1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
|
package ij.plugin.filter;
import ij.*;
import ij.gui.*;
import ij.process.*;
import ij.plugin.ContrastEnhancer;
import ij.util.ThreadUtil;
import java.awt.*;
import java.awt.event.*;
import java.util.Arrays;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
/** This plugin implements the Mean, Minimum, Maximum, Variance, Median,
* Remove Outliers, Remove NaNs and Despeckle commands.
*/
// Version 2012-07-15 M. Schmid: Fixes a bug that could cause preview not to work correctly
// Version 2012-12-23 M. Schmid: Test for inverted LUT only once (not in each slice)
// Version 2014-10-10 M. Schmid: Fixes a bug that caused Threshold=0 when calling from API
// Version 2019-07-26 M. Schmid: Nonblocking dialog enabled
// Version 2020-07-17 M. Schmid: bugfix: changing preview parameters could lead to partial filtering with different parameters.
// Uses AtomicIntegers. Top-hat filter added
public class RankFilters implements ExtendedPlugInFilter, DialogListener {
public static final int MEAN=0, MIN=1, MAX=2, VARIANCE=3, MEDIAN=4, OUTLIERS=5, DESPECKLE=6, REMOVE_NAN=7,
OPEN=8, CLOSE=9, TOP_HAT=10; //when adding a new filter, set HIGHEST_FILTER below.
public static final int BRIGHT_OUTLIERS = 0, DARK_OUTLIERS = 1;
private static final String[] outlierStrings = {"Bright","Dark"};
private static int HIGHEST_FILTER = TOP_HAT;
// Filter parameters
private int filterType;
private double radius;
private double threshold; //this and the next for 'remove outliers' only
private int whichOutliers;
private boolean lightBackground = Prefs.get("bs.background", true); //this and the next for top hat only
private boolean dontSubtract;
// Remember filter parameters for the next time
private static double[] lastRadius = new double[HIGHEST_FILTER+1]; //separate for each filter type
private static double lastThreshold = 50.;
private static int lastWhichOutliers = BRIGHT_OUTLIERS;
private static boolean lastLightBackground = false;
private static boolean lastDontSubtract = false;
//
// F u r t h e r c l a s s v a r i a b l e s
int flags = DOES_ALL|SUPPORTS_MASKING|KEEP_PREVIEW;
private ImagePlus imp;
private int nPasses = 1; // The number of passes (color channels * stack slices)
private PlugInFilterRunner pfr;
private int pass;
private boolean previewing = false;
// M u l t i t h r e a d i n g - r e l a t e d
private int numThreads = Prefs.getThreads();
// The current state of multithreaded processing is in class variables.
// Thus, stack parallelization must be done ONLY with one thread for the image
// (not using these class variables).
// Atomic objects are used to avoid caching (i.e., to ensure that always the current state of the variable is read).
private AtomicInteger highestYinCache = new AtomicInteger(Integer.MIN_VALUE); // the highest line read into the cache so far
private AtomicInteger nThreadsWaiting = new AtomicInteger(0); // number of threads waiting until they may read data
private AtomicBoolean copyingToCache = new AtomicBoolean(false); // whether a thread is currently copying data to the cache
/** OPEN, CLOSE, TOPHAT need more than one run of the underlying filter */
private boolean isMultiStepFilter(int filterType) {
return filterType>=OPEN && filterType<=TOP_HAT;
}
/** Setup of the PlugInFilter. Returns the flags specifying the capabilities and needs
* of the filter.
*
* @param arg Defines type of filter operation
* @param imp The ImagePlus to be processed
* @return Flags specifying further action of the PlugInFilterRunner
*/
public int setup(String arg, ImagePlus imp) {
this.imp = imp;
if (arg.equals("mean"))
filterType = MEAN;
else if (arg.equals("min"))
filterType = MIN;
else if (arg.equals("max"))
filterType = MAX;
else if (arg.equals("variance")) {
filterType = VARIANCE;
flags |= FINAL_PROCESSING;
} else if (arg.equals("median"))
filterType = MEDIAN;
else if (arg.equals("outliers"))
filterType = OUTLIERS;
else if (arg.equals("despeckle"))
filterType = DESPECKLE;
else if (arg.equals("tophat"))
filterType = TOP_HAT;
else if (arg.equals("nan")) {
filterType = REMOVE_NAN;
if (imp!=null && imp.getBitDepth()!=32) {
IJ.error("RankFilters","\"Remove NaNs\" requires a 32-bit image");
return DONE;
}
} else if (arg.equals("final")) { //after variance && tophat filter, adjust brightness&contrast
setDisplayRange(imp.getProcessor());
} else if (arg.equals("masks")) {
showMasks();
return DONE;
} else {
IJ.error("RankFilters","Argument missing or undefined: "+arg);
return DONE;
}
if (isMultiStepFilter(filterType) && imp!=null) { //composite filter: 'open maxima' etc:
Roi roi = imp.getRoi();
if (roi!=null && !roi.getBounds().contains(new Rectangle(imp.getWidth(), imp.getHeight())))
//Roi < image? (actually tested: NOT (Roi>=image))
flags |= SNAPSHOT; //snapshot for resetRoiBoundary, also for top-hat subtraction
}
return flags;
}
public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) {
if (filterType == DESPECKLE) {
filterType = MEDIAN;
radius = 1.0;
} else {
GenericDialog gd = GUI.newNonBlockingDialog(command,imp);
radius = lastRadius[filterType]<=0 ? 2 : lastRadius[filterType];
