1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
|
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% RRRR EEEEE SSSSS AAA M M PPPP L EEEEE %
% R R E SS A A MM MM P P L E %
% RRRR EEE SSS AAAAA M M M PPPP L EEE %
% R R E SS A A M M P L E %
% R R EEEEE SSSSS A A M M P LLLLL EEEEE %
% %
% %
% MagickCore Pixel Resampling Methods %
% %
% Software Design %
% John Cristy %
% Anthony Thyssen %
% August 2007 %
% %
% %
% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/artifact.h"
#include "magick/color-private.h"
#include "magick/cache.h"
#include "magick/draw.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/log.h"
#include "magick/memory_.h"
#include "magick/pixel-private.h"
#include "magick/quantum.h"
#include "magick/random_.h"
#include "magick/resample.h"
#include "magick/resize.h"
#include "magick/resize-private.h"
#include "magick/transform.h"
#include "magick/signature-private.h"
/*
Typedef declarations.
*/
#define WLUT_WIDTH 1024
struct _ResampleFilter
{
CacheView
*view;
Image
*image;
ExceptionInfo
*exception;
MagickBooleanType
debug;
/* Information about image being resampled */
long
image_area;
InterpolatePixelMethod
interpolate;
VirtualPixelMethod
virtual_pixel;
FilterTypes
filter;
/* processing settings needed */
MagickBooleanType
limit_reached,
do_interpolate,
average_defined;
MagickPixelPacket
average_pixel;
/* current ellipitical area being resampled around center point */
double
A, B, C,
sqrtA, sqrtC, sqrtU, slope;
/* LUT of weights for filtered average in elliptical area */
double
filter_lut[WLUT_WIDTH],
support;
unsigned long
signature;
};
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e R e s a m p l e I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireResampleFilter() initializes the information resample needs do to a
% scaled lookup of a color from an image, using area sampling.
%
% The algorithm is based on a Elliptical Weighted Average, where the pixels
% found in a large elliptical area is averaged together according to a
% weighting (filter) function. For more details see "Fundamentals of Texture
% Mapping and Image Warping" a master's thesis by Paul.S.Heckbert, June 17,
% 1989. Available for free from, http://www.cs.cmu.edu/~ph/
%
% As EWA resampling (or any sort of resampling) can require a lot of
% calculations to produce a distorted scaling of the source image for each
% output pixel, the ResampleFilter structure generated holds that information
% between individual image resampling.
%
% This function will make the appropriate AcquireCacheView() calls
% to view the image, calling functions do not need to open a cache view.
%
% Usage Example...
% resample_filter=AcquireResampleFilter(image,exception);
% for (y=0; y < (long) image->rows; y++) {
% for (x=0; x < (long) image->columns; x++) {
% X= ....; Y= ....;
% ScaleResampleFilter(resample_filter, ... scaling vectors ...);
% (void) ResamplePixelColor(resample_filter,X,Y,&pixel);
% ... assign resampled pixel value ...
% }
% }
% DestroyResampleFilter(resample_filter);
%
% The format of the AcquireResampleFilter method is:
%
% ResampleFilter *AcquireResampleFilter(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ResampleFilter *AcquireResampleFilter(const Image *image,
ExceptionInfo *exception)
{
register ResampleFilter
*resample_filter;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
resample_filter=(ResampleFilter *) AcquireMagickMemory(
sizeof(*resample_filter));
if (resample_filter == (ResampleFilter *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(resample_filter,0,sizeof(*resample_filter));
resample_filter->image=ReferenceImage((Image *) image);
resample_filter->view=AcquireCacheView(resample_filter->image);
resample_filter->exception=exception;
resample_filter->debug=IsEventLogging();
resample_filter->signature=MagickSignature;
resample_filter->image_area = (long) resample_filter->image->columns *
resample_filter->image->rows;
resample_filter->average_defined = MagickFalse;
/* initialise the resampling filter settings */
SetResampleFilter(resample_filter, resample_filter->image->filter,
resample_filter->image->blur);
resample_filter->interpolate = resample_filter->image->interpolate;
resample_filter->virtual_pixel=GetImageVirtualPixelMethod(image);
/* init scale to a default of a unit circle */
ScaleResampleFilter(resample_filter, 1.0, 0.0, 0.0, 1.0);
return(resample_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s t r o y R e s a m p l e I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyResampleFilter() finalizes and cleans up the resampling
% resample_filter as returned by AcquireResampleFilter(), freeing any memory
% or other information as needed.
