1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
|
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y %
% MM MM O O R R P P H H O O L O O G Y Y %
% M M M O O RRRR PPPP HHHHH O O L O O G GGG Y %
% M M O O R R P H H O O L O O G G Y %
% M M OOO R R P H H OOO LLLLL OOO GGG Y %
% %
% %
% MagickCore Morphology Methods %
% %
% Software Design %
% Anthony Thyssen %
% January 2010 %
% %
% %
% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Morpology is the the application of various kernals, of any size and even
% shape, to a image in various ways (typically binary, but not always).
%
% Convolution (weighted sum or average) is just one specific type of
% morphology. Just one that is very common for image bluring and sharpening
% effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
%
% This module provides not only a general morphology function, and the ability
% to apply more advanced or iterative morphologies, but also functions for the
% generation of many different types of kernel arrays from user supplied
% arguments. Prehaps even the generation of a kernel from a small image.
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/artifact.h"
#include "magick/cache-view.h"
#include "magick/color-private.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/hashmap.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/monitor-private.h"
#include "magick/morphology.h"
#include "magick/option.h"
#include "magick/pixel-private.h"
#include "magick/prepress.h"
#include "magick/quantize.h"
#include "magick/registry.h"
#include "magick/semaphore.h"
#include "magick/splay-tree.h"
#include "magick/statistic.h"
#include "magick/string_.h"
#include "magick/string-private.h"
#include "magick/token.h"
/*
The following test is for special floating point numbers of value NaN (not
a number), that may be used within a Kernel Definition. NaN's are defined
as part of the IEEE standard for floating point number representation.
These are used a Kernel value of NaN means that that kernal position is not
part of the normal convolution or morphology process, and thus allowing the
use of 'shaped' kernels.
Special properities two NaN's are never equal, even if they are from the
same variable That is the IsNaN() macro is only true if the value is NaN.
*/
#define IsNan(a) ((a)!=(a))
/*
Other global definitions used by module.
*/
static inline double MagickMin(const double x,const double y)
{
return( x < y ? x : y);
}
static inline double MagickMax(const double x,const double y)
{
return( x > y ? x : y);
}
#define Minimize(assign,value) assign=MagickMin(assign,value)
#define Maximize(assign,value) assign=MagickMax(assign,value)
/* Currently these are only internal to this module */
static void
RotateKernelInfo(KernelInfo *, double);
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireKernelInfo() takes the given string (generally supplied by the
% user) and converts it into a Morphology/Convolution Kernel. This allows
% users to specify a kernel from a number of pre-defined kernels, or to fully
% specify their own kernel for a specific Convolution or Morphology
% Operation.
%
% The kernel so generated can be any rectangular array of floating point
% values (doubles) with the 'control point' or 'pixel being affected'
% anywhere within that array of values.
%
% Previously IM was restricted to a square of odd size using the exact
% center as origin, this is no longer the case, and any rectangular kernel
% with any value being declared the origin. This in turn allows the use of
% highly asymmetrical kernels.
%
% The floating point values in the kernel can also include a special value
% known as 'nan' or 'not a number' to indicate that this value is not part
% of the kernel array. This allows you to shaped the kernel within its
% rectangular area. That is 'nan' values provide a 'mask' for the kernel
% shape. However at least one non-nan value must be provided for correct
% working of a kernel.
%
% The returned kernel should be free using the DestroyKernelInfo() when you
% are finished with it.
%
% Input kernel defintion strings can consist of any of three types.
%
% "name:args"
% Select from one of the built in kernels, using the name and
% geometry arguments supplied. See AcquireKernelBuiltIn()
%
% "WxH[+X+Y]:num, num, num ..."
% a kernal of size W by H, with W*H floating point numbers following.
% the 'center' can be optionally be defined at +X+Y (such that +0+0
% is top left corner). If not defined the pixel in the center, for
% odd sizes, or to the immediate top or left of center for even sizes
% is automatically selected.
%
% "num, num, num, num, ..."
% list of floating point numbers defining an 'old style' odd sized
% square kernel. At least 9 values should be provided for a 3x3
% square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
% Values can be space or comma separated. This is not recommended.
%
% Note that 'name' kernels will start with an alphabetic character while the
% new kernel specification has a ':' character in its specification string.
% If neither is the case, it is assumed an old style of a simple list of
% numbers generating a odd-sized square kernel has been given.
%
% The format of the AcquireKernal method is:
%
% KernelInfo *AcquireKernelInfo(const char *kernel_string)
%
% A description of each parameter follows:
%
% o kernel_string: the Morphology/Convolution kernel wanted.
%
*/
MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string)
{
KernelInfo
*kernel;
char
token[MaxTextExtent];
register long
i;
const char
*p;
MagickStatusType
flags;
GeometryInfo
args;
double
nan = sqrt((double)-1.0); /* Special Value : Not A Number */
assert(kernel_string != (const char *) NULL);
SetGeometryInfo(&args);
/* does it start with an alpha - Return a builtin kernel */
GetMagickToken(kernel_string,&p,token);
if ( isalpha((int)token[0]) )
{
long
type;
type=ParseMagickOption(MagickKernelOptions,MagickFalse,token);
if ( type < 0 || type == UserDefinedKernel )
return((KernelInfo *)NULL);
while (((isspace((int) ((unsigned char) *p)) != 0) ||
(*p == ',') || (*p == ':' )) && (*p != '\0'))
p++;
flags = ParseGeometry(p, &args);
/* special handling of missing values in input string */
switch( type ) {
case RectangleKernel:
if ( (flags & WidthValue) == 0 ) /* if no width then */
args.rho = args.sigma; /* then width = height */
if ( args.rho < 1.0 ) /* if width too small */
args.rho = 3; /* then width = 3 */
if ( args.sigma < 1.0 ) /* if height too small */
args.sigma = args.rho; /* then height = width */
if ( (flags & XValue) == 0 ) /* center offset if not defined */
args.xi = (double)(((long)args.rho-1)/2);
if ( (flags & YValue) == 0 )
args.psi = (double)(((long)args.sigma-1)/2);
break;
case SquareKernel:
case DiamondKernel:
case DiskKernel:
case PlusKernel:
if ( (flags & HeightValue) == 0 ) /* if no scale */
args.sigma = 1.0; /* then scale = 1.0 */
break;
default:
break;
}
return(AcquireKernelBuiltIn((KernelInfoType)type, &args));
}
kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
if (kernel == (KernelInfo *)NULL)
return(kernel);
(void) ResetMagickMemory(kernel,0,sizeof(*kernel));
kernel->type = UserDefinedKernel;
kernel->signature = MagickSignature;
/* Has a ':' in argument - New user kernel specification */
p = strchr(kernel_string, ':');
if ( p != (char *) NULL)
{
/* ParseGeometry() needs the geometry separated! -- Arrgghh */
memcpy(token, kernel_string, (size_t) (p-kernel_string));
token[p-kernel_string] = '\0';
flags = ParseGeometry(token, &args);