if (filterType!=OUTLIERS)
gd.addNumericField("Radius", radius, 1, 6, "pixels");
if (filterType==OUTLIERS) {
int digits = imp.getType()==ImagePlus.GRAY32 ? 2 : 0;
gd.addSlider("Radius:", 0.5, 25, radius, 0.5);
double maxValue = lastThreshold*2;
ImageStatistics stats = imp.getRawStatistics();
if (stats.stdDev>maxValue)
maxValue = stats.stdDev;
gd.addSlider("Threshold:", 0, maxValue, lastThreshold);
gd.addChoice("Which outliers", outlierStrings, outlierStrings[lastWhichOutliers]);
gd.addHelp(IJ.URL2+"/docs/menus/process.html#outliers");
} else if (filterType==REMOVE_NAN) {
gd.addHelp(IJ.URL2+"/docs/menus/process.html#nans");
} else if (filterType==TOP_HAT) {
gd.addCheckbox("Light Background", lastLightBackground);
gd.addCheckbox("Don't subtract (grayscale open)", lastDontSubtract);
}
gd.addPreviewCheckbox(pfr); //passing pfr makes the filter ready for preview
gd.addDialogListener(this); //the DialogItemChanged method will be called on user input
previewing = true;
gd.showDialog(); //display the dialog; preview may run now
previewing = false;
if (gd.wasCanceled()) return DONE;
IJ.register(this.getClass()); //protect static class variables (filter parameters) from garbage collection
if (Macro.getOptions() == null) { //interactive only: remember parameters entered
lastRadius[filterType] = radius;
if (filterType == OUTLIERS) {
lastThreshold = threshold;
lastWhichOutliers = whichOutliers;
} else if (filterType==TOP_HAT) {
lastLightBackground = lightBackground;
lastDontSubtract = dontSubtract;
}
}
}
this.pfr = pfr;
flags = IJ.setupDialog(imp, flags); //ask whether to process all slices of stack (if a stack)
if ((flags&DOES_STACKS)!=0) {
int size = imp.getWidth() * imp.getHeight();
Roi roi = imp.getRoi();
if (roi != null) {
Rectangle roiRect = roi.getBounds();
size = roiRect.width * roiRect.height;
}
double workToDo = size*(double)radius; //estimate computing time (arb. units)
if (filterType==MEAN || filterType==VARIANCE) workToDo *= 0.5;
else if (filterType==MEDIAN) workToDo *= radius*0.5;
if (workToDo < 1e6 && imp.getImageStackSize()>=2*numThreads) {
numThreads = 1; //for fast operations, avoid overhead of multi-threading in each image
flags |= PARALLELIZE_STACKS;
}
}
return flags;
}
public boolean dialogItemChanged(GenericDialog gd, AWTEvent e) {
radius = gd.getNextNumber();
if (filterType == OUTLIERS) {
threshold = gd.getNextNumber();
whichOutliers = gd.getNextChoiceIndex();
} else if (filterType==TOP_HAT || filterType==OPEN || filterType==CLOSE) {
lightBackground = gd.getNextBoolean();
dontSubtract = gd.getNextBoolean();
}
int maxRadius = (filterType==MEDIAN || filterType==OUTLIERS || filterType==REMOVE_NAN) ? 100 : 1000;
if (gd.invalidNumber() || radius<0 || radius>maxRadius || (filterType==OUTLIERS && threshold <0))
return false;
if (filterType == TOP_HAT) {
if (dontSubtract)
flags &= ~FINAL_PROCESSING; //grayscale open: keep display range
else
flags |= FINAL_PROCESSING; //top-hat: readjust display range
}
return true;
}
public void run(ImageProcessor ip) {
rank(ip, radius, filterType, whichOutliers, (float)threshold, lightBackground, dontSubtract);
if (IJ.escapePressed()) // interrupted by user?
ip.reset();
else if (previewing && (flags&FINAL_PROCESSING)!=0)
setDisplayRange(ip);
}
/** Filters an image by any method except 'despecle', 'remove outliers', or top-hat
* @param ip The ImageProcessor that should be filtered (all 4 types supported)
* @param radius Determines the kernel size, see Process>Filters>Show Circular Masks.
* Must not be negative. No checking is done for large values that would
* lead to excessive computing times.
* @param filterType May be MEAN, MIN, MAX, VARIANCE, or MEDIAN.
*/
public void rank(ImageProcessor ip, double radius, int filterType) {
rank(ip, radius, filterType, 0, 50f);
}
/** Filters an image by any method except 'despecle' and top-hat (for 'despeckle', use 'median' and radius=1)
* @param ip The image subject to filtering
* @param radius The kernel radius
* @param filterType as defined above; DESPECKLE is not a valid type here; use median and
* a radius of 1.0 instead
* @param whichOutliers BRIGHT_OUTLIERS or DARK_OUTLIERS for 'outliers' filter
* @param threshold Threshold for 'outliers' filter
*/
public void rank(ImageProcessor ip, double radius, int filterType, int whichOutliers, float threshold) {
rank(ip, radius, filterType, whichOutliers, threshold, false, false);
}
/** Filters an image by any method except 'despecle' (for 'despeckle', use 'median' and radius=1)
* @param ip The image subject to filtering
* @param radius The kernel radius
* @param filterType as defined above; DESPECKLE is not a valid type here; use median and
* a radius of 1.0 instead
* @param whichOutliers BRIGHT_OUTLIERS or DARK_OUTLIERS for 'outliers' filter
* @param threshold Threshold for 'outliers' filter
* @param lightBackground for top-hat background subtraction, background is light, not dark
* @param dontSubtract fpr top-hat filter, performs a grayscale open or close instead of top-hat,
* where the result of grayscale open/close is subtracted from the original.