%
% The format of the DestroyResampleFilter method is:
%
% ResampleFilter *DestroyResampleFilter(ResampleFilter *resample_filter)
%
% A description of each parameter follows:
%
% o resample_filter: resampling information structure
%
*/
MagickExport ResampleFilter *DestroyResampleFilter(
ResampleFilter *resample_filter)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->view=DestroyCacheView(resample_filter->view);
resample_filter->image=DestroyImage(resample_filter->image);
resample_filter->signature=(~MagickSignature);
resample_filter=(ResampleFilter *) RelinquishMagickMemory(resample_filter);
return(resample_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I n t e r p o l a t e R e s a m p l e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InterpolateResampleFilter() applies bi-linear or tri-linear interpolation
% between a floating point coordinate and the pixels surrounding that
% coordinate. No pixel area resampling, or scaling of the result is
% performed.
%
% The format of the InterpolateResampleFilter method is:
%
% MagickBooleanType InterpolateResampleFilter(
% ResampleInfo *resample_filter,const InterpolatePixelMethod method,
% const double x,const double y,MagickPixelPacket *pixel)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o method: the pixel clor interpolation method.
%
% o x,y: A double representing the current (x,y) position of the pixel.
%
% o pixel: return the interpolated pixel here.
%
*/
static inline double MagickMax(const double x,const double y)
{
if (x > y)
return(x);
return(y);
}
static void BicubicInterpolate(const MagickPixelPacket *pixels,const double dx,
MagickPixelPacket *pixel)
{
MagickRealType
dx2,
p,
q,
r,
s;
dx2=dx*dx;
p=(pixels[3].red-pixels[2].red)-(pixels[0].red-pixels[1].red);
q=(pixels[0].red-pixels[1].red)-p;
r=pixels[2].red-pixels[0].red;
s=pixels[1].red;
pixel->red=(dx*dx2*p)+(dx2*q)+(dx*r)+s;
p=(pixels[3].green-pixels[2].green)-(pixels[0].green-pixels[1].green);
q=(pixels[0].green-pixels[1].green)-p;
r=pixels[2].green-pixels[0].green;
s=pixels[1].green;
pixel->green=(dx*dx2*p)+(dx2*q)+(dx*r)+s;
p=(pixels[3].blue-pixels[2].blue)-(pixels[0].blue-pixels[1].blue);
q=(pixels[0].blue-pixels[1].blue)-p;
r=pixels[2].blue-pixels[0].blue;
s=pixels[1].blue;
pixel->blue=(dx*dx2*p)+(dx2*q)+(dx*r)+s;
p=(pixels[3].opacity-pixels[2].opacity)-(pixels[0].opacity-pixels[1].opacity);
q=(pixels[0].opacity-pixels[1].opacity)-p;
r=pixels[2].opacity-pixels[0].opacity;
s=pixels[1].opacity;
pixel->opacity=(dx*dx2*p)+(dx2*q)+(dx*r)+s;
if (pixel->colorspace == CMYKColorspace)
{
p=(pixels[3].index-pixels[2].index)-(pixels[0].index-pixels[1].index);
q=(pixels[0].index-pixels[1].index)-p;
r=pixels[2].index-pixels[0].index;
s=pixels[1].index;
pixel->index=(dx*dx2*p)+(dx2*q)+(dx*r)+s;
}
}
static inline MagickRealType CubicWeightingFunction(const MagickRealType x)
{
MagickRealType
alpha,
gamma;
alpha=MagickMax(x+2.0,0.0);
gamma=1.0*alpha*alpha*alpha;
alpha=MagickMax(x+1.0,0.0);
gamma-=4.0*alpha*alpha*alpha;
alpha=MagickMax(x+0.0,0.0);
gamma+=6.0*alpha*alpha*alpha;
alpha=MagickMax(x-1.0,0.0);
gamma-=4.0*alpha*alpha*alpha;
return(gamma/6.0);
}
static inline double MeshInterpolate(const PointInfo *delta,const double p,
const double x,const double y)
{
return(delta->x*x+delta->y*y+(1.0-delta->x-delta->y)*p);
