1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
package ij.process;
import ij.measure.*;
import java.awt.*;
/** Statistics, including the histogram, of an image or selection. */
public class ImageStatistics implements Measurements {
/** Use the hIstogram() method to get the histogram as a double array. */
public int[] histogram;
/** Int pixel count (limited to 2^31-1) */
public int pixelCount;
/** Long pixel count */
public long longPixelCount;
/** Mode */
public double dmode;
/** Mode of 256 bin histogram (counts limited to 2^31-1) */
public int mode;
public double area;
public double min;
public double max;
public double mean;
public double median;
public double stdDev;
public double skewness;
public double kurtosis;
public double xCentroid;
public double yCentroid;
public double xCenterOfMass;
public double yCenterOfMass;
public double roiX, roiY, roiWidth, roiHeight;
/** Uncalibrated mean */
public double umean;
/** Length of major axis of fitted ellipse */
public double major;
/** Length of minor axis of fitted ellipse */
public double minor;
/** Angle in degrees of fitted ellipse */
public double angle;
/** Bin width 1 histogram of 16-bit images */
public int[] histogram16;
/** Long histogram; use getHIstogram() to retrieve. */
protected long[] longHistogram;
public double areaFraction;
/** Used internally by AnalyzeParticles */
public int xstart, ystart;
/** Used by HistogramWindow */
public boolean stackStatistics;
/** Minimum threshold when "Limit to threshold" enabled */
public double lowerThreshold = Double.NaN;
/** Maximum threshold when "Limit to threshold" enabled */
public double upperThreshold = Double.NaN;
public double histMin;
public double histMax;
public int histYMax;
public int maxCount;
public int nBins = 256;
public double binSize = 1.0;
protected int width, height;
protected int rx, ry, rw, rh;
protected double pw, ph;
protected Calibration cal;
EllipseFitter ef;
/** Calculates and returns uncalibrated (raw) statistics for the
* specified image, including histogram, area, mean, min and
* max, standard deviation and mode. Use ImageProcessor.setRoi(x,y,width,height)
* to limit statistics to a rectangular area and ImageProcessor.setRoi(Roi)
* to limit to a non-rectangular area.
* @see ij.process.ImageProcessor#setRoi(int,int,int,int)
* @see ij.process.ImageProcessor#setRoi(Roi)
* @see ij.process.ImageProcessor#getStats
*/
public static ImageStatistics getStatistics(ImageProcessor ip) {
return getStatistics(ip, AREA+MEAN+STD_DEV+MODE+MIN_MAX+RECT, null);
}
/** Calculates and returns statistics for the specified
* image using the specified measurent options
* and calibration. Use ImageProcessor.setRoi(x,y,width,height)
* to limit statistics to a rectangular area and ImageProcessor.setRoi(Roi)
* to limit to a non-rectangular area.
* @see ij.process.ImageProcessor#setRoi(int,int,int,int)
* @see ij.process.ImageProcessor#setRoi(Roi)
* @see ij.measure.Measurements
*/
public static ImageStatistics getStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
Object pixels = ip.getPixels();
if (pixels instanceof byte[])
return new ByteStatistics(ip, mOptions, cal);
else if (pixels instanceof short[])
return new ShortStatistics(ip, mOptions, cal);
else if (pixels instanceof int[])
return new ColorStatistics(ip, mOptions, cal);
else if (pixels instanceof float[])
return new FloatStatistics(ip, mOptions, cal);
else
throw new IllegalArgumentException("Pixels are not byte, short, int or float");
}
void getRawMinAndMax(int minThreshold, int maxThreshold) {
int min = minThreshold;
while ((histogram[min] == 0) && (min < 255))
min++;
this.min = min;
int max = maxThreshold;
while ((histogram[max] == 0) && (max > 0))
max--;
this.max = max;
}
void getRawStatistics(int minThreshold, int maxThreshold) {
int count;
double value;
double sum = 0.0;
double sum2 = 0.0;
for (int i=minThreshold; i<=maxThreshold; i++) {
count = histogram[i];
longPixelCount += count;
sum += (double)i*count;
value = i;
sum2 += (value*value)*count;
if (count>maxCount) {
maxCount = count;
mode = i;
}
}
pixelCount = (int)longPixelCount;