*/
public void rank(ImageProcessor ip, double radius, int filterType, int whichOutliers, float threshold, boolean lightBackground, boolean dontSubtract) {
Rectangle roi = ip.getRoi();
ImageProcessor mask = ip.getMask();
Rectangle roi1 = null;
int[] lineRadii = makeLineRadii(radius);
boolean snapshotRequired = (filterType==TOP_HAT && !dontSubtract) ||
(isMultiStepFilter(filterType) && (roi.width!=ip.getWidth() || roi.height!=ip.getHeight()));
if (snapshotRequired && ip.getSnapshotPixels()==null)
ip.snapshot();
float minMaxOutliersSign = filterType==MIN || filterType==OPEN ? -1f : 1f; //open is minimum first
if (filterType == OUTLIERS) //sign is -1 for high outliers: compare number with minimum
minMaxOutliersSign = (ip.isInvertedLut()==(whichOutliers==DARK_OUTLIERS)) ? -1f : 1f;
if (filterType == TOP_HAT) {
boolean invertedLut = ip.isInvertedLut();
boolean invert = (invertedLut && !lightBackground) || (!invertedLut && lightBackground);
minMaxOutliersSign = invert ? 1f : -1f;
}
ImageProcessor snapIp = null;
FloatProcessor fp = null, snapFp = null;
boolean isImagePart = (roi.width<ip.getWidth()) || (roi.height<ip.getHeight());
AtomicInteger nextY = new AtomicInteger(); // becomes negative when interrupted during preview or ESC pressed
if (filterType == TOP_HAT && !dontSubtract) {
snapIp = ip.createProcessor(ip.getWidth(), ip.getHeight());
snapIp.setPixels(ip.getSnapshotPixels());
}
for (int ch=0; ch<ip.getNChannels(); ch++) {
int filterType1 = filterType;
if (isMultiStepFilter(filterType)) { //open, close, top-hat
filterType1 = (minMaxOutliersSign == -1f) ? MIN : MAX;
if (isImagePart) { //composite filters ('open maxima' etc.) need larger area in first step
int kRadius = kRadius(lineRadii);
int kHeight = kHeight(lineRadii);
Rectangle roiClone = (Rectangle)roi.clone();
roiClone.grow(kRadius, kHeight/2);
roi1 = roiClone.intersection(new Rectangle(ip.getWidth(), ip.getHeight()));
ip.setRoi(roi1);
}
}
doFiltering(ip, lineRadii, filterType1, minMaxOutliersSign, threshold, ch, nextY);
if (isMultiStepFilter(filterType)) { //open, close, top-hat
ip.setRoi(roi);
ip.setMask(mask);
if (nextY.get() < 0) break;
int filterType2 = (minMaxOutliersSign == -1f) ? MAX : MIN;
doFiltering(ip, lineRadii, filterType2, -minMaxOutliersSign, threshold, ch, nextY);
if (isImagePart)
resetRoiBoundary(ip, roi, roi1);
}
if (nextY.get() < 0) break;
if (filterType == TOP_HAT && !dontSubtract) { //top-hat filter: Subtract opened from input
float offset = 0;
if (minMaxOutliersSign == 1f && !(ip instanceof FloatProcessor))
offset = (float)ip.maxValue(); //background is maximum of possible range (255 or 65535)
fp = ip.toFloat(ch, fp);
snapFp = snapIp.toFloat(ch, snapFp);
float[] pixels = (float[])fp.getPixels();
float[] snapPixels = (float[])snapFp.getPixels();
int width = ip.getWidth();
for (int y=roi.y; y<roi.y+roi.height; y++)
for (int ix=0, p=y*width+roi.x; ix<roi.width; ix++, p++)
pixels[p] = snapPixels[p] - pixels[p] + offset;
ip.setPixels(ch, fp);
}
}
}
// Filter a grayscale image or one channel of an RGB image with several threads
// Implementation: each thread uses the same input buffer (cache), always works on the next unfiltered line
// Usually, one thread reads reads several lines into the cache, while the others are processing the data.
// 'nextY.get()' is set to a large negative number if the main thread has been interrupted (during preview) or ESC pressed.
// 'nextY' must not be a class variable because it is also used with one thread (with stack parallelization)
private void doFiltering(final ImageProcessor ip, final int[] lineRadii, final int filterType,
final float minMaxOutliersSign, final float threshold, final int colorChannel, final AtomicInteger nextY) {
Rectangle roi = ip.getRoi();
int width = ip.getWidth();
Object pixels = ip.getPixels();
int numThreads = Math.min(roi.height, this.numThreads);
if (numThreads==0)
return;
int kHeight = kHeight(lineRadii);
int kRadius = kRadius(lineRadii);
final int cacheWidth = roi.width+2*kRadius;
final int cacheHeight = kHeight + (numThreads>1 ? 2*numThreads : 0);
// 'cache' is the input buffer. Each line y in the image is mapped onto cache line y%cacheHeight
final float[] cache = new float[cacheWidth*cacheHeight];
highestYinCache.set(Math.max(roi.y-kHeight/2, 0) - 1); //this line+1 will be read into the cache first
final AtomicIntegerArray yForThread = new AtomicIntegerArray(numThreads); //threads announce here which line they currently process
for (int i=0; i<numThreads; i++)
yForThread.set(i, -1);
nextY.set(roi.y); //first thread started should begin at roi.y
Callable[] callables = new Callable[numThreads-1];
for (int i=0; i<numThreads-1; i++) {
final int threadNumber = i+1; // number 0 is reserved for main thread
callables[i] = new Callable<Void>() {
final public Void call() {
doFiltering(ip, lineRadii, cache, cacheWidth, cacheHeight,
filterType, minMaxOutliersSign, threshold, colorChannel,
yForThread, threadNumber, nextY);
return null;
}
};
}
Future[] futures = ThreadUtil.start(callables);
doFiltering(ip, lineRadii, cache, cacheWidth, cacheHeight,
filterType, minMaxOutliersSign, threshold, colorChannel,
yForThread, /*threadNumber=*/0, nextY);
ThreadUtil.joinAll(futures);
showProgress(1.0, ip instanceof ColorProcessor);
pass++;
}
// Filter a grayscale image or one channel of an RGB image using one thread
//
// Synchronization: unless a thread is waiting, we avoid the overhead of 'synchronized'
// statements. That's because a thread waiting for another one should be rare.