}
static inline long NearestNeighbor(MagickRealType x)
{
if (x >= 0.0)
return((long) (x+0.5));
return((long) (x-0.5));
}
static MagickBooleanType InterpolateResampleFilter(
ResampleFilter *resample_filter,const InterpolatePixelMethod method,
const double x,const double y,MagickPixelPacket *pixel)
{
MagickBooleanType
status;
register const IndexPacket
*indexes;
register const PixelPacket
*p;
register long
i;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
status=MagickTrue;
switch (method)
{
case AverageInterpolatePixel:
{
MagickPixelPacket
pixels[16];
MagickRealType
alpha[16],
gamma;
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long)
floor(y)-1,4,4,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
for (i=0; i < 16L; i++)
{
GetMagickPixelPacket(resample_filter->image,pixels+i);
SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i);
alpha[i]=1.0;
if (resample_filter->image->matte != MagickFalse)
{
alpha[i]=QuantumScale*((MagickRealType) GetAlphaPixelComponent(p));
pixels[i].red*=alpha[i];
pixels[i].green*=alpha[i];
pixels[i].blue*=alpha[i];
if (resample_filter->image->colorspace == CMYKColorspace)
pixels[i].index*=alpha[i];
}
gamma=alpha[i];
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red+=gamma*0.0625*pixels[i].red;
pixel->green+=gamma*0.0625*pixels[i].green;
pixel->blue+=gamma*0.0625*pixels[i].blue;
pixel->opacity+=0.0625*pixels[i].opacity;
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index+=gamma*0.0625*pixels[i].index;
p++;
}
break;
}
case BicubicInterpolatePixel:
{
MagickPixelPacket
pixels[16],
u[4];
MagickRealType
alpha[16];
PointInfo
delta;
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long)
floor(y)-1,4,4,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
for (i=0; i < 16L; i++)
{
GetMagickPixelPacket(resample_filter->image,pixels+i);
SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i);
alpha[i]=1.0;
if (resample_filter->image->matte != MagickFalse)
{
alpha[i]=QuantumScale*((MagickRealType) GetAlphaPixelComponent(p));
pixels[i].red*=alpha[i];
pixels[i].green*=alpha[i];
pixels[i].blue*=alpha[i];
if (resample_filter->image->colorspace == CMYKColorspace)
pixels[i].index*=alpha[i];
}
p++;
}
delta.x=x-floor(x);
for (i=0; i < 4L; i++)
BicubicInterpolate(pixels+4*i,delta.x,u+i);
delta.y=y-floor(y);
BicubicInterpolate(u,delta.y,pixel);
break;
}
case BilinearInterpolatePixel:
default:
{
MagickPixelPacket
pixels[4];
MagickRealType
alpha[4],
gamma;
PointInfo
delta,
epsilon;
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long)
floor(y),2,2,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
for (i=0; i < 4L; i++)
{
pixels[i].red=(MagickRealType) p[i].red;
pixels[i].green=(MagickRealType) p[i].green;
pixels[i].blue=(MagickRealType) p[i].blue;
pixels[i].opacity=(MagickRealType) p[i].opacity;
alpha[i]=1.0;
}
if (resample_filter->image->matte != MagickFalse)
for (i=0; i < 4L; i++)
{
alpha[i]=QuantumScale*((MagickRealType) QuantumRange-p[i].opacity);
pixels[i].red*=alpha[i];
pixels[i].green*=alpha[i];
pixels[i].blue*=alpha[i];
}
if (indexes != (IndexPacket *) NULL)
for (i=0; i < 4L; i++)
{
pixels[i].index=(MagickRealType) indexes[i];
if (resample_filter->image->colorspace == CMYKColorspace)
pixels[i].index*=alpha[i];
}
delta.x=x-floor(x);