/* Size handling and checks of geometry settings */
if ( (flags & WidthValue) == 0 ) /* if no width then */
args.rho = args.sigma; /* then width = height */
if ( args.rho < 1.0 ) /* if width too small */
args.rho = 1.0; /* then width = 1 */
if ( args.sigma < 1.0 ) /* if height too small */
args.sigma = args.rho; /* then height = width */
kernel->width = (unsigned long)args.rho;
kernel->height = (unsigned long)args.sigma;
/* Offset Handling and Checks */
if ( args.xi < 0.0 || args.psi < 0.0 )
return(DestroyKernelInfo(kernel));
kernel->x = ((flags & XValue)!=0) ? (long)args.xi
: (long) (kernel->width-1)/2;
kernel->y = ((flags & YValue)!=0) ? (long)args.psi
: (long) (kernel->height-1)/2;
if ( kernel->x >= (long) kernel->width ||
kernel->y >= (long) kernel->height )
return(DestroyKernelInfo(kernel));
p++; /* advance beyond the ':' */
}
else
{ /* ELSE - Old old kernel specification, forming odd-square kernel */
/* count up number of values given */
p=(const char *) kernel_string;
while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
p++; /* ignore "'" chars for convolve filter usage - Cristy */
for (i=0; *p != '\0'; i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
}
/* set the size of the kernel - old sized square */
kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0);
kernel->x = kernel->y = (long) (kernel->width-1)/2;
p=(const char *) kernel_string;
while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
p++; /* ignore "'" chars for convolve filter usage - Cristy */
}
/* Read in the kernel values from rest of input string argument */
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
kernel->minimum = +MagickHuge;
kernel->maximum = -MagickHuge;
kernel->negative_range = kernel->positive_range = 0.0;
for (i=0; (i < (long) (kernel->width*kernel->height)) && (*p != '\0'); i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
if ( LocaleCompare("nan",token) == 0
|| LocaleCompare("-",token) == 0 ) {
kernel->values[i] = nan; /* do not include this value in kernel */
}
else {
kernel->values[i] = StringToDouble(token);
( kernel->values[i] < 0)
? ( kernel->negative_range += kernel->values[i] )
: ( kernel->positive_range += kernel->values[i] );
Minimize(kernel->minimum, kernel->values[i]);
Maximize(kernel->maximum, kernel->values[i]);
}
}
/* check that we recieved at least one real (non-nan) value! */
if ( kernel->minimum == MagickHuge )
return(DestroyKernelInfo(kernel));
/* This should not be needed for a fully defined kernel
* Perhaps an error should be reported instead!
* Kept for backward compatibility.
*/
if ( i < (long) (kernel->width*kernel->height) ) {
Minimize(kernel->minimum, kernel->values[i]);
Maximize(kernel->maximum, kernel->values[i]);
for ( ; i < (long) (kernel->width*kernel->height); i++)
kernel->values[i]=0.0;
}
return(kernel);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e K e r n e l B u i l t I n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireKernelBuiltIn() returned one of the 'named' built-in types of
% kernels used for special purposes such as gaussian blurring, skeleton
% pruning, and edge distance determination.
%
% They take a KernelType, and a set of geometry style arguments, which were
% typically decoded from a user supplied string, or from a more complex
% Morphology Method that was requested.
%
% The format of the AcquireKernalBuiltIn method is:
%
% KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
% const GeometryInfo args)
%
% A description of each parameter follows:
%
% o type: the pre-defined type of kernel wanted
%
% o args: arguments defining or modifying the kernel
%
% Convolution Kernels
%
% Gaussian "{radius},{sigma}"
% Generate a two-dimentional gaussian kernel, as used by -gaussian
% A sigma is required, (with the 'x'), due to historical reasons.
%
% NOTE: that the 'radius' is optional, but if provided can limit (clip)
% the final size of the resulting kernel to a square 2*radius+1 in size.
% The radius should be at least 2 times that of the sigma value, or
% sever clipping and aliasing may result. If not given or set to 0 the
% radius will be determined so as to produce the best minimal error
% result, which is usally much larger than is normally needed.
%
% Blur "{radius},{sigma},{angle}"
% As per Gaussian, but generates a 1 dimensional or linear gaussian
% blur, at the angle given (current restricted to orthogonal angles).
% If a 'radius' is given the kernel is clipped to a width of 2*radius+1.
%
% NOTE that two such blurs perpendicular to each other is equivelent to
% -blur and the previous gaussian, but is often 10 or more times faster.
%
% Comet "{width},{sigma},{angle}"
% Blur in one direction only, mush like how a bright object leaves
% a comet like trail. The Kernel is actually half a gaussian curve,
% Adding two such blurs in oppiste directions produces a Linear Blur.
%
% NOTE: that the first argument is the width of the kernel and not the
% radius of the kernel.
%
% # Still to be implemented...
% #
% # Sharpen "{radius},{sigma}
% # Negated Gaussian (center zeroed and re-normalized),
% # with a 2 unit positive peak. -- Check On line documentation
% #
% # Laplacian "{radius},{sigma}"
% # Laplacian (a mexican hat like) Function
% #
% # LOG "{radius},{sigma1},{sigma2}
% # Laplacian of Gaussian
% #
% # DOG "{radius},{sigma1},{sigma2}
% # Difference of two Gaussians
% #
% # Filter2D
% # Filter1D
% # Set kernel values using a resize filter, and given scale (sigma)
% # Cylindrical or Linear. Is this posible with an image?
% #
%
% Boolean Kernels
%
% Rectangle "{geometry}"
% Simply generate a rectangle of 1's with the size given. You can also
% specify the location of the 'control point', otherwise the closest
% pixel to the center of the rectangle is selected.
%
% Properly centered and odd sized rectangles work the best.
%
% Diamond "[{radius}[,{scale}]]"
% Generate a diamond shaped kernal with given radius to the points.
% Kernel size will again be radius*2+1 square and defaults to radius 1,
% generating a 3x3 kernel that is slightly larger than a square.
%
% Square "[{radius}[,{scale}]]"
% Generate a square shaped kernel of size radius*2+1, and defaulting
% to a 3x3 (radius 1).
%
% Note that using a larger radius for the "Square" or the "Diamond"
% is also equivelent to iterating the basic morphological method
% that many times. However However iterating with the smaller radius 1
% default is actually faster than using a larger kernel radius.
%
% Disk "[{radius}[,{scale}]]
% Generate a binary disk of the radius given, radius may be a float.
% Kernel size will be ceil(radius)*2+1 square.
% NOTE: Here are some disk shapes of specific interest
% "disk:1" => "diamond" or "cross:1"
% "disk:1.5" => "square"
% "disk:2" => "diamond:2"
% "disk:2.5" => a general disk shape of radius 2
% "disk:2.9" => "square:2"
% "disk:3.5" => default - octagonal/disk shape of radius 3
% "disk:4.2" => roughly octagonal shape of radius 4
% "disk:4.3" => a general disk shape of radius 4
% After this all the kernel shape becomes more and more circular.
%
% Because a "disk" is more circular when using a larger radius, using a
% larger radius is preferred over iterating the morphological operation.
%
% Plus "[{radius}[,{scale}]]"
% Generate a kernel in the shape of a 'plus' sign. The length of each
% arm is also the radius, which defaults to 2.
%
% This kernel is not a good general morphological kernel, but is used
% more for highlighting and marking any single pixels in an image using,
% a "Dilate" or "Erode" method as appropriate.
