1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
package ij.process;
import ij.measure.Calibration;
/** RGB image statistics, including histogram. */
public class ColorStatistics extends ImageStatistics {
/** Construct an ImageStatistics object from a ColorProcessor
using the standard measurement options (area, mean,
mode, min and max). */
public ColorStatistics(ImageProcessor ip) {
this(ip, AREA+MEAN+MODE+MIN_MAX, null);
}
/** Constructs a ColorStatistics object from a ColorProcessor using
the specified measurement options.
*/
public ColorStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
setup(ip, cal);
if (ip instanceof IntProcessor) {
getIntStatistics(ip);
return;
}
ColorProcessor cp = (ColorProcessor)ip;
histogram = cp.getHistogram();
getRawStatistics(0,255);
if ((mOptions&MIN_MAX)!=0)
getRawMinAndMax(0,255);
if ((mOptions&ELLIPSE)!=0 || (mOptions&SHAPE_DESCRIPTORS)!=0)
fitEllipse(ip, mOptions);
else if ((mOptions&CENTROID)!=0)
getCentroid(ip);
if ((mOptions&(CENTER_OF_MASS|SKEWNESS|KURTOSIS))!=0)
calculateMoments(ip);
if ((mOptions&MEDIAN)!=0)
calculateMedian(histogram, 0, 255, cal);
}
void calculateMoments(ImageProcessor ip) {
byte[] mask = ip.getMaskArray();
int i, mi;
double v, v2, sum1=0.0, sum2=0.0, sum3=0.0, sum4=0.0, xsum=0.0, ysum=0.0;
for (int y=ry,my=0; y<(ry+rh); y++,my++) {
i = y*width + rx;
mi = my*rw;
for (int x=rx; x<(rx+rw); x++) {
if (mask==null || mask[mi++]!=0) {
v = ip.getPixelValue(x, y);
v2 = v*v;
sum1 += v;
sum2 += v2;
sum3 += v*v2;
sum4 += v2*v2;
xsum += x*v;
ysum += y*v;
}
i++;
}
}
double mean2 = mean*mean;
double variance = sum2/pixelCount - mean2;
double sDeviation = Math.sqrt(variance);
skewness = ((sum3 - 3.0*mean*sum2)/pixelCount + 2.0*mean*mean2)/(variance*sDeviation);
kurtosis = (((sum4 - 4.0*mean*sum3 + 6.0*mean2*sum2)/pixelCount - 3.0*mean2*mean2)/(variance*variance)-3.0);
xCenterOfMass = xsum/sum1+0.5;
yCenterOfMass = ysum/sum1+0.5;
if (cal!=null) {
xCenterOfMass = cal.getX(xCenterOfMass);
yCenterOfMass = cal.getY(yCenterOfMass, height);
}
}
void getIntStatistics(ImageProcessor ip) {
int v;
int[] pixels = (int[])ip.getPixels();
nBins = ip.getHistogramSize();
histogram = new int[nBins];
double sum = 0;
double sum2 = 0;
byte[] mask = ip.getMaskArray();
// Find image min and max
int roiMin = Integer.MAX_VALUE;
int roiMax = -Integer.MAX_VALUE;
for (int y=ry, my=0; y<(ry+rh); y++, my++) {
int i = y * width + rx;
int mi = my * rw;
for (int x=rx; x<(rx+rw); x++) {
if (mask==null || mask[mi++]!=0) {
v = pixels[i];
if (v<roiMin)
roiMin = v;
if (v>roiMax)
roiMax = v;
}
i++;
}
}
min = roiMin; max = roiMax;
binSize = (max-min)/nBins;
histMin = min;
histMax = max;
// Generate histogram
double scale = nBins/(max-min);
int index;
pixelCount = 0;
for (int y=ry, my=0; y<(ry+rh); y++, my++) {
int i = y * width + rx;
int mi = my * rw;
for (int x=rx; x<(rx+rw); x++) {
if (mask==null || mask[mi++]!=0) {
v = pixels[i];
pixelCount++;
sum += v;
sum2 += v*v;
index = (int)(scale*(v-min));
if (index>=nBins)
index = nBins-1;
histogram[index]++;
}
i++;
}
}
area = pixelCount*pw*ph;
mean = sum/pixelCount;
umean = mean;
calculateStdDev(pixelCount, sum, sum2);
// calculate mode
int count;
maxCount = 0;
for (int i = 0; i < nBins; i++) {
count = histogram[i];
if (count > maxCount) {
maxCount = count;
mode = i;
}
}
dmode = histMin+mode*binSize;
if (binSize!=1.0)
dmode += binSize/2.0;
}
}
|