1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
package ij.plugin.filter;
import ij.*;
import ij.process.*;
import ij.gui.*;
import ij.measure.*;
import ij.plugin.ContrastEnhancer;
import java.awt.*;
import java.util.*;
/**
This class implements the Process/FFT/Bandpass Filter command. It is based on
Joachim Walter's FFT Filter plugin at "http://imagej.nih.gov/ij/plugins/fft-filter.html".
2001/10/29: First Version (JW)
2003/02/06: 1st bugfix (works in macros/plugins, works on stacks, overwrites image(=>filter)) (JW)
2003/07/03: integrated into ImageJ, added "Display Filter" option (WSR)
2007/03/26: 2nd bugfix (Fixed incorrect calculation of filter from structure sizes, which caused
the real structure sizes to be wrong by a factor of 0.75 to 1.5 depending on the image size.)
*/
public class FFTFilter implements PlugInFilter, Measurements {
private ImagePlus imp;
private String arg;
private static int filterIndex = 1;
private FHT fht;
private int slice;
private int stackSize = 1;
private static double filterLargeDia = 40.0;
private static double filterSmallDia = 3.0;
private static int choiceIndex = 0;
private static String[] choices = {"None","Horizontal","Vertical"};
private static String choiceDia = choices[0];
private static double toleranceDia = 5.0;
private static boolean doScalingDia = true;
private static boolean saturateDia = true;
private static boolean displayFilter;
private static boolean processStack;
public int setup(String arg, ImagePlus imp) {
this.arg = arg;
this.imp = imp;
if (imp==null)
{IJ.noImage(); return DONE;}
stackSize = imp.getStackSize();
fht = (FHT)imp.getProperty("FHT");
if (fht!=null) {
IJ.error("FFT Filter", "Spatial domain image required");
return DONE;
}
if (!showBandpassDialog(imp))
return DONE;
else
return processStack?DOES_ALL+DOES_STACKS+PARALLELIZE_STACKS:DOES_ALL;
}
public void run(ImageProcessor ip) {
slice++;
filter(ip);
}
void filter(ImageProcessor ip) {
ImageProcessor ip2 = ip;
if (ip2 instanceof ColorProcessor) {
showStatus("Extracting brightness");
ip2 = ((ColorProcessor)ip2).getBrightness();
}
Rectangle roiRect = ip2.getRoi();
int maxN = Math.max(roiRect.width, roiRect.height);
double sharpness = (100.0 - toleranceDia) / 100.0;
boolean doScaling = doScalingDia;
boolean saturate = saturateDia;
IJ.showProgress(1,20);
/* tile mirrored image to power of 2 size
first determine smallest power 2 >= 1.5 * image width/height
factor of 1.5 to avoid wrap-around effects of Fourier Trafo */
int i=2;
while(i<1.5 * maxN) i *= 2;
// Calculate the inverse of the 1/e frequencies for large and small structures.
double filterLarge = 2.0*filterLargeDia / (double)i;
double filterSmall = 2.0*filterSmallDia / (double)i;
// fit image into power of 2 size
Rectangle fitRect = new Rectangle();
fitRect.x = (int) Math.round( (i - roiRect.width) / 2.0 );
fitRect.y = (int) Math.round( (i - roiRect.height) / 2.0 );
fitRect.width = roiRect.width;
fitRect.height = roiRect.height;
// put image (ROI) into power 2 size image
// mirroring to avoid wrap around effects
showStatus("Pad to "+i+"x"+i);
ip2 = tileMirror(ip2, i, i, fitRect.x, fitRect.y);
IJ.showProgress(2,20);
// transform forward
showStatus(i+"x"+i+" forward transform");