delta.y=y-floor(y);
epsilon.x=1.0-delta.x;
epsilon.y=1.0-delta.y;
gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y*
(epsilon.x*alpha[2]+delta.x*alpha[3])));
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red=gamma*(epsilon.y*(epsilon.x*pixels[0].red+delta.x*
pixels[1].red)+delta.y*(epsilon.x*pixels[2].red+delta.x*pixels[3].red));
pixel->green=gamma*(epsilon.y*(epsilon.x*pixels[0].green+delta.x*
pixels[1].green)+delta.y*(epsilon.x*pixels[2].green+delta.x*
pixels[3].green));
pixel->blue=gamma*(epsilon.y*(epsilon.x*pixels[0].blue+delta.x*
pixels[1].blue)+delta.y*(epsilon.x*pixels[2].blue+delta.x*
pixels[3].blue));
pixel->opacity=(epsilon.y*(epsilon.x*pixels[0].opacity+delta.x*
pixels[1].opacity)+delta.y*(epsilon.x*pixels[2].opacity+delta.x*
pixels[3].opacity));
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index=gamma*(epsilon.y*(epsilon.x*pixels[0].index+delta.x*
pixels[1].index)+delta.y*(epsilon.x*pixels[2].index+delta.x*
pixels[3].index));
break;
}
case FilterInterpolatePixel:
{
Image
*excerpt_image,
*filter_image;
MagickPixelPacket
pixels[1];
RectangleInfo
geometry;
CacheView
*filter_view;
geometry.width=4L;
geometry.height=4L;
geometry.x=(long) floor(x)-1L;
geometry.y=(long) floor(y)-1L;
excerpt_image=ExcerptImage(resample_filter->image,&geometry,
resample_filter->exception);
if (excerpt_image == (Image *) NULL)
{
status=MagickFalse;
break;
}
filter_image=ResizeImage(excerpt_image,1,1,resample_filter->image->filter,
resample_filter->image->blur,resample_filter->exception);
excerpt_image=DestroyImage(excerpt_image);
if (filter_image == (Image *) NULL)
break;
filter_view=AcquireCacheView(filter_image);
p=GetCacheViewVirtualPixels(filter_view,0,0,1,1,
resample_filter->exception);
if (p != (const PixelPacket *) NULL)
{
indexes=GetVirtualIndexQueue(filter_image);
GetMagickPixelPacket(resample_filter->image,pixels);
SetMagickPixelPacket(resample_filter->image,p,indexes,pixel);
}
filter_view=DestroyCacheView(filter_view);
filter_image=DestroyImage(filter_image);
break;
}
case IntegerInterpolatePixel:
{
MagickPixelPacket
pixels[1];
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long)
floor(y),1,1,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
GetMagickPixelPacket(resample_filter->image,pixels);
SetMagickPixelPacket(resample_filter->image,p,indexes,pixel);
break;
}
case MeshInterpolatePixel:
{
MagickPixelPacket
pixels[4];
MagickRealType
alpha[4],
gamma;
PointInfo
delta,
luminance;
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long)
floor(y),2,2,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
for (i=0; i < 4L; i++)
{
GetMagickPixelPacket(resample_filter->image,pixels+i);
SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i);
alpha[i]=1.0;
if (resample_filter->image->matte != MagickFalse)
{
alpha[i]=QuantumScale*((MagickRealType) GetAlphaPixelComponent(p));
pixels[i].red*=alpha[i];
pixels[i].green*=alpha[i];
pixels[i].blue*=alpha[i];
if (resample_filter->image->colorspace == CMYKColorspace)
pixels[i].index*=alpha[i];
}
p++;
}
delta.x=x-floor(x);
delta.y=y-floor(y);
luminance.x=MagickPixelLuminance(pixels+0)-MagickPixelLuminance(pixels+3);
luminance.y=MagickPixelLuminance(pixels+1)-MagickPixelLuminance(pixels+2);
if (fabs(luminance.x) < fabs(luminance.y))
{
/*
Diagonal 0-3 NW-SE.