//
// Data handling: The area needed for processing a line is written into the array 'cache'.
// This is a stripe of sufficient width for all threads to have each thread processing one
// line, and some extra space if one thread is finished to start the next line.
// This array is padded at the edges of the image so that a surrounding with radius kRadius
// for each pixel processed is within 'cache'. Out-of-image
// pixels are set to the value of the nearest edge pixel. When adding a new line, the lines in
// 'cache' are not shifted but rather the smaller array with the start and end pointers of the
// kernel area is modified to point at the addresses for the next line.
//
// Algorithm: For mean and variance, except for very small radius, usually do not calculate the
// sum over all pixels. This sum is calculated for the first pixel of every line only. For the
// following pixels, add the new values and subtract those that are not in the sum any more.
// For min/max, also first look at the new values, use their maximum if larger than the old
// one. The look at the values not in the area any more; if it does not contain the old
// maximum, leave the maximum unchanged. Otherwise, determine the maximum inside the area.
// For outliers, calculate the median only if the pixel deviates by more than the threshold
// from any pixel in the area. Therfore min or max is calculated; this is a much faster
// operation than the median.
private void doFiltering(ImageProcessor ip, int[] lineRadii, float[] cache, int cacheWidth, int cacheHeight,
int filterType, float minMaxOutliersSign, float threshold, int colorChannel,
AtomicIntegerArray yForThread, int threadNumber, AtomicInteger nextY) {
if (nextY.get() < 0 || Thread.currentThread().isInterrupted()) return;
int width = ip.getWidth();
int height = ip.getHeight();
Rectangle roi = ip.getRoi();
int kHeight = kHeight(lineRadii);
int kRadius = kRadius(lineRadii);
int kNPoints = kNPoints(lineRadii);
int xmin = roi.x - kRadius;
int xmax = roi.x + roi.width + kRadius;
int[]cachePointers = makeCachePointers(lineRadii, cacheWidth);
int padLeft = xmin<0 ? -xmin : 0;
int padRight = xmax>width? xmax-width : 0;
int xminInside = xmin>0 ? xmin : 0;
int xmaxInside = xmax<width ? xmax : width;
int widthInside = xmaxInside - xminInside;
boolean minOrMax = filterType == MIN || filterType == MAX;
boolean minOrMaxOrOutliers = minOrMax || filterType == OUTLIERS;
boolean sumFilter = filterType == MEAN || filterType == VARIANCE;
boolean medianFilter = filterType == MEDIAN || filterType == OUTLIERS;
double[] sums = sumFilter ? new double[2] : null;
float[] medianBuf1 = (medianFilter||filterType==REMOVE_NAN) ? new float[kNPoints] : null;
float[] medianBuf2 = (medianFilter||filterType==REMOVE_NAN) ? new float[kNPoints] : null;
boolean smallKernel = kRadius < 2;
Object pixels = ip.getPixels();
boolean isFloat = pixels instanceof float[];
float maxValue = isFloat ? Float.NaN : (float)ip.maxValue();
float[] values = isFloat ? (float[])pixels : new float[roi.width];
int numThreads = yForThread.length();
long lastTime = System.currentTimeMillis();
int previousY = kHeight/2-cacheHeight;
boolean rgb = ip instanceof ColorProcessor;
while (true) {
int y = nextY.getAndIncrement(); // y of the next line that needs processing
if (y >= 0)
yForThread.set(threadNumber, y);
//IJ.log("thread "+threadNumber+" @y="+y+" needs"+(y-kHeight/2)+"-"+(y+kHeight/2)+" highestYinC="+highestYinCache.get());
boolean threadFinished = y >= roi.y+roi.height || y < 0; // y<0 if aborted
if (numThreads>1 && (nThreadsWaiting.get()>0 || threadFinished)) // 'if' is not synchronized to avoid overhead
//If nThreadsWaiting gets incremented to 1 after the 'if' by another thread, there will be no notifyAll.
//This is not an issue since the the other thread rechecking for a slow thread (synchronized, ~30 lines below)
//will not see the current thread being slow any more, so that other thread will not wait.