area = longPixelCount*pw*ph;
mean = sum/longPixelCount;
umean = mean;
dmode = mode;
calculateStdDev(longPixelCount, sum, sum2);
histMin = 0.0;
histMax = 255.0;
}
void calculateStdDev(double n, double sum, double sum2) {
if (n>0.0) {
stdDev = (n*sum2-sum*sum)/n;
if (stdDev>0.0)
stdDev = Math.sqrt(stdDev/(n-1.0));
else
stdDev = 0.0;
} else
stdDev = 0.0;
}
void setup(ImageProcessor ip, Calibration cal) {
width = ip.getWidth();
height = ip.getHeight();
this.cal = cal;
Rectangle roi = ip.getRoi();
if (roi != null) {
rx = roi.x;
ry = roi.y;
rw = roi.width;
rh = roi.height;
}
else {
rx = 0;
ry = 0;
rw = width;
rh = height;
}
if (cal!=null) {
pw = cal.pixelWidth;
ph = cal.pixelHeight;
} else {
pw = 1.0;
ph = 1.0;
}
roiX = cal!=null?cal.getX(rx):rx;
roiY = cal!=null?cal.getY(ry, height):ry;
roiWidth = rw*pw;
roiHeight = rh*ph;
}
void getCentroid(ImageProcessor ip) {
byte[] mask = ip.getMaskArray();
int count=0, mi;
double xsum=0.0, ysum=0.0;
for (int y=ry,my=0; y<(ry+rh); y++,my++) {
mi = my*rw;
for (int x=rx; x<(rx+rw); x++) {
if (mask==null||mask[mi++]!=0) {
count++;
xsum += x;
ysum += y;
}
}
}
xCentroid = xsum/count+0.5;
yCentroid = ysum/count+0.5;
if (cal!=null) {
xCentroid = cal.getX(xCentroid);
yCentroid = cal.getY(yCentroid, height);
}
}
void fitEllipse(ImageProcessor ip, int mOptions) {
ImageProcessor originalMask = null;
boolean limitToThreshold = (mOptions&LIMIT)!=0 && ip.isThreshold();
if (limitToThreshold) {
ImageProcessor mask = ip.getMask();
Rectangle r = ip.getRoi();
if (mask==null) {
mask = new ByteProcessor(r.width, r.height);
mask.invert();
} else {
originalMask = mask;
mask = mask.duplicate();
}
int n = r.width*r.height;
double t1 = ip.getMinThreshold();
double t2 = ip.getMaxThreshold();
double value;
for (int y=0; y<r.height; y++) {
for (int x=0; x<r.width; x++) {
value = ip.getf(r.x+x, r.y+y);
if (value<t1 || value>t2)
mask.setf(x, y, 0f);
}
}
ip.setMask(mask);
}
if (ef==null)
ef = new EllipseFitter();
ef.fit(ip, this);
if (limitToThreshold) {
if (originalMask==null)
ip.setMask(null);
else
ip.setMask(originalMask);
}
double psize = (Math.abs(pw-ph)/pw)<.01?pw:0.0;
major = ef.major*psize;
minor = ef.minor*psize;
angle = ef.angle;
xCentroid = ef.xCenter;
yCentroid = ef.yCenter;
if (cal!=null) {
xCentroid = cal.getX(xCentroid);
yCentroid = cal.getY(yCentroid, height);
}
}
public void drawEllipse(ImageProcessor ip) {
if (ef!=null)
ef.drawEllipse(ip);
}
void calculateMedian(int[] hist, int first, int last, Calibration cal) {
//ij.IJ.log("calculateMedian: "+first+" "+last+" "+hist.length+" "+pixelCount);
if (pixelCount==0 || first<0 || last>hist.length) {
median = Double.NaN;
return;
}
double sum = 0;
int i = first-1;
double halfCount = pixelCount/2.0;
do {
sum += hist[++i];
} while (sum<=halfCount && i<last);
median = cal!=null?cal.getCValue(i):i;
}
void calculateAreaFraction(ImageProcessor ip, int[] hist) {
int sum = 0;
int total = 0;
int t1 = (int)Math.round(ip.getMinThreshold());
int t2 = (int)Math.round(ip.getMaxThreshold());
if (t1==ImageProcessor.NO_THRESHOLD) {
for (int i=0; i<hist.length; i++)
total += hist[i];
sum = total - hist[0];
} else {
for (int i=0; i<hist.length; i++) {
if (i>=t1 && i<=t2)
sum += hist[i];
total += hist[i];
}
}
areaFraction = sum*100.0/total;
}
/** Returns the histogram as an array of doubles. */
public double[] histogram() {
double[] hist = new double[histogram.length];
for (int i=0; i<hist.length; i++) {
if (longHistogram!=null)
hist[i] = longHistogram[i];
else
hist[i] = histogram[i];
}
return hist;
}
/** Returns the histogram as an array of longs. */
public long[] getHistogram() {
double[] hist = histogram();
long[] hist2 = new long[hist.length];
for (int i=0; i<hist.length; i++)
hist2[i] = (long)hist[i];
return hist2;
}
public String toString() {
return "stats[count="+pixelCount+", mean="+mean+", min="+min+", max="+max+"]";
}
protected void saveThreshold(double minThreshold, double maxThreshold, Calibration cal) {
if (cal!=null) {
minThreshold = cal.getCValue(minThreshold);
maxThreshold = cal.getCValue(maxThreshold);
}
lowerThreshold = minThreshold;
upperThreshold = maxThreshold;
}
}
|