*/
if (delta.x <= delta.y)
{
/*
Bottom-left triangle (pixel:2, diagonal: 0-3).
*/
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[2],alpha[3],alpha[0]);
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[2].red,
pixels[3].red,pixels[0].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[2].green,
pixels[3].green,pixels[0].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[2].blue,
pixels[3].blue,pixels[0].blue);
pixel->opacity=gamma*MeshInterpolate(&delta,pixels[2].opacity,
pixels[3].opacity,pixels[0].opacity);
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index=gamma*MeshInterpolate(&delta,pixels[2].index,
pixels[3].index,pixels[0].index);
}
else
{
/*
Top-right triangle (pixel:1, diagonal: 0-3).
*/
delta.x=1.0-delta.x;
gamma=MeshInterpolate(&delta,alpha[1],alpha[0],alpha[3]);
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[1].red,
pixels[0].red,pixels[3].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[1].green,
pixels[0].green,pixels[3].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[1].blue,
pixels[0].blue,pixels[3].blue);
pixel->opacity=gamma*MeshInterpolate(&delta,pixels[1].opacity,
pixels[0].opacity,pixels[3].opacity);
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index=gamma*MeshInterpolate(&delta,pixels[1].index,
pixels[0].index,pixels[3].index);
}
}
else
{
/*
Diagonal 1-2 NE-SW.
*/
if (delta.x <= (1.0-delta.y))
{
/*
Top-left triangle (pixel 0, diagonal: 1-2).
*/
gamma=MeshInterpolate(&delta,alpha[0],alpha[1],alpha[2]);
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[0].red,
pixels[1].red,pixels[2].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[0].green,
pixels[1].green,pixels[2].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[0].blue,
pixels[1].blue,pixels[2].blue);
pixel->opacity=gamma*MeshInterpolate(&delta,pixels[0].opacity,
pixels[1].opacity,pixels[2].opacity);
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index=gamma*MeshInterpolate(&delta,pixels[0].index,
pixels[1].index,pixels[2].index);
}
else
{
/*
Bottom-right triangle (pixel: 3, diagonal: 1-2).
*/
delta.x=1.0-delta.x;
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[3],alpha[2],alpha[1]);
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[3].red,
pixels[2].red,pixels[1].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[3].green,
pixels[2].green,pixels[1].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[3].blue,
pixels[2].blue,pixels[1].blue);
pixel->opacity=gamma*MeshInterpolate(&delta,pixels[3].opacity,
pixels[2].opacity,pixels[1].opacity);
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index=gamma*MeshInterpolate(&delta,pixels[3].index,
pixels[2].index,pixels[1].index);
}
}
break;
}
case NearestNeighborInterpolatePixel:
{
MagickPixelPacket
pixels[1];
p=GetCacheViewVirtualPixels(resample_filter->view,NearestNeighbor(x),
NearestNeighbor(y),1,1,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
GetMagickPixelPacket(resample_filter->image,pixels);
SetMagickPixelPacket(resample_filter->image,p,indexes,pixel);
break;
}
case SplineInterpolatePixel:
{
long
j,
n;
MagickPixelPacket
pixels[16];
MagickRealType
alpha[16],
dx,
dy,
gamma;
PointInfo
delta;
p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long)
floor(y)-1,4,4,resample_filter->exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
n=0;
delta.x=x-floor(x);
delta.y=y-floor(y);
for (i=(-1); i < 3L; i++)
{
dy=CubicWeightingFunction((MagickRealType) i-delta.y);
for (j=(-1); j < 3L; j++)
{
GetMagickPixelPacket(resample_filter->image,pixels+n);
SetMagickPixelPacket(resample_filter->image,p,indexes+n,pixels+n);
alpha[n]=1.0;
if (resample_filter->image->matte != MagickFalse)
{
alpha[n]=QuantumScale*((MagickRealType) GetAlphaPixelComponent(p));
pixels[n].red*=alpha[n];
pixels[n].green*=alpha[n];
pixels[n].blue*=alpha[n];
if (resample_filter->image->colorspace == CMYKColorspace)
pixels[n].index*=alpha[n];
}
dx=CubicWeightingFunction(delta.x-(MagickRealType) j);
gamma=alpha[n];
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
pixel->red+=gamma*dx*dy*pixels[n].red;
pixel->green+=gamma*dx*dy*pixels[n].green;
pixel->blue+=gamma*dx*dy*pixels[n].blue;
if (resample_filter->image->matte != MagickFalse)
pixel->opacity+=dx*dy*pixels[n].opacity;
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index+=gamma*dx*dy*pixels[n].index;
n++;
p++;
}
}
break;
}
}
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e s a m p l e P i x e l C o l o r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ResamplePixelColor() samples the pixel values surrounding the location
% given using an elliptical weighted average, at the scale previously
% calculated, and in the most efficent manner possible for the
% VirtualPixelMethod setting.
