File: BinaryInterpolator.java

package info (click to toggle)
imagej 1.54g-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,520 kB
  • sloc: java: 132,209; sh: 286; xml: 255; makefile: 6
file content (240 lines) | stat: -rw-r--r-- 6,329 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
package ij.process;
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.gui.Roi;
import ij.plugin.filter.ThresholdToSelection;

/*
 * This plugin takes a binary stack as input, where some slices are
 * labeled (i.e. contain white regions), and some are not. The unlabaled
 * regions are interpolated by weighting the signed integer distance
 * transformed labeled slices.
 * 
 * from:
 * http://fiji.sc/cgi-bin/gitweb.cgi?p=fiji.git;a=blob_plain;f=src-plugins/VIB-lib/vib/BinaryInterpolator.java;h=f6a610659ad624d13f94639bc5c0149712071f9f;hb=refs/heads/master
 */

public class BinaryInterpolator {
	int[][] idt;
	int w, h;

	public void run(ImagePlus image, Roi[] rois) {
		w = image.getWidth();
		h = image.getHeight();
		ImageStack stack = new ImageStack(w, h);
		int firstIndex = -1, lastIndex = -1;
		for(int i = 1; i < rois.length; i++) {
			if(rois[i] != null) {
				firstIndex = (firstIndex == -1) ? i : firstIndex;
				lastIndex = i;
			}
		}
		if (firstIndex == -1) {
			IJ.error("There must be at least one selection in order to interpolate.");
			return;
		}

		for(int i = firstIndex; i <= lastIndex; i++) {
			ByteProcessor bp = new ByteProcessor(w, h);
			if(rois[i] != null) {
				bp.copyBits(rois[i].getMask(), 
							rois[i].getBounds().x, 
							rois[i].getBounds().y, 
							ij.process.Blitter.ADD);
			}
			stack.addSlice("", bp);
		}
		run(stack);
		ImagePlus roiImage = new ImagePlus("bla", stack);
		
		ThresholdToSelection ts = new ThresholdToSelection();
		ts.setup("", roiImage);
		for(int i = firstIndex; i <= lastIndex; i++) {
			ImageProcessor bp = stack.getProcessor(1);
			stack.deleteSlice(1);
			int threshold = 255;
			bp.setThreshold(threshold, threshold, ImageProcessor.NO_LUT_UPDATE);
			ts.run(bp);
			rois[i] = roiImage.getRoi();
		}
	}

	public void run(ImageStack stack) {	
		int sliceCount = stack.size();
		if (sliceCount < 3) {
			IJ.error("Too few slices to interpolate!");
			return;
		}

		IJ.showStatus("getting signed integer distance transform");
		w = stack.getWidth();
		h = stack.getHeight();
		idt = new int[sliceCount][];
		int first = sliceCount, last = -1;

		for (int z = 0; z < sliceCount; z++) {
			idt[z] = getIDT(stack.getProcessor(z + 1).getPixels());
			if (idt[z] != null) {
				if (z < first)
					first = z;
				last = z;
			}
		 }

		if (first == last || last < 0) {
			IJ.error("Not enough to interpolate");
			return;
		}

		IJ.showStatus("calculating weights");
		int current = 0, next = first;
		for (int z = first; z < last; z++) {
			if (z == next) {
				current = z;
				for (next = z + 1; idt[next] == null; next++);
				continue;
			}

			byte[] p =
				(byte[])stack.getProcessor(z + 1).getPixels();
			for (int i = 0; i < w * h; i++)
				if (0 <= idt[current][i] * (next - z)
						+ idt[next][i] * (z - current))
					p[i] = (byte)255;
			IJ.showProgress(z - first + 1, last - z);
		}
	}

	/*
	 * The following calculates the signed integer distance transform.
	 * Distance transform means that each pixel is assigned the distance
	 * to the boundary.
	 * IDT means that the distance is not the Euclidean, but the minimal
	 * sum of neighbour distances with 3 for horizontal and neighbours,
	 * and 4 for diagonal neighbours (in 3d, the 3d diagonal neighbour
	 * would be 5).
	 * Signed means that the outside pixels have a negative sign.
	 */
	class IDT {
		int[] result;