synchronized(this) {
notifyAll(); // we may have blocked another thread
//IJ.log("thread "+threadNumber+" @y="+y+" notifying");
}
if (threadFinished)
return; // all done, break the loop
if (threadNumber==0) { // main thread checks for abort and ProgressBar
long time = System.currentTimeMillis();
if (time-lastTime>100) {
lastTime = time;
showProgress((y-roi.y)/(double)(roi.height), rgb);
if (Thread.currentThread().isInterrupted() || (imp!= null && IJ.escapePressed())) {
nextY.set(Integer.MIN_VALUE);
synchronized(this) {notifyAll();}
return;
}
}
}
for (int i=0; i<cachePointers.length; i++) //shift kernel pointers to new line
cachePointers[i] = (cachePointers[i] + cacheWidth*(y-previousY))%cache.length;
previousY = y;
if (numThreads>1) { // thread synchronization
int slowestThreadY = arrayMinNonNegative(yForThread); // non-synchronized check to avoid overhead
if (y - slowestThreadY + kHeight > cacheHeight) { // we would overwrite data needed by another thread
nThreadsWaiting.incrementAndGet();
synchronized(this) {
slowestThreadY = arrayMinNonNegative(yForThread); //recheck whether we have to wait
if (y - slowestThreadY + kHeight > cacheHeight) {
do {
//notifyAll(); // avoid deadlock: wake up others waiting
//IJ.log("Thread "+threadNumber+" waiting @y="+y+" slowest@y="+slowestThreadY);
try {
wait();
if (nextY.get() < 0) return;
} catch (InterruptedException e) {
nextY.set(Integer.MIN_VALUE);
notifyAll();
Thread.currentThread().interrupt(); //keep interrupted status (PlugInFilterRunner needs it)
return;
}
slowestThreadY = arrayMinNonNegative(yForThread);
} while (y - slowestThreadY + kHeight > cacheHeight);
} //if
}
nThreadsWaiting.decrementAndGet();
}
}
if (numThreads==1) { // R E A D
int yStartReading = y==roi.y ? Math.max(roi.y-kHeight/2, 0) : y+kHeight/2;
for (int yNew = yStartReading; yNew<=y+kHeight/2; yNew++) { //only 1 line except at start
readLineToCacheOrPad(pixels, width, height, roi.y, xminInside, widthInside,
cache, cacheWidth, cacheHeight, padLeft, padRight, colorChannel, kHeight, yNew);
}
} else { // if no other thread is copying or if the own thread needs the data
if (!copyingToCache.get() || highestYinCache.get() < y+kHeight/2) synchronized(cache) {
copyingToCache.set(true); // copy as many new line(s) as possible into the cache
while (highestYinCache.get() < arrayMinNonNegative(yForThread) - kHeight/2 + cacheHeight - 1) {
int yNew = highestYinCache.get() + 1;
readLineToCacheOrPad(pixels, width, height, roi.y, xminInside, widthInside,
cache, cacheWidth, cacheHeight, padLeft, padRight, colorChannel, kHeight, yNew);
highestYinCache.set(yNew);
}
copyingToCache.set(false);
}
}
int cacheLineP = cacheWidth * (y % cacheHeight) + kRadius; //points to pixel (roi.x, y)
filterLine(values, width, cache, cachePointers, kNPoints, cacheLineP, roi, y, // F I L T E R
sums, medianBuf1, medianBuf2, minMaxOutliersSign, maxValue, isFloat, filterType,
smallKernel, sumFilter, minOrMax, minOrMaxOrOutliers, threshold);
if (!isFloat) //Float images: data are written already during 'filterLine'
writeLineToPixels(values, pixels, roi.x+y*width, roi.width, colorChannel); // W R I T E
//IJ.log("thread "+threadNumber+" @y="+y+" line done");
} // while (true); loop over y (lines)
}
//returns the minimum of the array, which may be modified concurrently, but not less than 0
private int arrayMinNonNegative(AtomicIntegerArray array) {
int min = Integer.MAX_VALUE;
for (int i=0; i<array.length(); i++) {
int v = array.get(i);
if (v < min) min = v;
}
return min<0 ? 0 : min;
}
private void filterLine(float[] values, int width, float[] cache, int[] cachePointers, int kNPoints, int cacheLineP, Rectangle roi, int y,
double[] sums, float[] medianBuf1, float[] medianBuf2, float minMaxOutliersSign, float maxValue, boolean isFloat, int filterType,
boolean smallKernel, boolean sumFilter, boolean minOrMax, boolean minOrMaxOrOutliers, float threshold) {
int valuesP = isFloat ? roi.x+y*width : 0;
float max = 0f;
float median = Float.isNaN(cache[cacheLineP]) ? 0 : cache[cacheLineP]; // a first guess
boolean fullCalculation = true;
for (int x=0; x<roi.width; x++, valuesP++) { // x is with respect to roi.x
if (fullCalculation) {
fullCalculation = smallKernel; //for small kernel, always use the full area, not incremental algorithm
if (minOrMaxOrOutliers)
max = getAreaMax(cache, x, cachePointers, 0, -Float.MAX_VALUE, minMaxOutliersSign);
if (minOrMax) {
values[valuesP] = max*minMaxOutliersSign;
continue;
}
else if (sumFilter)
getAreaSums(cache, x, cachePointers, sums);
} else {
if (minOrMaxOrOutliers) {
float newPointsMax = getSideMax(cache, x, cachePointers, true, minMaxOutliersSign);
if (newPointsMax >= max) { //compare with previous maximum 'max'
max = newPointsMax;
} else {
float removedPointsMax = getSideMax(cache, x, cachePointers, false, minMaxOutliersSign);
if (removedPointsMax >= max)
max = getAreaMax(cache, x, cachePointers, 1, newPointsMax, minMaxOutliersSign);
}
if (minOrMax) {
values[valuesP] = max*minMaxOutliersSign;
continue;
}
} else if (sumFilter) {
addSideSums(cache, x, cachePointers, sums);
if (Double.isNaN(sums[0])) //avoid perpetuating NaNs into remaining line
fullCalculation = true;
}
}
if (sumFilter) {
if (filterType == MEAN)
values[valuesP] = (float)(sums[0]/kNPoints);
else {// Variance: sum of squares - square of sums
float value = (float)((sums[1] - sums[0]*sums[0]/kNPoints)/kNPoints);
if (value>maxValue) value = maxValue;
if (value < 0) value = 0; // numeric noise can cause values < 0
values[valuesP] = value;
}
} else if (filterType == MEDIAN) {
if (isFloat) {
median = Float.isNaN(values[valuesP]) ? Float.NaN : values[valuesP]; // a first guess
median = getNaNAwareMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
} else
median = getMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
values[valuesP] = median;
} else if (filterType == OUTLIERS) {
float v = cache[cacheLineP+x];
if (v*minMaxOutliersSign+threshold < max) { //for low outliers: median can't be higher than max (minMaxOutliersSign is +1)
median = getMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
if (v*minMaxOutliersSign+threshold < median*minMaxOutliersSign)
v = median; //beyond threshold (below if minMaxOutliersSign=+1), replace outlier by median
}
values[valuesP] = v;
} else if (filterType == REMOVE_NAN) { //float only; then 'values' is pixels array
if (Float.isNaN(values[valuesP]))
values[valuesP] = getNaNAwareMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
else
median = values[valuesP]; //initial guess for the next point
}
} // for x
}
/** Read a line into the cache (including padding in x).