%
% The format of the ResamplePixelColor method is:
%
% MagickBooleanType ResamplePixelColor(ResampleFilter *resample_filter,
% const double u0,const double v0,MagickPixelPacket *pixel)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o u0,v0: A double representing the center of the area to resample,
% The distortion transformed transformed x,y coordinate.
%
% o pixel: the resampled pixel is returned here.
%
*/
MagickExport MagickBooleanType ResamplePixelColor(
ResampleFilter *resample_filter,const double u0,const double v0,
MagickPixelPacket *pixel)
{
MagickBooleanType
status;
long u,v, uw,v1,v2, hit;
double u1;
double U,V,Q,DQ,DDQ;
double divisor_c,divisor_m;
register double weight;
register const PixelPacket *pixels;
register const IndexPacket *indexes;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
status=MagickTrue;
GetMagickPixelPacket(resample_filter->image,pixel);
if ( resample_filter->do_interpolate ) {
status=InterpolateResampleFilter(resample_filter,
resample_filter->interpolate,u0,v0,pixel);
return(status);
}
/*
Does resample area Miss the image?
And is that area a simple solid color - then return that color
*/
hit = 0;
switch ( resample_filter->virtual_pixel ) {
case BackgroundVirtualPixelMethod:
case ConstantVirtualPixelMethod:
case TransparentVirtualPixelMethod:
case BlackVirtualPixelMethod:
case GrayVirtualPixelMethod:
case WhiteVirtualPixelMethod:
case MaskVirtualPixelMethod:
if ( resample_filter->limit_reached
|| u0 + resample_filter->sqrtC < 0.0
|| u0 - resample_filter->sqrtC > (double) resample_filter->image->columns
|| v0 + resample_filter->sqrtA < 0.0
|| v0 - resample_filter->sqrtA > (double) resample_filter->image->rows
)
hit++;
break;
case UndefinedVirtualPixelMethod:
case EdgeVirtualPixelMethod:
if ( ( u0 + resample_filter->sqrtC < 0.0 && v0 + resample_filter->sqrtA < 0.0 )
|| ( u0 + resample_filter->sqrtC < 0.0
&& v0 - resample_filter->sqrtA > (double) resample_filter->image->rows )
|| ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns
&& v0 + resample_filter->sqrtA < 0.0 )
|| ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns
&& v0 - resample_filter->sqrtA > (double) resample_filter->image->rows )
)
hit++;
break;
case HorizontalTileVirtualPixelMethod:
if ( v0 + resample_filter->sqrtA < 0.0
|| v0 - resample_filter->sqrtA > (double) resample_filter->image->rows
)
hit++; /* outside the horizontally tiled images. */
break;
case VerticalTileVirtualPixelMethod:
if ( u0 + resample_filter->sqrtC < 0.0
|| u0 - resample_filter->sqrtC > (double) resample_filter->image->columns
)
hit++; /* outside the vertically tiled images. */
break;
case DitherVirtualPixelMethod:
if ( ( u0 + resample_filter->sqrtC < -32.0 && v0 + resample_filter->sqrtA < -32.0 )
|| ( u0 + resample_filter->sqrtC < -32.0
&& v0 - resample_filter->sqrtA > (double) resample_filter->image->rows+32.0 )
|| ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns+32.0
&& v0 + resample_filter->sqrtA < -32.0 )
|| ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns+32.0
&& v0 - resample_filter->sqrtA > (double) resample_filter->image->rows+32.0 )
)
hit++;
break;
case TileVirtualPixelMethod:
case MirrorVirtualPixelMethod:
case RandomVirtualPixelMethod:
case HorizontalTileEdgeVirtualPixelMethod:
case VerticalTileEdgeVirtualPixelMethod:
case CheckerTileVirtualPixelMethod:
/* resampling of area is always needed - no VP limits */
break;
}
if ( hit ) {
/* whole area is a solid color -- just return that color */
status=InterpolateResampleFilter(resample_filter,IntegerInterpolatePixel,
u0,v0,pixel);
return(status);
}
/*
Scaling limits reached, return an 'averaged' result.