		IDT() {
			result = new int[w * h];
			int infinity = (w + h) * 9;

			for (int i = 0; i < result.length; i++)
				result[i] = infinity;
		}

		int init(byte[] p) {
			int count = 0;

			for (int j = 0; j < h; j++)
				for (int i = 0; i < w; i++) {
					int idx = i + w * j;
					if (isBoundary(p, i, j)) {
						result[idx] = 0;
						count++;
					} else if (isJustOutside(p, i, j))
						result[idx] = -1;
				}
			return count;
		}

		final void idt(int x, int y, int dx, int dy) {
			if (x + dx < 0 || y + dy < 0 ||
					x + dx >= w || y + dy >= h)
				return;
			int value = result[x + dx + w * (y + dy)];
			int distance = (dx == 0 || dy == 0 ? 3 : 4);
			value += distance * (value < 0 ? -1 : 1);
			if (Math.abs(result[x + w * y]) > Math.abs(value))
				result[x + w * y] = value;
		}

		void propagate() {
			for (int j = 0; j < h; j++)
				for (int i = 0; i < w; i++) {
					idt(i, j, -1, 0);
					idt(i, j, -1, -1);
					idt(i, j, 0, -1);
				}

			for (int j = h - 1; j >= 0; j--)
				for (int i = w - 1; i >= 0; i--) {
					idt(i, j, +1, 0);
					idt(i, j, +1, +1);
					idt(i, j, 0, +1);
				}

			for (int i = w - 1; i >= 0; i--)
				for (int j = h - 1; j >= 0; j--) {
					idt(i, j, +1, 0);
					idt(i, j, +1, +1);
					idt(i, j, 0, +1);
				}

			for (int i = 0; i < w; i++)
				for (int j = 0; j < h; j++) {
					idt(i, j, -1, 0);
					idt(i, j, -1, -1);
					idt(i, j, 0, -1);
				}
		}
	}

	int[] getIDT(Object pixels) {
		IDT idt = new IDT();
		if (idt.init((byte[])pixels) == 0)
			return null;
		idt.propagate();
		return idt.result;
	}

	final boolean isBoundary(byte[] pixels, int x, int y) {
		if (pixels[x + w * y] == 0)
			return false;
		if (x <= 0 || pixels[x - 1 + w * y] == 0)
			return true;
		if (x >= w - 1 || pixels[x + 1 + w * y] == 0)
			return true;
		if (y <= 0 || pixels[x + w * (y - 1)] == 0)
			return true;
		if (y >= h - 1 || pixels[x + w * (y + 1)] == 0)
			return true;
		if (x <= 0 || y <= 0 || pixels[x - 1 + w * (y - 1)] == 0)
			return true;
		if (x <= 0 || y >= h - 1 || pixels[x - 1 + w * (y + 1)] == 0)
			return true;
		if (x >= w - 1 || y <= 0 || pixels[x + 1 + w * (y - 1)] == 0)
			return true;
		if (x >= w - 1 || y >= h - 1 ||
				pixels[x + 1 + w * (y + 1)] == 0)
			return true;
		return false;
	}

	final boolean isJustOutside(byte[] pixels, int x, int y) {
		if (pixels[x + w * y] != 0)
			return false;
		if (x > 0 && pixels[x - 1 + w * y] != 0)
			return true;
		if (x < w - 1 && pixels[x + 1 + w * y] != 0)
			return true;
		if (y > 0 && pixels[x + w * (y - 1)] != 0)
			return true;
		if (y < h - 1 && pixels[x + w * (y + 1)] != 0)
			return true;
		if (x > 0 && y > 0 && pixels[x - 1 + w * (y - 1)] != 0)
			return true;
		if (x > 0 && y < h - 1 && pixels[x - 1 + w * (y + 1)] != 0)
			return true;
		if (x < w - 1 && y > 0 && pixels[x + 1 + w * (y - 1)] != 0)
			return true;
		if (x < w - 1 && y < h - 1 &&
				pixels[x + 1 + w * (y + 1)] != 0)
			return true;
		return false;
	}
}