* If y>=height, instead of reading new data, it duplicates the line y=height-1.
* If y==0, it also creates the data for y<0, as far as necessary, thus filling the cache with
* more than one line (padding by duplicating the y=0 row).
*/
private static void readLineToCacheOrPad(Object pixels, int width, int height, int roiY, int xminInside, int widthInside,
float[]cache, int cacheWidth, int cacheHeight, int padLeft, int padRight, int colorChannel,
int kHeight, int y) {
int lineInCache = y%cacheHeight;
if (y < height) {
readLineToCache(pixels, y*width, xminInside, widthInside,
cache, lineInCache*cacheWidth, padLeft, padRight, colorChannel);
if (y==0) for (int prevY = roiY-kHeight/2; prevY<0; prevY++) { //for y<0, pad with y=0 border pixels
int prevLineInCache = cacheHeight+prevY;
System.arraycopy(cache, 0, cache, prevLineInCache*cacheWidth, cacheWidth);
}
} else
System.arraycopy(cache, cacheWidth*((height-1)%cacheHeight), cache, lineInCache*cacheWidth, cacheWidth);
}
/** Read a line into the cache (includes conversion to flaot). Pad with edge pixels in x if necessary */
private static void readLineToCache(Object pixels, int pixelLineP, int xminInside, int widthInside,
float[] cache, int cacheLineP, int padLeft, int padRight, int colorChannel) {
if (pixels instanceof byte[]) {
byte[] bPixels = (byte[])pixels;
for (int pp=pixelLineP+xminInside, cp=cacheLineP+padLeft; pp<pixelLineP+xminInside+widthInside; pp++,cp++)
cache[cp] = bPixels[pp]&0xff;
} else if (pixels instanceof short[]){
short[] sPixels = (short[])pixels;
for (int pp=pixelLineP+xminInside, cp=cacheLineP+padLeft; pp<pixelLineP+xminInside+widthInside; pp++,cp++)
cache[cp] = sPixels[pp]&0xffff;
} else if (pixels instanceof float[]) {
System.arraycopy(pixels, pixelLineP+xminInside, cache, cacheLineP+padLeft, widthInside);
} else { //RGB
int[] cPixels = (int[])pixels;
int shift = 16 - 8*colorChannel;
int byteMask = 255<<shift;
for (int pp=pixelLineP+xminInside, cp=cacheLineP+padLeft; pp<pixelLineP+xminInside+widthInside; pp++,cp++)
cache[cp] = (cPixels[pp]&byteMask)>>shift;
}
for (int cp=cacheLineP; cp<cacheLineP+padLeft; cp++)
cache[cp] = cache[cacheLineP+padLeft];
for (int cp=cacheLineP+padLeft+widthInside; cp<cacheLineP+padLeft+widthInside+padRight; cp++)
cache[cp] = cache[cacheLineP+padLeft+widthInside-1];
}
/** Write a line to pixels arrax, converting from float (not for float data!)
* No checking for overflow/underflow
*/
private static void writeLineToPixels(float[] values, Object pixels, int pixelP, int length, int colorChannel) {
if (pixels instanceof byte[]) {
byte[] bPixels = (byte[])pixels;
for (int i=0, p=pixelP; i<length; i++,p++)
bPixels[p] = (byte)(((int)(values[i] + 0.5f))&0xff);
} else if (pixels instanceof short[]) {
short[] sPixels = (short[])pixels;
for (int i=0, p=pixelP; i<length; i++,p++)
sPixels[p] = (short)(((int)(values[i] + 0.5f))&0xffff);
} else { //RGB
int[] cPixels = (int[])pixels;
int shift = 16 - 8*colorChannel;
int resetMask = 0xffffffff^(0xff<<shift);
for (int i=0, p=pixelP; i<length; i++,p++)
cPixels[p] = (cPixels[p]&resetMask) | (((int)(values[i] + 0.5f))<<shift);
}
}
/** Get max (or -min if sign=-1) within the kernel area.
* @param x between 0 and cacheWidth-1
* @param ignoreRight should be 0 for analyzing all data or 1 for leaving out the row at the right
* @param max should be -Float.MAX_VALUE or the smallest value the maximum can be */
private static float getAreaMax(float[] cache, int xCache0, int[] kernel, int ignoreRight, float max, float sign) {
for (int kk=0; kk<kernel.length; kk++) { // y within the cache stripe (we have 2 kernel pointers per cache line)
for (int p=kernel[kk++]+xCache0; p<=kernel[kk]+xCache0-ignoreRight; p++) {
float v = cache[p]*sign;
if (max < v) max = v;
}
}
return max;
}
/** Get max (or -min if sign=-1) at the right border inside or left border outside the kernel area.
