1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M M AAA TTTTT RRRR IIIII X X %
% MM MM A A T R R I X X %
% M M M AAAAA T RRRR I X %
% M M A A T R R I X X %
% M M A A T R R IIIII X X %
% %
% %
% MagickCore Matrix Methods %
% %
% Software Design %
% John Cristy %
% August 2007 %
% %
% %
% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/matrix.h"
#include "magick/memory_.h"
#include "magick/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e M a g i c k M a t r i x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireMagickMatrix() allocates and returns a matrix in the form of an
% array of pointers to an array of doubles, with all values pre-set to zero.
%
% This used to generate the two dimentional matrix, and vectors required
% for the GaussJordanElimination() method below, solving some system of
% simultanious equations.
%
% The format of the AcquireMagickMatrix method is:
%
% double **AcquireMagickMatrix(const unsigned long nptrs,
% const unsigned long size)
%
% A description of each parameter follows:
%
% o nptrs: the number pointers for the array of pointers
% (first dimension)
%
% o size: the size of the array of doubles each pointer points to.
% (second dimension)
%
*/
MagickExport double **AcquireMagickMatrix(const unsigned long nptrs,
const unsigned long size)
{
double
**matrix;
register unsigned long
i,
j;
matrix=(double **) AcquireQuantumMemory(nptrs,sizeof(*matrix));
if (matrix == (double **) NULL)
return((double **)NULL);
for (i=0; i < nptrs; i++)
{
matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
if (matrix[i] == (double *) NULL)
{
for (j=0; j < i; j++)
matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
matrix=(double **) RelinquishMagickMemory(matrix);
return((double **) NULL);
}
/*(void) ResetMagickMemory(matrix[i],0,size*sizeof(*matrix[i])); */
for (j=0; j < size; j++)
matrix[i][j] = 0.0;
}
return(matrix);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G a u s s J o r d a n E l i m i n a t i o n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GaussJordanElimination() returns a matrix in reduced row echelon form,
% while simultaneously reducing and thus solving the augumented results
% matrix.
%
% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
%
% The format of the GaussJordanElimination method is:
%
% MagickBooleanType GaussJordanElimination(double **matrix,
% double **vectors, const unsigned long rank, const unsigned long nvecs)
%
% A description of each parameter follows:
%
% o matrix: the matrix to be reduced, as an 'array of row pointers'.
%
% o vectors: the additional matrix argumenting the matrix for row reduction.
% Producing an 'array of column vectors'.
%
% o rank: The size of the matrix (both rows and columns).
% Also represents the number terms that need to be solved.
%
% o nvecs: Number of vectors columns, argumenting the above matrix.
% Usally 1, but can be more for more complex equation solving.
%
% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
% That is values can be assigned as matrix[row][column] where 'row' is
% typically the equation, and 'column' is the term of the equation.
% That is the matrix is in the form of a 'row first array'.
%
% However 'vectors' is a 'array of column pointers' which can have any number
% of columns, with each column array the same 'rank' size as 'matrix'.
%
% This allows for simpler handling of the results, especially is only one
% column 'vector' is all that is required to produce the desired solution.
%
% For example, the 'vectors' can consist of a pointer to a simple array of
% doubles. when only one set of simultanious equations is to be solved from
% the given set of coefficient weighted terms.
%
% double **matrix = AcquireMagickMatrix(8UL,8UL);
% double coefficents[8];
% ...
% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
%
% However by specifing more 'columns' (as an 'array of vector columns',
% you can use this function to solve a set of 'separable' equations.
%
% For example a distortion function where u = U(x,y) v = V(x,y)
% And the functions U() and V() have separate coefficents, but are being
% generated from a common x,y->u,v data set.