%
% NOTE: "plus:1" is equivelent to a "Diamond" kernel.
%
% Note that unlike other kernels iterating a plus does not produce the
% same result as using a larger radius for the cross.
%
% Distance Measuring Kernels
%
% Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1)
% Manhatten "[{radius}][x{scale}]" square grid distance (default r=1)
% Euclidean "[{radius}][x{scale}]" direct distance (default r=1)
%
% Different types of distance measuring methods, which are used with the
% a 'Distance' morphology method for generating a gradient based on
% distance from an edge of a binary shape, though there is a technique
% for handling a anti-aliased shape.
%
% Chebyshev Distance (also known as Tchebychev Distance) is a value of
% one to any neighbour, orthogonal or diagonal. One why of thinking of
% it is the number of squares a 'King' or 'Queen' in chess needs to
% traverse reach any other position on a chess board. It results in a
% 'square' like distance function, but one where diagonals are closer
% than expected.
%
% Manhatten Distance (also known as Rectilinear Distance, or the Taxi
% Cab metric), is the distance needed when you can only travel in
% orthogonal (horizontal or vertical) only. It is the distance a 'Rook'
% in chess would travel. It results in a diamond like distances, where
% diagonals are further than expected.
%
% Euclidean Distance is the 'direct' or 'as the crow flys distance.
% However by default the kernel size only has a radius of 1, which
% limits the distance to 'Knight' like moves, with only orthogonal and
% diagonal measurements being correct. As such for the default kernel
% you will get octagonal like distance function, which is reasonally
% accurate.
%
% However if you use a larger radius such as "Euclidean:4" you will
% get a much smoother distance gradient from the edge of the shape.
% Of course a larger kernel is slower to use, and generally not needed.
%
% To allow the use of fractional distances that you get with diagonals
% the actual distance is scaled by a fixed value which the user can
% provide. This is not actually nessary for either ""Chebyshev" or
% "Manhatten" distance kernels, but is done for all three distance
% kernels. If no scale is provided it is set to a value of 100,
% allowing for a maximum distance measurement of 655 pixels using a Q16
% version of IM, from any edge. However for small images this can
% result in quite a dark gradient.
%
% See the 'Distance' Morphological Method, for information of how it is
% applied.
%
% # Hit-n-Miss Kernel-Lists -- Still to be implemented
% #
% # specifically for Pruning, Thinning, Thickening
% #
*/
MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
const GeometryInfo *args)
{
KernelInfo
*kernel;
register long
i;
register long
u,
v;
double
nan = sqrt((double)-1.0); /* Special Value : Not A Number */
kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
if (kernel == (KernelInfo *) NULL)
return(kernel);
(void) ResetMagickMemory(kernel,0,sizeof(*kernel));
kernel->minimum = kernel->maximum = 0.0;
kernel->negative_range = kernel->positive_range = 0.0;
kernel->type = type;
kernel->signature = MagickSignature;
switch(type) {
/* Convolution Kernels */
case GaussianKernel:
{ double
sigma = fabs(args->sigma);
sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
kernel->width = kernel->height =
GetOptimalKernelWidth2D(args->rho,sigma);
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->negative_range = kernel->positive_range = 0.0;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
sigma = 2.0*sigma*sigma; /* simplify the expression */
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
kernel->positive_range += (
kernel->values[i] =
exp(-((double)(u*u+v*v))/sigma)
/* / (MagickPI*sigma) */ );
kernel->minimum = 0;
kernel->maximum = kernel->values[
kernel->y*kernel->width+kernel->x ];
ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */
break;
}
case BlurKernel:
{ double
sigma = fabs(args->sigma);
sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
kernel->x = (long) (kernel->width-1)/2;
kernel->height = 1;
kernel->y = 0;
kernel->negative_range = kernel->positive_range = 0.0;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
#if 1
#define KernelRank 3
/* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
** It generates a gaussian 3 times the width, and compresses it into
** the expected range. This produces a closer normalization of the
** resulting kernel, especially for very low sigma values.
** As such while wierd it is prefered.
**
** I am told this method originally came from Photoshop.
*/
sigma *= KernelRank; /* simplify expanded curve */
v = (long) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
(void) ResetMagickMemory(kernel->values,0, (size_t)
kernel->width*sizeof(double));
for ( u=-v; u <= v; u++) {
kernel->values[(u+v)/KernelRank] +=
exp(-((double)(u*u))/(2.0*sigma*sigma))
/* / (MagickSQ2PI*sigma/KernelRank) */ ;
}
for (i=0; i < (long) kernel->width; i++)
kernel->positive_range += kernel->values[i];
#else
for ( i=0, u=-kernel->x; i < kernel->width; i++, u++)
kernel->positive_range += (
kernel->values[i] =
exp(-((double)(u*u))/(2.0*sigma*sigma))
/* / (MagickSQ2PI*sigma) */ );
#endif
kernel->minimum = 0;
kernel->maximum = kernel->values[ kernel->x ];
/* Note that neither methods above generate a normalized kernel,
** though it gets close. The kernel may be 'clipped' by a user defined
** radius, producing a smaller (darker) kernel. Also for very small
** sigma's (> 0.1) the central value becomes larger than one, and thus
** producing a very bright kernel.
*/
/* Normalize the 1D Gaussian Kernel
**
** Because of this the divisor in the above kernel generator is
** not needed, so is not done above.
*/
ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */
/* rotate the kernel by given angle */
RotateKernelInfo(kernel, args->xi);
break;
}
case CometKernel:
{ double
sigma = fabs(args->sigma);
sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
if ( args->rho < 1.0 )
kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
else
kernel->width = (unsigned long)args->rho;
kernel->x = kernel->y = 0;
kernel->height = 1;
kernel->negative_range = kernel->positive_range = 0.0;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