* x between 0 and cacheWidth-1 */
private static float getSideMax(float[] cache, int xCache0, int[] kernel, boolean isRight, float sign) {
float max = -Float.MAX_VALUE;
if (!isRight) xCache0--;
for (int kk= isRight ? 1 : 0; kk<kernel.length; kk+=2) { // y within the cache stripe (we have 2 kernel pointers per cache line)
float v = cache[xCache0 + kernel[kk]]*sign;
if (max < v) max = v;
}
return max;
}
/** Get sum of values and values squared within the kernel area.
* x between 0 and cacheWidth-1
* Output is written to array sums[0] = sum; sums[1] = sum of squares */
private static void getAreaSums(float[] cache, int xCache0, int[] kernel, double[] sums) {
double sum=0, sum2=0;
for (int kk=0; kk<kernel.length; kk++) { // y within the cache stripe (we have 2 kernel pointers per cache line)
for (int p=kernel[kk++]+xCache0; p<=kernel[kk]+xCache0; p++) {
double v = cache[p];
sum += v;
sum2 += v*v;
}
}
sums[0] = sum;
sums[1] = sum2;
return;
}
/** Add all values and values squared at the right border inside minus at the left border outside the kernal area.
* Output is added or subtracted to/from array sums[0] += sum; sums[1] += sum of squares when at
* the right border, minus when at the left border */
private static void addSideSums(float[] cache, int xCache0, int[] kernel, double[] sums) {
double sum=0, sum2=0;
for (int kk=0; kk<kernel.length; /*k++;k++ below*/) {
double v = cache[kernel[kk++]+(xCache0-1)]; //this value is not in the kernel area any more
sum -= v;
sum2 -= v*v;
v = cache[kernel[kk++]+xCache0]; //this value comes into the kernel area
sum += v;
sum2 += v*v;
}
sums[0] += sum;
sums[1] += sum2;
return;
}
/** Get median of values within kernel-sized neighborhood. Kernel size kNPoints should be odd.
*/
private static float getMedian(float[] cache, int xCache0, int[] kernel,
float[] aboveBuf, float[]belowBuf, int kNPoints, float guess) {
int nAbove = 0, nBelow = 0;
for (int kk=0; kk<kernel.length; kk++) {
for (int p=kernel[kk++]+xCache0; p<=kernel[kk]+xCache0; p++) {
float v = cache[p];
if (v > guess) {
aboveBuf[nAbove] = v;
nAbove++;
}
else if (v < guess) {
belowBuf[nBelow] = v;
nBelow++;
}
}
}
int half = kNPoints/2;
if (nAbove>half)
return findNthLowestNumber(aboveBuf, nAbove, nAbove-half-1);
else if (nBelow>half)
return findNthLowestNumber(belowBuf, nBelow, half);
else
return guess;
}
/** Get median of values within kernel-sized neighborhood.
* NaN data values are ignored; the output is NaN only if there are only NaN values in the
* kernel-sized neighborhood */
private static float getNaNAwareMedian(float[] cache, int xCache0, int[] kernel,
float[] aboveBuf, float[]belowBuf, int kNPoints, float guess) {
int nAbove = 0, nBelow = 0;
for (int kk=0; kk<kernel.length; kk++) {
for (int p=kernel[kk++]+xCache0; p<=kernel[kk]+xCache0; p++) {
float v = cache[p];
if (Float.isNaN(v)) {
kNPoints--;
} else if (v > guess) {
aboveBuf[nAbove] = v;
nAbove++;
}
else if (v < guess) {
belowBuf[nBelow] = v;
nBelow++;
}
}
}
if (kNPoints == 0) return Float.NaN; //only NaN data in the neighborhood?
int half = kNPoints/2;
if (nAbove>half)
return findNthLowestNumber(aboveBuf, nAbove, nAbove-half-1);
else if (nBelow>half)
return findNthLowestNumber(belowBuf, nBelow, half);
else
return guess;
}
/** Find the n-th lowest number in part of an array
* @param buf The input array. Only values 0 ... bufLength are read. <code>buf</code> will be modified.
* @param bufLength Number of values in <code>buf</code> that should be read
* @param n which value should be found; n=0 for the lowest, n=bufLength-1 for the highest
* @return the value */
public final static float findNthLowestNumber(float[] buf, int bufLength, int n) {
// Hoare's find, algorithm, based on http://www.geocities.com/zabrodskyvlada/3alg.html
// Contributed by Heinz Klar
int i,j;
int l=0;
int m=bufLength-1;
float med=buf[n];
float dum ;
while (l<m) {
i=l ;
j=m ;
do {
while (buf[i]<med) i++ ;
while (med<buf[j]) j-- ;
dum=buf[j];
buf[j]=buf[i];
buf[i]=dum;
i++ ; j-- ;
} while ((j>=n) && (i<=n)) ;
if (j<n) l=i ;
if (n<i) m=j ;
med=buf[n] ;
}
return med ;
}
/** Reset region between inner rectangle 'roi' and outer rectangle 'roi1' to the snapshot */
private void resetRoiBoundary(ImageProcessor ip, Rectangle roi, Rectangle roi1) {
int width = ip.getWidth();
Object pixels = ip.getPixels();
Object snapshot = ip.getSnapshotPixels();
for (int y=roi1.y, p = roi1.x+y*width; y<roi.y; y++,p+=width)
System.arraycopy(snapshot, p, pixels, p, roi1.width);
int leftWidth = roi.x - roi1.x;
int rightWidth = roi1.x+roi1.width - (roi.x+roi.width);
for (int y=roi.y, pL=roi1.x+y*width, pR=roi.x+roi.width+y*width; y<roi.y+roi.height; y++,pL+=width,pR+=width) {
if (leftWidth > 0)
System.arraycopy(snapshot, pL, pixels, pL, leftWidth);
if (rightWidth > 0)
System.arraycopy(snapshot, pR, pixels, pR, rightWidth);
}
for (int y=roi.y+roi.height, p = roi1.x+y*width; y<roi1.y+roi1.height; y++,p+=width)
System.arraycopy(snapshot, p, pixels, p, roi1.width);
}
/** @deprecated
* Not needed any more, use the rank(ip, ...) method, which creates the kernel */
public void makeKernel(double radius) {
this.radius = radius;
}
/** Sets the display range after variance and top-hat (16-bit & floating-point images only) */
private void setDisplayRange(ImageProcessor ip) {
if ((ip instanceof ByteProcessor) || (ip instanceof ColorProcessor)) return;
new ContrastEnhancer().stretchHistogram(ip, 0.5);
}
/** Create a circular kernel (structuring element) of a given radius.
