
char_out( (byte) ( cur_accum & 0xff ), outs );
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if ( free_ent > maxcode || clear_flg )
{
if ( clear_flg )
{
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
}
else
{
++n_bits;
if ( n_bits == maxbits )
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
}
if ( code == EOFCode )
{
// At EOF, write the rest of the buffer.
while ( cur_bits > 0 )
{
char_out( (byte) ( cur_accum & 0xff ), outs );
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char( outs );
}
}
}
|