/* A comet blur is half a gaussian curve, so that the object is
** blurred in one direction only. This may not be quite the right
** curve so may change in the future. The function must be normalised.
*/
#if 1
#define KernelRank 3
sigma *= KernelRank; /* simplify expanded curve */
v = (long) kernel->width*KernelRank; /* start/end points to fit range */
(void) ResetMagickMemory(kernel->values,0, (size_t)
kernel->width*sizeof(double));
for ( u=0; u < v; u++) {
kernel->values[u/KernelRank] +=
exp(-((double)(u*u))/(2.0*sigma*sigma))
/* / (MagickSQ2PI*sigma/KernelRank) */ ;
}
for (i=0; i < (long) kernel->width; i++)
kernel->positive_range += kernel->values[i];
#else
for ( i=0; i < (long) kernel->width; i++)
kernel->positive_range += (
kernel->values[i] =
exp(-((double)(i*i))/(2.0*sigma*sigma))
/* / (MagickSQ2PI*sigma) */ );
#endif
kernel->minimum = 0;
kernel->maximum = kernel->values[0];
ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */
RotateKernelInfo(kernel, args->xi); /* Rotate by angle */
break;
}
/* Boolean Kernels */
case RectangleKernel:
case SquareKernel:
{
double scale;
if ( type == SquareKernel )
{
if (args->rho < 1.0)
kernel->width = kernel->height = 3; /* default radius = 1 */
else
kernel->width = kernel->height = (unsigned long) (2*args->rho+1);
kernel->x = kernel->y = (long) (kernel->width-1)/2;
scale = args->sigma;
}
else {
/* NOTE: user defaults set in "AcquireKernelInfo()" */
if ( args->rho < 1.0 || args->sigma < 1.0 )
return(DestroyKernelInfo(kernel)); /* invalid args given */
kernel->width = (unsigned long)args->rho;
kernel->height = (unsigned long)args->sigma;
if ( args->xi < 0.0 || args->xi > (double)kernel->width ||
args->psi < 0.0 || args->psi > (double)kernel->height )
return(DestroyKernelInfo(kernel)); /* invalid args given */
kernel->x = (long) args->xi;
kernel->y = (long) args->psi;
scale = 1.0;
}
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
/* set all kernel values to 1.0 */
u=(long) kernel->width*kernel->height;
for ( i=0; i < u; i++)
kernel->values[i] = scale;
kernel->minimum = kernel->maximum = scale; /* a flat shape */
kernel->positive_range = scale*u;
break;
}
case DiamondKernel:
{
if (args->rho < 1.0)
kernel->width = kernel->height = 3; /* default radius = 1 */
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
/* set all kernel values within diamond area to scale given */
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
if ((labs(u)+labs(v)) <= (long)kernel->x)
kernel->positive_range += kernel->values[i] = args->sigma;
else
kernel->values[i] = nan;
kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
break;
}
case DiskKernel:
{
long
limit;
limit = (long)(args->rho*args->rho);
if (args->rho < 0.1) /* default radius approx 3.5 */
kernel->width = kernel->height = 7L, limit = 10L;
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
/* set all kernel values within disk area to 1.0 */
for ( i=0, v= -kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
if ((u*u+v*v) <= limit)
kernel->positive_range += kernel->values[i] = args->sigma;
else
kernel->values[i] = nan;
kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
break;
}
case PlusKernel:
{
if (args->rho < 1.0)
kernel->width = kernel->height = 5; /* default radius 2 */
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
/* set all kernel values along axises to 1.0 */
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan;
kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0);
break;
}
/* Distance Measuring Kernels */
case ChebyshevKernel:
{
double
scale;
if (args->rho < 1.0)
kernel->width = kernel->height = 3; /* default radius = 1 */
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
kernel->positive_range += ( kernel->values[i] =
scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) );
kernel->maximum = kernel->values[0];
break;
}
case ManhattenKernel:
{
double
scale;
if (args->rho < 1.0)
kernel->width = kernel->height = 3; /* default radius = 1 */
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
kernel->positive_range += ( kernel->values[i] =
scale*(labs(u)+labs(v)) );
kernel->maximum = kernel->values[0];
break;
}
case EuclideanKernel:
{
double
scale;
if (args->rho < 1.0)
kernel->width = kernel->height = 3; /* default radius = 1 */
else
kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
kernel->x = kernel->y = (long) (kernel->width-1)/2;
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++)
for ( u=-kernel->x; u <= (long)kernel->x; u++, i++)
kernel->positive_range += ( kernel->values[i] =
scale*sqrt((double)(u*u+v*v)) );
kernel->maximum = kernel->values[0];
break;
}
/* Undefined Kernels */
case LaplacianKernel:
case LOGKernel:
case DOGKernel:
perror("Kernel Type has not been defined yet");
/* FALL THRU */
default:
/* Generate a No-Op minimal kernel - 1x1 pixel */
kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double));
if (kernel->values == (double *) NULL)
return(DestroyKernelInfo(kernel));
kernel->width = kernel->height = 1;
kernel->x = kernel->x = 0;
kernel->type = UndefinedKernel;
kernel->maximum =
kernel->positive_range =
kernel->values[0] = 1.0; /* a flat single-point no-op kernel! */
break;
}
return(kernel);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C l o n e K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% CloneKernelInfo() creates a new clone of the given Kernel so that its can
% be modified without effecting the original. The cloned kernel should be
% destroyed using DestoryKernelInfo() when no longer needed.
%
% The format of the DestroyKernelInfo method is:
%
% KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel to be cloned
%
*/
MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
{
register long
i;
KernelInfo *
new;
assert(kernel != (KernelInfo *) NULL);
new=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
if (new == (KernelInfo *) NULL)
return(new);
*new = *kernel; /* copy values in structure */
new->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
if (new->values == (double *) NULL)
return(DestroyKernelInfo(new));
for (i=0; i < (long) (kernel->width*kernel->height); i++)
new->values[i] = kernel->values[i];
return(new);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s t r o y K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyKernelInfo() frees the memory used by a Convolution/Morphology
% kernel.
%
% The format of the DestroyKernelInfo method is:
%
% KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel to be destroyed
%
*/
MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
{
assert(kernel != (KernelInfo *) NULL);
kernel->values=(double *) AcquireQuantumMemory(kernel->width,
kernel->height*sizeof(double));
kernel->values=(double *)RelinquishMagickMemory(kernel->values);
kernel=(KernelInfo *) RelinquishMagickMemory(kernel);
return(kernel);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o r p h o l o g y I m a g e C h a n n e l %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MorphologyImageChannel() applies a user supplied kernel to the image
% according to the given mophology method.
%
% The given kernel is assumed to have been pre-scaled appropriatally, usally
% by the kernel generator.
%
% The format of the MorphologyImage method is:
%
% Image *MorphologyImage(const Image *image,MorphologyMethod method,
% const long iterations,KernelInfo *kernel,ExceptionInfo *exception)
% Image *MorphologyImageChannel(const Image *image, const ChannelType
% channel,MorphologyMethod method,const long iterations,
% KernelInfo *kernel,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o method: the morphology method to be applied.
%
% o iterations: apply the operation this many times (or no change).
% A value of -1 means loop until no change found.
% How this is applied may depend on the morphology method.
% Typically this is a value of 1.
%
% o channel: the channel type.
%
% o kernel: An array of double representing the morphology kernel.
% Warning: kernel may be normalized for the Convolve method.
%
% o exception: return any errors or warnings in this structure.
%
%
% TODO: bias and auto-scale handling of the kernel for convolution
% The given kernel is assumed to have been pre-scaled appropriatally, usally
% by the kernel generator.
%
*/
/* Internal function
* Apply the Low-Level Morphology Method using the given Kernel
* Returning the number of pixels that changed.
* Two pre-created images must be provided, no image is created.
*/
static unsigned long MorphologyApply(const Image *image, Image
*result_image, const MorphologyMethod method, const ChannelType channel,
const KernelInfo *kernel, ExceptionInfo *exception)
{
#define MorphologyTag "Morphology/Image"
long
progress,
y, offx, offy,
changed;
MagickBooleanType
status;
MagickPixelPacket
bias;
CacheView
*p_view,
*q_view;
/* Only the most basic morphology is actually performed by this routine */
/*
Apply Basic Morphology to Image.
*/
status=MagickTrue;
changed=0;
progress=0;
GetMagickPixelPacket(image,&bias);
SetMagickPixelPacketBias(image,&bias);
/* Future: handle auto-bias from user, based on kernel input */
p_view=AcquireCacheView(image);
q_view=AcquireCacheView(result_image);
/* Some methods (including convolve) needs use a reflected kernel.