* @param radius
* Radius = 0.5 includes the 4 neighbors of the pixel in the center,
* radius = 1 corresponds to a 3x3 kernel size.
* @return the circular kernel
* The output is an array that gives the length of each line of the structuring element
* (kernel) to the left (negative) and to the right (positive):
* [0] left in line 0, [1] right in line 0,
* [2] left in line 2, ...
* The maximum (absolute) value should be kernelRadius.
* Array elements at the end:
* length-2: nPoints, number of pixels in the kernel area
* length-1: kernelRadius in x direction (kernel width is 2*kernelRadius+1)
* Kernel height can be calculated as (array length - 1)/2 (odd number);
* Kernel radius in y direction is kernel height/2 (truncating integer division).
* Note that kernel width and height are the same for the circular kernels used here,
* but treated separately for the case of future extensions with non-circular kernels.
*/
protected int[] makeLineRadii(double radius) {
if (radius>=1.5 && radius<1.75) //this code creates the same sizes as the previous RankFilters
radius = 1.75;
else if (radius>=2.5 && radius<2.85)
radius = 2.85;
int r2 = (int) (radius*radius) + 1;
int kRadius = (int)(Math.sqrt(r2+1e-10));
int kHeight = 2*kRadius + 1;
int[] kernel = new int[2*kHeight + 2];
kernel[2*kRadius] = -kRadius;
kernel[2*kRadius+1] = kRadius;
int nPoints = 2*kRadius+1;
for (int y=1; y<=kRadius; y++) { //lines above and below center together
int dx = (int)(Math.sqrt(r2-y*y+1e-10));
kernel[2*(kRadius-y)] = -dx;
kernel[2*(kRadius-y)+1] = dx;
kernel[2*(kRadius+y)] = -dx;
kernel[2*(kRadius+y)+1] = dx;
nPoints += 4*dx+2; //2*dx+1 for each line, above&below
}
kernel[kernel.length-2] = nPoints;
kernel[kernel.length-1] = kRadius;
//for (int i=0; i<kHeight;i++)IJ.log(i+": "+kernel[2*i]+"-"+kernel[2*i+1]);
return kernel;
}
//kernel height
private int kHeight(int[] lineRadii) {
return (lineRadii.length-2)/2;
}
//kernel radius in x direction. width is 2+kRadius+1
private int kRadius(int[] lineRadii) {
return lineRadii[lineRadii.length-1];
}
//number of points in kernal area
private int kNPoints(int[] lineRadii) {
return lineRadii[lineRadii.length-2];
}
//cache pointers for a given kernel
private int[] makeCachePointers(int[] lineRadii, int cacheWidth) {
int kRadius = kRadius(lineRadii);
int kHeight = kHeight(lineRadii);
int[] cachePointers = new int[2*kHeight];
for (int i=0; i<kHeight; i++) {
cachePointers[2*i] = i*cacheWidth+kRadius + lineRadii[2*i];
cachePointers[2*i+1] = i*cacheWidth+kRadius + lineRadii[2*i+1];
}
return cachePointers;
}
void showMasks() {
int w=150, h=150;
ImageStack stack = new ImageStack(w, h);
//for (double r=0.1; r<3; r+=0.01) {
for (double r=0.5; r<50; r+=0.5) {
ImageProcessor ip = new FloatProcessor(w,h,new int[w*h]);
float[] pixels = (float[])ip.getPixels();
int[] lineRadii = makeLineRadii(r);
int kHeight = kHeight(lineRadii);
int kRadius = kRadius(lineRadii);
int y0 = h/2-kHeight/2;
for (int i = 0, y = y0; i<kHeight; i++, y++)
for (int x = w/2+lineRadii[2*i], p = x+y*w; x <= w/2+lineRadii[2*i+1]; x++, p++)
pixels[p] = 1f;
stack.addSlice("radius="+r+", size="+(2*kRadius+1), ip);
}
new ImagePlus("Masks", stack).show();
}
/** This method is called by ImageJ to set the number of calls to run(ip)
* corresponding to 100% of the progress bar.
* Setting nPasses=0 suppresses the progress bar */
public void setNPasses (int nPasses) {
this.nPasses = nPasses;
pass = 0;
}
private void showProgress(double percent, boolean rgb) {
if (nPasses==0) return;
int nPasses2 = rgb?nPasses*3:nPasses;
percent = (double)pass/nPasses2 + percent/nPasses2;
IJ.showProgress(percent);
}
}
|