%
% Another example is generation of a color gradient from a set of colors
% at specific coordients, such as a list x,y -> r,g,b,a
% (Reference to be added - Anthony)
%
% You can also use the 'vectors' to generate an inverse of the given 'matrix'
% though as a 'column first array' rather than a 'row first array'. For
% details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
%
*/
MagickExport MagickBooleanType GaussJordanElimination(double **matrix,
double **vectors, const unsigned long rank, const unsigned long nvecs)
{
#define GaussJordanSwap(x,y) \
{ \
if ((x) != (y)) \
{ \
(x)+=(y); \
(y)=(x)-(y); \
(x)=(x)-(y); \
} \
}
double
max,
scale;
long
column,
*columns,
*pivots,
row,
*rows;
register long
i,
j,
k;
columns=(long *) AcquireQuantumMemory(rank,sizeof(*columns));
rows=(long *) AcquireQuantumMemory(rank,sizeof(*rows));
pivots=(long *) AcquireQuantumMemory(rank,sizeof(*pivots));
if ((rows == (long *) NULL) || (columns == (long *) NULL) ||
(pivots == (long *) NULL))
{
if (pivots != (long *) NULL)
pivots=(long *) RelinquishMagickMemory(pivots);
if (columns != (long *) NULL)
columns=(long *) RelinquishMagickMemory(columns);
if (rows != (long *) NULL)
rows=(long *) RelinquishMagickMemory(rows);
return(MagickFalse);
}
(void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
(void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
(void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
column=0;
row=0;
for (i=0; i < (long) rank; i++)
{
max=0.0;
for (j=0; j < (long) rank; j++)
if (pivots[j] != 1)
{
for (k=0; k < (long) rank; k++)
if (pivots[k] != 0)
{
if (pivots[k] > 1)
return(MagickFalse);
}
else
if (fabs(matrix[j][k]) >= max)
{
max=fabs(matrix[j][k]);
row=j;
column=k;
}
}
pivots[column]++;
if (row != column)
{
for (k=0; k < (long) rank; k++)
GaussJordanSwap(matrix[row][k],matrix[column][k]);
for (k=0; k < (long) nvecs; k++)
GaussJordanSwap(vectors[k][row],vectors[k][column]);
}
rows[i]=row;
columns[i]=column;
if (matrix[column][column] == 0.0)
return(MagickFalse); /* sigularity */
scale=1.0/matrix[column][column];
matrix[column][column]=1.0;
for (j=0; j < (long) rank; j++)
matrix[column][j]*=scale;
for (j=0; j < (long) nvecs; j++)
vectors[j][column]*=scale;
for (j=0; j < (long) rank; j++)
if (j != column)
{
scale=matrix[j][column];
matrix[j][column]=0.0;
for (k=0; k < (long) rank; k++)
matrix[j][k]-=scale*matrix[column][k];
for (k=0; k < (long) nvecs; k++)
vectors[k][j]-=scale*vectors[k][column];
}
}
for (j=(long) rank-1; j >= 0; j--)
if (columns[j] != rows[j])
for (i=0; i < (long) rank; i++)
GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
pivots=(long *) RelinquishMagickMemory(pivots);
rows=(long *) RelinquishMagickMemory(rows);
columns=(long *) RelinquishMagickMemory(columns);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L e a s t S q u a r e s A d d T e r m s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LeastSquaresAddTerms() adds one set of terms and associate results to the
% given matrix and vectors for solving using least-squares function fitting.
%
% The format of the AcquireMagickMatrix method is:
%
% void LeastSquaresAddTerms(double **matrix,double **vectors,
% const double *terms, const double *results,
% const unsigned long rank, const unsigned long nvecs);
%
% A description of each parameter follows:
%
% o matrix: the square matrix to add given terms/results to.
%
% o vectors: the result vectors to add terms/results to.
%
% o terms: the pre-calculated terms (without the unknown coefficent
% weights) that forms the equation being added.
%
% o results: the result(s) that should be generated from the given terms
% weighted by the yet-to-be-solved coefficents.
%
% o rank: the rank or size of the dimentions of the square matrix.
% Also the length of vectors, and number of terms being added.
%
% o nvecs: Number of result vectors, and number or results being added.
% Also represents the number of separable systems of equations
% that is being solved.
%
% Example of use...
%
% 2 dimentional Affine Equations (which are separable)
% c0*x + c2*y + c4*1 => u
% c1*x + c3*y + c5*1 => v
%
% double **matrix = AcquireMagickMatrix(3UL,3UL);
% double **vectors = AcquireMagickMatrix(2UL,3UL);
% double terms[3], results[2];
% ...
% for each given x,y -> u,v
% terms[0] = x;
% terms[1] = y;
% terms[2] = 1;
% results[0] = u;
% results[1] = v;
% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
% ...
% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
% c0 = vectors[0][0];
% c2 = vectors[0][1];
% c4 = vectors[0][2];
% c1 = vectors[1][0];
% c3 = vectors[1][1];
% c5 = vectors[1][2];
% }
% else
% printf("Matrix unsolvable\n);
% RelinquishMagickMatrix(matrix,3UL);
% RelinquishMagickMatrix(vectors,2UL);
%
*/
MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors,
const double *terms, const double *results, const unsigned long rank,
const unsigned long nvecs)
{
register unsigned long
i,
j;
for(j=0; j<rank; j++) {
for(i=0; i<rank; i++)
matrix[i][j] += terms[i] * terms[j];
for(i=0; i<nvecs; i++)
vectors[i][j] += results[i] * terms[j];
}
return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e l i n q u i s h M a g i c k M a t r i x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RelinquishMagickMatrix() frees the previously acquired matrix (array of
% pointers to arrays of doubles).
%
% The format of the RelinquishMagickMatrix method is:
%
% double **RelinquishMagickMatrix(double **matrix,
% const unsigned long nptrs)
%
% A description of each parameter follows:
%
% o matrix: the matrix to relinquish
%
% o nptrs: the first dimention of the acquired matrix (number of pointers)
%
*/
MagickExport double **RelinquishMagickMatrix(double **matrix,
const unsigned long nptrs)
{
register unsigned long
i;
if (matrix == (double **) NULL )
return(matrix);
for (i=0; i < nptrs; i++)
matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
matrix=(double **) RelinquishMagickMemory(matrix);
return(matrix);
}
|