* Adjust 'origin' offsets for this reflected kernel.
*/
offx = kernel->x;
offy = kernel->y;
switch(method) {
case ErodeMorphology:
case ErodeIntensityMorphology:
/* kernel is user as is, without reflection */
break;
case ConvolveMorphology:
case DilateMorphology:
case DilateIntensityMorphology:
case DistanceMorphology:
/* kernel needs to used with reflection */
offx = (long) kernel->width-offx-1;
offy = (long) kernel->height-offy-1;
break;
default:
perror("Not a low level Morpholgy Method");
break;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(progress,status)
#endif
for (y=0; y < (long) image->rows; y++)
{
MagickBooleanType
sync;
register const PixelPacket
*restrict p;
register const IndexPacket
*restrict p_indexes;
register PixelPacket
*restrict q;
register IndexPacket
*restrict q_indexes;
register long
x;
unsigned long
r;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(p_view, -offx, y-offy,
image->columns+kernel->width, kernel->height, exception);
q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
p_indexes=GetCacheViewVirtualIndexQueue(p_view);
q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
r = (image->columns+kernel->width)*offy+offx; /* constant */
for (x=0; x < (long) image->columns; x++)
{
long
v;
register long
u;
register const double
*restrict k;
register const PixelPacket
*restrict k_pixels;
register const IndexPacket
*restrict k_indexes;
MagickPixelPacket
result;
/* Copy input to ouput image for unused channels
* This removes need for 'cloning' a new image every iteration
*/
*q = p[r];
if (image->colorspace == CMYKColorspace)
q_indexes[x] = p_indexes[r];
result.green=(MagickRealType) 0;
result.blue=(MagickRealType) 0;
result.opacity=(MagickRealType) 0;
result.index=(MagickRealType) 0;
switch (method) {
case ConvolveMorphology:
/* Set the user defined bias of the weighted average output
**
** FUTURE: provide some way for internal functions to disable
** user defined bias and scaling effects.
*/
result=bias;
break;
case DilateMorphology:
result.red =
result.green =
result.blue =
result.opacity =
result.index = -MagickHuge;
break;
case ErodeMorphology:
result.red =
result.green =
result.blue =
result.opacity =
result.index = +MagickHuge;
break;
case DilateIntensityMorphology:
case ErodeIntensityMorphology:
result.red = 0.0; /* flag indicating first match found */
break;
default:
/* Otherwise just start with the original pixel value */
result.red = (MagickRealType) p[r].red;
result.green = (MagickRealType) p[r].green;
result.blue = (MagickRealType) p[r].blue;
result.opacity = QuantumRange - (MagickRealType) p[r].opacity;
if ( image->colorspace == CMYKColorspace)
result.index = (MagickRealType) p_indexes[r];
break;
}
switch ( method ) {
case ConvolveMorphology:
/* Weighted Average of pixels using reflected kernel
**
** NOTE for correct working of this operation for asymetrical
** kernels, the kernel needs to be applied in its reflected form.
** That is its values needs to be reversed.
**
** Correlation is actually the same as this but without reflecting
** the kernel, and thus 'lower-level' that Convolution. However
** as Convolution is the more common method used, and it does not
** really cost us much in terms of processing to use a reflected
** kernel it is Convolution that is implemented.
**
** Correlation will have its kernel reflected before calling
** this function to do a Convolve.
**
** For more details of Correlation vs Convolution see
** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
*/
if (((channel & OpacityChannel) == 0) ||
(image->matte == MagickFalse))
{
/* Convolution without transparency effects */
k = &kernel->values[ kernel->width*kernel->height-1 ];
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k--) {
if ( IsNan(*k) ) continue;
result.red += (*k)*k_pixels[u].red;
result.green += (*k)*k_pixels[u].green;
result.blue += (*k)*k_pixels[u].blue;
/* result.opacity += not involved here */
if ( image->colorspace == CMYKColorspace)
result.index += (*k)*k_indexes[u];
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
}
else
{ /* Kernel & Alpha weighted Convolution */
MagickRealType
alpha, /* alpha value * kernel weighting */
gamma; /* weighting divisor */
gamma=0.0;
k = &kernel->values[ kernel->width*kernel->height-1 ];
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k--) {
if ( IsNan(*k) ) continue;
alpha=(*k)*(QuantumScale*(QuantumRange-
k_pixels[u].opacity));
gamma += alpha;
result.red += alpha*k_pixels[u].red;
result.green += alpha*k_pixels[u].green;
result.blue += alpha*k_pixels[u].blue;
result.opacity += (*k)*(QuantumRange-k_pixels[u].opacity);
if ( image->colorspace == CMYKColorspace)
result.index += alpha*k_indexes[u];
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
result.red *= gamma;
result.green *= gamma;
result.blue *= gamma;
result.opacity *= gamma;
result.index *= gamma;
}
break;
case ErodeMorphology:
/* Minimize Value within kernel neighbourhood
**
** NOTE that the kernel is not reflected for this operation!
**
** NOTE: in normal Greyscale Morphology, the kernel value should
** be added to the real value, this is currently not done, due to
** the nature of the boolean kernels being used.
*/
k = kernel->values;
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k++) {
if ( IsNan(*k) || (*k) < 0.5 ) continue;
Minimize(result.red, (double) k_pixels[u].red);
Minimize(result.green, (double) k_pixels[u].green);
Minimize(result.blue, (double) k_pixels[u].blue);
Minimize(result.opacity, QuantumRange-(double) k_pixels[u].opacity);
if ( image->colorspace == CMYKColorspace)
Minimize(result.index, (double) k_indexes[u]);
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
break;
case DilateMorphology:
/* Maximize Value within kernel neighbourhood
**
** NOTE for correct working of this operation for asymetrical
** kernels, the kernel needs to be applied in its reflected form.
** That is its values needs to be reversed.
**
** NOTE: in normal Greyscale Morphology, the kernel value should
** be added to the real value, this is currently not done, due to
** the nature of the boolean kernels being used.
**
*/
k = &kernel->values[ kernel->width*kernel->height-1 ];
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k--) {
if ( IsNan(*k) || (*k) < 0.5 ) continue;
Maximize(result.red, (double) k_pixels[u].red);
Maximize(result.green, (double) k_pixels[u].green);
Maximize(result.blue, (double) k_pixels[u].blue);
Maximize(result.opacity, QuantumRange-(double) k_pixels[u].opacity);
if ( image->colorspace == CMYKColorspace)
Maximize(result.index, (double) k_indexes[u]);
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
break;
case ErodeIntensityMorphology:
/* Select Pixel with Minimum Intensity within kernel neighbourhood
**
** WARNING: the intensity test fails for CMYK and does not
** take into account the moderating effect of teh alpha channel
** on the intensity.
**
** NOTE that the kernel is not reflected for this operation!
*/
k = kernel->values;
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k++) {
if ( IsNan(*k) || (*k) < 0.5 ) continue;
if ( result.red == 0.0 ||
PixelIntensity(&(k_pixels[u])) < PixelIntensity(q) ) {
/* copy the whole pixel - no channel selection */
*q = k_pixels[u];
if ( result.red > 0.0 ) changed++;
result.red = 1.0;
}
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
break;
case DilateIntensityMorphology:
/* Select Pixel with Maximum Intensity within kernel neighbourhood
**
** WARNING: the intensity test fails for CMYK and does not
** take into account the moderating effect of teh alpha channel
** on the intensity.
**
** NOTE for correct working of this operation for asymetrical
** kernels, the kernel needs to be applied in its reflected form.
** That is its values needs to be reversed.
*/
k = &kernel->values[ kernel->width*kernel->height-1 ];
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k--) {
if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */
if ( result.red == 0.0 ||
PixelIntensity(&(k_pixels[u])) > PixelIntensity(q) ) {
/* copy the whole pixel - no channel selection */
*q = k_pixels[u];
if ( result.red > 0.0 ) changed++;
result.red = 1.0;
}
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
break;
case DistanceMorphology:
/* Add kernel Value and select the minimum value found.