FHT fht = new FHT(ip2);
fht.setShowProgress(false);
fht.transform();
IJ.showProgress(9,20);
//new ImagePlus("after fht",ip2.crop()).show();
// filter out large and small structures
showStatus("Filter in frequency domain");
filterLargeSmall(fht, filterLarge, filterSmall, choiceIndex, sharpness);
//new ImagePlus("filter",ip2.crop()).show();
IJ.showProgress(11,20);
// transform backward
showStatus("Inverse transform");
fht.inverseTransform();
IJ.showProgress(19,20);
//new ImagePlus("after inverse",ip2).show();
// crop to original size and do scaling if selected
showStatus("Crop and convert to original type");
fht.setRoi(fitRect);
ip2 = fht.crop();
if (doScaling) {
ImagePlus imp2 = new ImagePlus(imp.getTitle()+"-filtered", ip2);
new ContrastEnhancer().stretchHistogram(imp2, saturate?1.0:0.0);
ip2 = imp2.getProcessor();
}
// convert back to original data type
int bitDepth = imp.getBitDepth();
switch (bitDepth) {
case 8: ip2 = ip2.convertToByte(doScaling); break;
case 16: ip2 = ip2.convertToShort(doScaling); break;
case 24:
ip.snapshot();
showStatus("Setting brightness");
((ColorProcessor)ip).setBrightness((FloatProcessor)ip2);
break;
case 32: break;
}
// copy filtered image back into original image
if (bitDepth!=24) {
ip.snapshot();
ip.copyBits(ip2, roiRect.x, roiRect.y, Blitter.COPY);
}
ip.resetMinAndMax();
IJ.showProgress(20,20);
}
void showStatus(String msg) {
if (stackSize>1 && processStack)
IJ.showStatus("FFT Filter: "+slice+"/"+stackSize);
else
IJ.showStatus(msg);
}
/** Puts ImageProcessor (ROI) into a new ImageProcessor of size width x height y at position (x,y).
The image is mirrored around its edges to avoid wrap around effects of the FFT. */
public ImageProcessor tileMirror(ImageProcessor ip, int width, int height, int x, int y) {
if (IJ.debugMode) IJ.log("FFT.tileMirror: "+width+"x"+height+" "+ip);
if (x < 0 || x > (width -1) || y < 0 || y > (height -1)) {
IJ.error("Image to be tiled is out of bounds.");
return null;
}
ImageProcessor ipout = ip.createProcessor(width, height);
ImageProcessor ip2 = ip.crop();
int w2 = ip2.getWidth();
int h2 = ip2.getHeight();
//how many times does ip2 fit into ipout?
int i1 = (int) Math.ceil(x / (double) w2);
int i2 = (int) Math.ceil( (width - x) / (double) w2);
int j1 = (int) Math.ceil(y / (double) h2);
int j2 = (int) Math.ceil( (height - y) / (double) h2);
//tile
if ( (i1%2) > 0.5)
ip2.flipHorizontal();
if ( (j1%2) > 0.5)
ip2.flipVertical();
for (int i=-i1; i<i2; i += 2) {
for (int j=-j1; j<j2; j += 2) {
ipout.insert(ip2, x-i*w2, y-j*h2);
}
}
ip2.flipHorizontal();
for (int i=-i1+1; i<i2; i += 2) {
for (int j=-j1; j<j2; j += 2) {
ipout.insert(ip2, x-i*w2, y-j*h2);
}
}
ip2.flipVertical();
for (int i=-i1+1; i<i2; i += 2) {
for (int j=-j1+1; j<j2; j += 2) {
ipout.insert(ip2, x-i*w2, y-j*h2);
}
}
ip2.flipHorizontal();
for (int i=-i1; i<i2; i += 2) {
for (int j=-j1+1; j<j2; j += 2) {
ipout.insert(ip2, x-i*w2, y-j*h2);
}
}
return ipout;
}
/*
filterLarge: down to which size are large structures suppressed?
filterSmall: up to which size are small structures suppressed?
filterLarge and filterSmall are given as fraction of the image size
in the original (untransformed) image.