*/
if ( resample_filter->limit_reached ) {
switch ( resample_filter->virtual_pixel ) {
/* This is always handled by the above, so no need.
case BackgroundVirtualPixelMethod:
case ConstantVirtualPixelMethod:
case TransparentVirtualPixelMethod:
case GrayVirtualPixelMethod,
case WhiteVirtualPixelMethod
case MaskVirtualPixelMethod:
*/
case UndefinedVirtualPixelMethod:
case EdgeVirtualPixelMethod:
case DitherVirtualPixelMethod:
case HorizontalTileEdgeVirtualPixelMethod:
case VerticalTileEdgeVirtualPixelMethod:
/* We need an average edge pixel, for the right edge!
How should I calculate an average edge color?
Just returning an averaged neighbourhood,
works well in general, but falls down for TileEdge methods.
This needs to be done properly!!!!!!
*/
status=InterpolateResampleFilter(resample_filter,
AverageInterpolatePixel,u0,v0,pixel);
break;
case HorizontalTileVirtualPixelMethod:
case VerticalTileVirtualPixelMethod:
/* just return the background pixel - Is there more direct way? */
status=InterpolateResampleFilter(resample_filter,
IntegerInterpolatePixel,(double)-1,(double)-1,pixel);
break;
case TileVirtualPixelMethod:
case MirrorVirtualPixelMethod:
case RandomVirtualPixelMethod:
case CheckerTileVirtualPixelMethod:
default:
/* generate a average color of the WHOLE image */
if ( resample_filter->average_defined == MagickFalse ) {
Image
*average_image;
CacheView
*average_view;
GetMagickPixelPacket(resample_filter->image,
(MagickPixelPacket *)&(resample_filter->average_pixel));
resample_filter->average_defined = MagickTrue;
/* Try to get an averaged pixel color of whole image */
average_image=ResizeImage(resample_filter->image,1,1,BoxFilter,1.0,
resample_filter->exception);
if (average_image == (Image *) NULL)
{
*pixel=resample_filter->average_pixel; /* FAILED */
break;
}
average_view=AcquireCacheView(average_image);
pixels=(PixelPacket *)GetCacheViewVirtualPixels(average_view,0,0,1,1,
resample_filter->exception);
if (pixels == (const PixelPacket *) NULL) {
average_view=DestroyCacheView(average_view);
average_image=DestroyImage(average_image);
*pixel=resample_filter->average_pixel; /* FAILED */
break;
}
indexes=(IndexPacket *) GetCacheViewAuthenticIndexQueue(average_view);
SetMagickPixelPacket(resample_filter->image,pixels,indexes,
&(resample_filter->average_pixel));
average_view=DestroyCacheView(average_view);
average_image=DestroyImage(average_image);
#if 0
/* CheckerTile should average the image with background color */
//if ( resample_filter->virtual_pixel == CheckerTileVirtualPixelMethod ) {
#if 0
resample_filter->average_pixel.red =
( resample_filter->average_pixel.red +
resample_filter->image->background_color.red ) /2;
resample_filter->average_pixel.green =
( resample_filter->average_pixel.green +
resample_filter->image->background_color.green ) /2;
resample_filter->average_pixel.blue =
( resample_filter->average_pixel.blue +
resample_filter->image->background_color.blue ) /2;
resample_filter->average_pixel.matte =
( resample_filter->average_pixel.matte +
resample_filter->image->background_color.matte ) /2;
resample_filter->average_pixel.black =
( resample_filter->average_pixel.black +
resample_filter->image->background_color.black ) /2;
#else
resample_filter->average_pixel =
resample_filter->image->background_color;
#endif
}
#endif
}
*pixel=resample_filter->average_pixel;
break;
}
return(status);
}
/*
Initialize weighted average data collection
*/
hit = 0;
divisor_c = 0.0;
divisor_m = 0.0;
pixel->red = pixel->green = pixel->blue = 0.0;
if (resample_filter->image->matte != MagickFalse) pixel->opacity = 0.0;
if (resample_filter->image->colorspace == CMYKColorspace) pixel->index = 0.0;
/*
Determine the parellelogram bounding box fitted to the ellipse
centered at u0,v0. This area is bounding by the lines...