** The result is a iterative distance from edge of image shape.
**
** All Distance Kernels are symetrical, but that may not always
** be the case. For example how about a distance from left edges?
** To work correctly with asymetrical kernels the reflected kernel
** needs to be applied.
*/
#if 0
/* No need to do distance morphology if original value is zero
** Unfortunatally I have not been able to get this right
** when channel selection also becomes involved. -- Arrgghhh
*/
if ( ((channel & RedChannel) == 0 && p[r].red == 0)
|| ((channel & GreenChannel) == 0 && p[r].green == 0)
|| ((channel & BlueChannel) == 0 && p[r].blue == 0)
|| ((channel & OpacityChannel) == 0 && p[r].opacity == 0)
|| (( (channel & IndexChannel) == 0
|| image->colorspace != CMYKColorspace
) && p_indexes[x] ==0 )
)
break;
#endif
k = &kernel->values[ kernel->width*kernel->height-1 ];
k_pixels = p;
k_indexes = p_indexes;
for (v=0; v < (long) kernel->height; v++) {
for (u=0; u < (long) kernel->width; u++, k--) {
if ( IsNan(*k) ) continue;
Minimize(result.red, (*k)+k_pixels[u].red);
Minimize(result.green, (*k)+k_pixels[u].green);
Minimize(result.blue, (*k)+k_pixels[u].blue);
Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity);
if ( image->colorspace == CMYKColorspace)
Minimize(result.index, (*k)+k_indexes[u]);
}
k_pixels += image->columns+kernel->width;
k_indexes += image->columns+kernel->width;
}
break;
case UndefinedMorphology:
default:
break; /* Do nothing */
}
switch ( method ) {
case UndefinedMorphology:
case DilateIntensityMorphology:
case ErodeIntensityMorphology:
break; /* full pixel was directly assigned - not a channel method */
default:
/* Assign the results */
if ((channel & RedChannel) != 0)
q->red = ClampToQuantum(result.red);
if ((channel & GreenChannel) != 0)
q->green = ClampToQuantum(result.green);
if ((channel & BlueChannel) != 0)
q->blue = ClampToQuantum(result.blue);
if ((channel & OpacityChannel) != 0
&& image->matte == MagickTrue )
q->opacity = ClampToQuantum(QuantumRange-result.opacity);
if ((channel & IndexChannel) != 0
&& image->colorspace == CMYKColorspace)
q_indexes[x] = ClampToQuantum(result.index);
break;
}
if ( ( p[r].red != q->red )
|| ( p[r].green != q->green )
|| ( p[r].blue != q->blue )
|| ( p[r].opacity != q->opacity )
|| ( image->colorspace == CMYKColorspace &&
p_indexes[r] != q_indexes[x] ) )
changed++; /* The pixel had some value changed! */
p++;
q++;
} /* x */
sync=SyncCacheViewAuthenticPixels(q_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_MorphologyImage)
#endif
proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
} /* y */
result_image->type=image->type;
q_view=DestroyCacheView(q_view);
p_view=DestroyCacheView(p_view);
return(status ? (unsigned long) changed : 0);
}
MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod
method, const long iterations,const KernelInfo *kernel, ExceptionInfo
*exception)
{
Image
*morphology_image;
morphology_image=MorphologyImageChannel(image,DefaultChannels,method,
iterations,kernel,exception);
return(morphology_image);
}
MagickExport Image *MorphologyImageChannel(const Image *image,
const ChannelType channel,const MorphologyMethod method,
const long iterations,const KernelInfo *kernel,ExceptionInfo *exception)
{
long
count;
Image
*new_image,
*old_image,
*grad_image;
const char
*artifact;
unsigned long
changed,
limit;
KernelInfo
*curr_kernel;
MorphologyMethod
curr_method;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
assert(kernel != (KernelInfo *) NULL);
assert(kernel->signature == MagickSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ( iterations == 0 )
return((Image *)NULL); /* null operation - nothing to do! */
/* kernel must be valid at this point
* (except maybe for posible future morphology methods like "Prune"
*/
assert(kernel != (KernelInfo *)NULL);
count = 0; /* interation count */
changed = 1; /* if compound method assume image was changed */
curr_kernel = (KernelInfo *)kernel; /* allow kernel and method */
curr_method = method; /* to be changed as nessary */
limit = (unsigned long) iterations;
if ( iterations < 0 )
limit = image->columns > image->rows ? image->columns : image->rows;
/* Third-level morphology methods */
grad_image=(Image *) NULL;
switch( curr_method ) {
case EdgeMorphology:
grad_image = MorphologyImageChannel(image, channel,
DilateMorphology, iterations, curr_kernel, exception);
/* FALL-THRU */
case EdgeInMorphology:
curr_method = ErodeMorphology;
break;
case EdgeOutMorphology:
curr_method = DilateMorphology;
break;
case TopHatMorphology:
curr_method = OpenMorphology;
break;
case BottomHatMorphology:
curr_method = CloseMorphology;
break;
default:
break; /* not a third-level method */
}
/* Second-level morphology methods */
switch( curr_method ) {
case OpenMorphology:
/* Open is a Erode then a Dilate without reflection */
new_image = MorphologyImageChannel(image, channel,
ErodeMorphology, iterations, curr_kernel, exception);
if (new_image == (Image *) NULL)
return((Image *) NULL);
curr_method = DilateMorphology;
break;
case OpenIntensityMorphology:
new_image = MorphologyImageChannel(image, channel,
ErodeIntensityMorphology, iterations, curr_kernel, exception);
if (new_image == (Image *) NULL)
return((Image *) NULL);
curr_method = DilateIntensityMorphology;
break;
case CloseMorphology:
/* Close is a Dilate then Erode using reflected kernel */
/* A reflected kernel is needed for a Close */
if ( curr_kernel == kernel )
curr_kernel = CloneKernelInfo(kernel);
RotateKernelInfo(curr_kernel,180);
new_image = MorphologyImageChannel(image, channel,
DilateMorphology, iterations, curr_kernel, exception);
if (new_image == (Image *) NULL)
return((Image *) NULL);
curr_method = ErodeMorphology;
break;
case CloseIntensityMorphology:
/* A reflected kernel is needed for a Close */
if ( curr_kernel == kernel )
curr_kernel = CloneKernelInfo(kernel);
RotateKernelInfo(curr_kernel,180);
new_image = MorphologyImageChannel(image, channel,
DilateIntensityMorphology, iterations, curr_kernel, exception);
if (new_image == (Image *) NULL)
return((Image *) NULL);
curr_method = ErodeIntensityMorphology;
break;
case CorrelateMorphology:
/* A Correlation is actually a Convolution with a reflected kernel.