stripesHorVert: filter out: 0) nothing more 1) horizontal 2) vertical stripes
(i.e. frequencies with x=0 / y=0)
scaleStripes: width of the stripe filter, same unit as filterLarge
*/
void filterLargeSmall(ImageProcessor ip, double filterLarge, double filterSmall, int stripesHorVert, double scaleStripes) {
int maxN = ip.getWidth();
float[] fht = (float[])ip.getPixels();
float[] filter = new float[maxN*maxN];
for (int i=0; i<maxN*maxN; i++)
filter[i]=1f;
int row;
int backrow;
float rowFactLarge;
float rowFactSmall;
int col;
int backcol;
float factor;
float colFactLarge;
float colFactSmall;
float factStripes;
// calculate factor in exponent of Gaussian from filterLarge / filterSmall
double scaleLarge = filterLarge*filterLarge;
double scaleSmall = filterSmall*filterSmall;
scaleStripes = scaleStripes*scaleStripes;
//float FactStripes;
// loop over rows
for (int j=1; j<maxN/2; j++) {
row = j * maxN;
backrow = (maxN-j)*maxN;
rowFactLarge = (float) Math.exp(-(j*j) * scaleLarge);
rowFactSmall = (float) Math.exp(-(j*j) * scaleSmall);
// loop over columns
for (col=1; col<maxN/2; col++){
backcol = maxN-col;
colFactLarge = (float) Math.exp(- (col*col) * scaleLarge);
colFactSmall = (float) Math.exp(- (col*col) * scaleSmall);
factor = (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall;
switch (stripesHorVert) {
case 1: factor *= (1 - (float) Math.exp(- (col*col) * scaleStripes)); break;// hor stripes
case 2: factor *= (1 - (float) Math.exp(- (j*j) * scaleStripes)); // vert stripes
}
fht[col+row] *= factor;
fht[col+backrow] *= factor;
fht[backcol+row] *= factor;
fht[backcol+backrow] *= factor;
filter[col+row] *= factor;
filter[col+backrow] *= factor;
filter[backcol+row] *= factor;
filter[backcol+backrow] *= factor;
}
}
//process meeting points (maxN/2,0) , (0,maxN/2), and (maxN/2,maxN/2)
int rowmid = maxN * (maxN/2);
rowFactLarge = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleLarge);
rowFactSmall = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleSmall);
factStripes = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleStripes);
fht[maxN/2] *= (1 - rowFactLarge) * rowFactSmall; // (maxN/2,0)
fht[rowmid] *= (1 - rowFactLarge) * rowFactSmall; // (0,maxN/2)
fht[maxN/2 + rowmid] *= (1 - rowFactLarge*rowFactLarge) * rowFactSmall*rowFactSmall; // (maxN/2,maxN/2)
filter[maxN/2] *= (1 - rowFactLarge) * rowFactSmall; // (maxN/2,0)
filter[rowmid] *= (1 - rowFactLarge) * rowFactSmall; // (0,maxN/2)
filter[maxN/2 + rowmid] *= (1 - rowFactLarge*rowFactLarge) * rowFactSmall*rowFactSmall; // (maxN/2,maxN/2)
switch (stripesHorVert) {
case 1: fht[maxN/2] *= (1 - factStripes);
fht[rowmid] = 0;
fht[maxN/2 + rowmid] *= (1 - factStripes);
filter[maxN/2] *= (1 - factStripes);
filter[rowmid] = 0;
filter[maxN/2 + rowmid] *= (1 - factStripes);
break; // hor stripes
case 2: fht[maxN/2] = 0;
fht[rowmid] *= (1 - factStripes);
fht[maxN/2 + rowmid] *= (1 - factStripes);
filter[maxN/2] = 0;
filter[rowmid] *= (1 - factStripes);
filter[maxN/2 + rowmid] *= (1 - factStripes);
break; // vert stripes
}
//loop along row 0 and maxN/2
rowFactLarge = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleLarge);
rowFactSmall = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleSmall);
for (col=1; col<maxN/2; col++){
backcol = maxN-col;
colFactLarge = (float) Math.exp(- (col*col) * scaleLarge);
colFactSmall = (float) Math.exp(- (col*col) * scaleSmall);
switch (stripesHorVert) {
case 0:
fht[col] *= (1 - colFactLarge) * colFactSmall;
fht[backcol] *= (1 - colFactLarge) * colFactSmall;
fht[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall;
fht[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall;
filter[col] *= (1 - colFactLarge) * colFactSmall;
filter[backcol] *= (1 - colFactLarge) * colFactSmall;
filter[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall;
filter[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall;
break;
case 1:
factStripes = (float) Math.exp(- (col*col) * scaleStripes);
fht[col] *= (1 - colFactLarge) * colFactSmall * (1 - factStripes);
fht[backcol] *= (1 - colFactLarge) * colFactSmall * (1 - factStripes);
fht[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