** However a Convolution is a weighted sum with a reflected kernel.
** It may seem stange to convert a Correlation into a Convolution
** as the Correleation is the simplier method, but Convolution is
** much more commonly used, and it makes sense to implement it directly
** so as to avoid the need to duplicate the kernel when it is not
** required (which is typically the default).
*/
if ( curr_kernel == kernel )
curr_kernel = CloneKernelInfo(kernel);
RotateKernelInfo(curr_kernel,180);
curr_method = ConvolveMorphology;
/* FALL-THRU into Correlate (weigthed sum without reflection) */
case ConvolveMorphology:
/* Scale or Normalize kernel, according to user wishes
** before using it for the Convolve/Correlate method.
**
** FUTURE: provide some way for internal functions to disable
** user bias and scaling effects.
*/
artifact = GetImageArtifact(image,"convolve:scale");
if ( artifact != (char *)NULL ) {
MagickStatusType
flags;
GeometryInfo
args;
if ( curr_kernel == kernel )
curr_kernel = CloneKernelInfo(kernel);
args.rho = 1.0;
flags = ParseGeometry(artifact, &args);
ScaleKernelInfo(curr_kernel, args.rho, flags);
}
/* FALL-THRU to do the first, and typically the only iteration */
default:
/* Do a single iteration using the Low-Level Morphology method!
** This ensures a "new_image" has been generated, but allows us to skip
** the creation of 'old_image' if no more iterations are needed.
**
** The "curr_method" should also be set to a low-level method that is
** understood by the MorphologyApply() internal function.
*/
new_image=CloneImage(image,0,0,MagickTrue,exception);
if (new_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(new_image,DirectClass) == MagickFalse)
{
InheritException(exception,&new_image->exception);
new_image=DestroyImage(new_image);
return((Image *) NULL);
}
changed = MorphologyApply(image,new_image,curr_method,channel,curr_kernel,
exception);
count++;
if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
fprintf(stderr, "Morphology %s:%ld => Changed %lu\n",
MagickOptionToMnemonic(MagickMorphologyOptions, curr_method),
count, changed);
break;
}
/* At this point the "curr_method" should not only be set to a low-level
** method that is understood by the MorphologyApply() internal function,
** but "new_image" should now be defined, as the image to apply the
** "curr_method" to.
*/
/* Repeat the low-level morphology until count or no change reached */
if ( count < (long) limit && changed > 0 ) {
old_image = CloneImage(new_image,0,0,MagickTrue,exception);
if (old_image == (Image *) NULL)
return(DestroyImage(new_image));
if (SetImageStorageClass(old_image,DirectClass) == MagickFalse)
{
InheritException(exception,&old_image->exception);
old_image=DestroyImage(old_image);
return(DestroyImage(new_image));
}
while( count < (long) limit && changed != 0 )
{
Image *tmp = old_image;
old_image = new_image;
new_image = tmp;
changed = MorphologyApply(old_image,new_image,curr_method,channel,
curr_kernel, exception);
count++;
if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
fprintf(stderr, "Morphology %s:%ld => Changed %lu\n",
MagickOptionToMnemonic(MagickMorphologyOptions, curr_method),
count, changed);
}
old_image=DestroyImage(old_image);
}
/* We are finished with kernel - destroy it if we made a clone */
if ( curr_kernel != kernel )
curr_kernel=DestroyKernelInfo(curr_kernel);
/* Third-level Subtractive methods post-processing */
switch( method ) {
case EdgeOutMorphology:
case EdgeInMorphology:
case TopHatMorphology:
case BottomHatMorphology:
/* Get Difference relative to the original image */
(void) CompositeImageChannel(new_image, channel, DifferenceCompositeOp,
image, 0, 0);
break;
case EdgeMorphology: /* subtract the Erode from a Dilate */
(void) CompositeImageChannel(new_image, channel, DifferenceCompositeOp,
grad_image, 0, 0);
grad_image=DestroyImage(grad_image);
break;
default:
break;
}
return(new_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ R o t a t e K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RotateKernelInfo() rotates the kernel by the angle given. Currently it is
% restricted to 90 degree angles, but this may be improved in the future.
%
% The format of the RotateKernelInfo method is:
%
% void RotateKernelInfo(KernelInfo *kernel, double angle)
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel
%
% o angle: angle to rotate in degrees
%
% This function is only internel to this module, as it is not finalized,
% especially with regard to non-orthogonal angles, and rotation of larger
% 2D kernels.
*/
static void RotateKernelInfo(KernelInfo *kernel, double angle)
{
/* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical
**
** TODO: expand beyond simple 90 degree rotates, flips and flops
*/
/* Modulus the angle */
angle = fmod(angle, 360.0);
if ( angle < 0 )
angle += 360.0;
if ( 315.0 < angle || angle <= 45.0 )
return; /* no change! - At least at this time */
switch (kernel->type) {
/* These built-in kernels are cylindrical kernels, rotating is useless */
case GaussianKernel:
case LaplacianKernel:
case LOGKernel:
case DOGKernel:
case DiskKernel:
case ChebyshevKernel:
case ManhattenKernel:
case EuclideanKernel:
return;
/* These may be rotatable at non-90 angles in the future */
/* but simply rotating them in multiples of 90 degrees is useless */
case SquareKernel:
case DiamondKernel:
case PlusKernel:
return;
/* These only allows a +/-90 degree rotation (by transpose) */
/* A 180 degree rotation is useless */
case BlurKernel:
case RectangleKernel:
if ( 135.0 < angle && angle <= 225.0 )
return;
if ( 225.0 < angle && angle <= 315.0 )
angle -= 180;
break;
/* these are freely rotatable in 90 degree units */
case CometKernel:
case UndefinedKernel:
case UserDefinedKernel:
break;
}
if ( 135.0 < angle && angle <= 225.0 )
{
/* For a 180 degree rotation - also know as a reflection */
/* This is actually a very very common operation! */
/* Basically all that is needed is a reversal of the kernel data! */
unsigned long
i,j;
register double
*k,t;
k=kernel->values;
for ( i=0, j=kernel->width*kernel->height-1; i<j; i++, j--)
t=k[i], k[i]=k[j], k[j]=t;
kernel->x = (long) kernel->width - kernel->x - 1;
kernel->y = (long) kernel->height - kernel->y - 1;
angle = fmod(angle+180.0, 360.0);
}
if ( 45.0 < angle && angle <= 135.0 )
{ /* Do a transpose and a flop, of the image, which results in a 90
* degree rotation using two mirror operations.
*
* WARNING: this assumes the original image was a 1 dimentional image
* but currently that is the only built-ins it is applied to.
*/
long
t;
t = (long) kernel->width;
kernel->width = kernel->height;
kernel->height = (unsigned long) t;
t = kernel->x;
kernel->x = kernel->y;
kernel->y = t;
angle = fmod(450.0 - angle, 360.0);
}
/* At this point angle should be between -45 (315) and +45 degrees
* In the future some form of non-orthogonal angled rotates could be
* performed here, posibily with a linear kernel restriction.
*/
#if 0
Not currently in use!
{ /* Do a flop, this assumes kernel is horizontally symetrical.
* Each row of the kernel needs to be reversed!
*/
unsigned long
y;
register long
x,r;
register double
*k,t;
for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width)
for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
t=k[x], k[x]=k[r], k[r]=t;
kernel->x = kernel->width - kernel->x - 1;
angle = fmod(angle+180.0, 360.0);
}
#endif
return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S c a l e K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ScaleKernelInfo() scales the kernel by the given amount, with or without
% normalization of the sum of the kernel values.
%
% By default (no flags given) the values within the kernel is scaled
% according the given scaling factor.
%
% If any 'normalize_flags' are given the kernel will be normalized and then
% further scaled by the scaleing factor value given. A 'PercentValue' flag
% will cause the given scaling factor to be divided by one hundred percent.
%
% Kernel normalization ('normalize_flags' given) is designed to ensure that
% any use of the kernel scaling factor with 'Convolve' or 'Correlate'
% morphology methods will fall into -1.0 to +1.0 range. Note however that
% for non-HDRI versions of IM this may cause images to have any negative
% results clipped, unless some 'clip' any negative output from 'Convolve'
% with the use of some kernels.
%
% More specifically. Kernels which only contain positive values (such as a
% 'Gaussian' kernel) will be scaled so that those values sum to +1.0,
% ensuring a 0.0 to +1.0 convolution output range for non-HDRI images.
%
% For Kernels that contain some negative values, (such as 'Sharpen' kernels)
% the kernel will be scaled by the absolute of the sum of kernel values, so
% that it will generally fall within the +/- 1.0 range.
%
% For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel
% will be scaled by just the sum of the postive values, so that its output
% range will again fall into the +/- 1.0 range.
%
% For special kernels designed for locating shapes using 'Correlate', (often
% only containing +1 and -1 values, representing foreground/brackground
% matching) a special normalization method is provided to scale the positive
% values seperatally to those of the negative values, so the kernel will be
% forced to become a zero-sum kernel better suited to such searches.
%
% WARNING: Correct normalization of the kernal assumes that the '*_range'
% attributes within the kernel structure have been correctly set during the
% kernels creation.
%
% NOTE: The values used for 'normalize_flags' have been selected specifically
% to match the use of geometry options, so that '!' means NormalizeValue, '^'
% means CorrelateNormalizeValue, and '%' means PercentValue. All other
% GeometryFlags values are ignored.
%
% The format of the ScaleKernelInfo method is:
%
% void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,
% const MagickStatusType normalize_flags )
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel
%
% o scaling_factor:
% multiply all values (after normalization) by this factor if not
% zero. If the kernel is normalized regardless of any flags.
%
% o normalize_flags:
% GeometryFlags defining normalization method to use.
% specifically: NormalizeValue, CorrelateNormalizeValue,
% and/or PercentValue
%
% This function is internal to this module only at this time, but can be
% exported to other modules if needed.
*/
MagickExport void ScaleKernelInfo(KernelInfo *kernel,
const double scaling_factor,const GeometryFlags normalize_flags)
{
register long
i;
register double
pos_scale,
neg_scale;
pos_scale = 1.0;
if ( (normalize_flags&NormalizeValue) != 0 ) {
/* normalize kernel appropriately */
if ( fabs(kernel->positive_range + kernel->negative_range) > MagickEpsilon )
pos_scale = fabs(kernel->positive_range + kernel->negative_range);
else
pos_scale = kernel->positive_range; /* special zero-summing kernel */
}
/* force kernel into being a normalized zero-summing kernel */
if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) {
pos_scale = ( fabs(kernel->positive_range) > MagickEpsilon )
? kernel->positive_range : 1.0;
neg_scale = ( fabs(kernel->negative_range) > MagickEpsilon )
? -kernel->negative_range : 1.0;
}
else
neg_scale = pos_scale;
/* finialize scaling_factor for positive and negative components */
pos_scale = scaling_factor/pos_scale;
neg_scale = scaling_factor/neg_scale;
if ( (normalize_flags&PercentValue) != 0 ) {
pos_scale /= 100.0;
neg_scale /= 100.0;
}
for (i=0; i < (long) (kernel->width*kernel->height); i++)
if ( ! IsNan(kernel->values[i]) )
kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale;
/* convolution output range */
kernel->positive_range *= pos_scale;
kernel->negative_range *= neg_scale;
/* maximum and minimum values in kernel */
kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale;
kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale;
/* swap kernel settings if user scaling factor is negative */
if ( scaling_factor < MagickEpsilon ) {
double t;
t = kernel->positive_range;
kernel->positive_range = kernel->negative_range;
kernel->negative_range = t;
t = kernel->maximum;
kernel->maximum = kernel->minimum;
kernel->minimum = 1;
}
return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S h o w K e r n e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ShowKernelInfo() outputs the details of the given kernel defination to
% standard error, generally due to a users 'showkernel' option request.
%
% The format of the ShowKernel method is:
%
% void ShowKernelInfo(KernelInfo *kernel)
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel
%
% This function is internal to this module only at this time. That may change
% in the future.
*/
MagickExport void ShowKernelInfo(KernelInfo *kernel)
{
long
i, u, v;
fprintf(stderr,
"Kernel \"%s\" of size %lux%lu%+ld%+ld with values from %.*lg to %.*lg\n",
MagickOptionToMnemonic(MagickKernelOptions, kernel->type),
kernel->width, kernel->height,
kernel->x, kernel->y,
GetMagickPrecision(), kernel->minimum,
GetMagickPrecision(), kernel->maximum);
fprintf(stderr, "Forming convolution output range from %.*lg to %.*lg%s\n",
GetMagickPrecision(), kernel->negative_range,
GetMagickPrecision(), kernel->positive_range,
/*kernel->normalized == MagickTrue ? " (normalized)" : */ "" );
for (i=v=0; v < (long) kernel->height; v++) {
fprintf(stderr,"%2ld:",v);
for (u=0; u < (long) kernel->width; u++, i++)
if ( IsNan(kernel->values[i]) )
fprintf(stderr," %*s", GetMagickPrecision()+2, "nan");
else
fprintf(stderr," %*.*lg", GetMagickPrecision()+2,
GetMagickPrecision(), kernel->values[i]);
fprintf(stderr,"\n");
}
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ Z e r o K e r n e l N a n s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ZeroKernelNans() replaces any special 'nan' value that may be present in
% the kernel with a zero value. This is typically done when the kernel will
% be used in special hardware (GPU) convolution processors, to simply
% matters.
%
% The format of the ZeroKernelNans method is:
%
% voidZeroKernelNans (KernelInfo *kernel)
%
% A description of each parameter follows:
%
% o kernel: the Morphology/Convolution kernel
%
% FUTURE: return the information in a string for API usage.
*/
MagickExport void ZeroKernelNans(KernelInfo *kernel)
{
register long
i;
for (i=0; i < (long) (kernel->width*kernel->height); i++)
if ( IsNan(kernel->values[i]) )
kernel->values[i] = 0.0;
return;
}
|