fht[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
filter[col] *= (1 - colFactLarge) * colFactSmall * (1 - factStripes);
filter[backcol] *= (1 - colFactLarge) * colFactSmall * (1 - factStripes);
filter[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
filter[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
break;
case 2:
factStripes = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleStripes);
fht[col] = 0;
fht[backcol] = 0;
fht[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
fht[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
filter[col] = 0;
filter[backcol] = 0;
filter[col+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
filter[backcol+rowmid] *= (1 - colFactLarge*rowFactLarge) * colFactSmall*rowFactSmall * (1 - factStripes);
}
}
// loop along column 0 and maxN/2
colFactLarge = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleLarge);
colFactSmall = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleSmall);
for (int j=1; j<maxN/2; j++) {
row = j * maxN;
backrow = (maxN-j)*maxN;
rowFactLarge = (float) Math.exp(- (j*j) * scaleLarge);
rowFactSmall = (float) Math.exp(- (j*j) * scaleSmall);
switch (stripesHorVert) {
case 0:
fht[row] *= (1 - rowFactLarge) * rowFactSmall;
fht[backrow] *= (1 - rowFactLarge) * rowFactSmall;
fht[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall;
fht[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall;
filter[row] *= (1 - rowFactLarge) * rowFactSmall;
filter[backrow] *= (1 - rowFactLarge) * rowFactSmall;
filter[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall;
filter[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall;
break;
case 1:
factStripes = (float) Math.exp(- (maxN/2)*(maxN/2) * scaleStripes);
fht[row] = 0;
fht[backrow] = 0;
fht[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
fht[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
filter[row] = 0;
filter[backrow] = 0;
filter[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
filter[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
break;
case 2:
factStripes = (float) Math.exp(- (j*j) * scaleStripes);
fht[row] *= (1 - rowFactLarge) * rowFactSmall * (1 - factStripes);
fht[backrow] *= (1 - rowFactLarge) * rowFactSmall * (1 - factStripes);
fht[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
fht[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
filter[row] *= (1 - rowFactLarge) * rowFactSmall * (1 - factStripes);
filter[backrow] *= (1 - rowFactLarge) * rowFactSmall * (1 - factStripes);
filter[row+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
filter[backrow+maxN/2] *= (1 - rowFactLarge*colFactLarge) * rowFactSmall*colFactSmall * (1 - factStripes);
}
}
if (displayFilter && slice==1) {
FHT f = new FHT(new FloatProcessor(maxN, maxN, filter, null));
f.swapQuadrants();
new ImagePlus("Filter", f).show();
}
}
boolean showBandpassDialog(ImagePlus imp) {
if (imp.getCompositeMode()==IJ.COMPOSITE)
processStack = true;
GenericDialog gd = new GenericDialog("FFT Bandpass Filter");
gd.addNumericField("Filter_large structures down to", filterLargeDia, 0, 4, "pixels");
gd.addNumericField("Filter_small structures up to", filterSmallDia, 0, 4, "pixels");
gd.addChoice("Suppress stripes:", choices, choiceDia);
gd.addNumericField("Tolerance of direction:", toleranceDia, 0, 2, "%");
gd.addCheckbox("Autoscale after filtering", doScalingDia);
gd.addCheckbox("Saturate image when autoscaling", saturateDia);
gd.addCheckbox("Display filter", displayFilter);
if (stackSize>1)
gd.addCheckbox("Process entire stack", processStack);
gd.addHelp(IJ.URL2+"/docs/menus/process.html#fft-bandpass");
gd.showDialog();
if(gd.wasCanceled())
return false;
if(gd.invalidNumber()) {
IJ.error("Error", "Invalid input number");
return false;
}
filterLargeDia = gd.getNextNumber();
filterSmallDia = gd.getNextNumber();
choiceIndex = gd.getNextChoiceIndex();
choiceDia = choices[choiceIndex];
toleranceDia = gd.getNextNumber();
doScalingDia = gd.getNextBoolean();
saturateDia = gd.getNextBoolean();
displayFilter = gd.getNextBoolean();
if (stackSize>1)
processStack = gd.getNextBoolean();
return true;
}
}
|