v = +/- sqrt(A)
u = -By/2A +/- sqrt(F/A)
Which has been pre-calculated above.
*/
v1 = (long)(v0 - resample_filter->sqrtA); /* range of scan lines */
v2 = (long)(v0 + resample_filter->sqrtA + 1);
u1 = u0 + (v1-v0)*resample_filter->slope - resample_filter->sqrtU; /* start of scanline for v=v1 */
uw = (long)(2*resample_filter->sqrtU)+1; /* width of parallelogram */
/*
Do weighted resampling of all pixels, within the scaled ellipse,
bound by a Parellelogram fitted to the ellipse.
*/
DDQ = 2*resample_filter->A;
for( v=v1; v<=v2; v++, u1+=resample_filter->slope ) {
u = (long)u1; /* first pixel in scanline ( floor(u1) ) */
U = (double)u-u0; /* location of that pixel, relative to u0,v0 */
V = (double)v-v0;
/* Q = ellipse quotent ( if Q<F then pixel is inside ellipse) */
Q = U*(resample_filter->A*U + resample_filter->B*V) + resample_filter->C*V*V;
DQ = resample_filter->A*(2.0*U+1) + resample_filter->B*V;
/* get the scanline of pixels for this v */
pixels=GetCacheViewVirtualPixels(resample_filter->view,u,v,(unsigned long) uw,
1,resample_filter->exception);
if (pixels == (const PixelPacket *) NULL)
return(MagickFalse);
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
/* count up the weighted pixel colors */
for( u=0; u<uw; u++ ) {
/* Note that the ellipse has been pre-scaled so F = WLUT_WIDTH */
if ( Q < (double)WLUT_WIDTH ) {
weight = resample_filter->filter_lut[(int)Q];
pixel->opacity += weight*pixels->opacity;
divisor_m += weight;
if (resample_filter->image->matte != MagickFalse)
weight *= QuantumScale*((MagickRealType)(QuantumRange-pixels->opacity));
pixel->red += weight*pixels->red;
pixel->green += weight*pixels->green;
pixel->blue += weight*pixels->blue;
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index += weight*(*indexes);
divisor_c += weight;
hit++;
}
pixels++;
indexes++;
Q += DQ;
DQ += DDQ;
}
}
/*
Result sanity check -- this should NOT happen
*/
if ( hit < 4 || divisor_c < 1.0 ) {
/* not enough pixels in resampling, resort to direct interpolation */
status=InterpolateResampleFilter(resample_filter,
resample_filter->interpolate,u0,v0,pixel);
return status;
}
/*
Finialize results of resampling
*/
divisor_m = 1.0/divisor_m;
pixel->opacity = (MagickRealType) ClampToQuantum(divisor_m*pixel->opacity);
divisor_c = 1.0/divisor_c;
pixel->red = (MagickRealType) ClampToQuantum(divisor_c*pixel->red);
pixel->green = (MagickRealType) ClampToQuantum(divisor_c*pixel->green);
pixel->blue = (MagickRealType) ClampToQuantum(divisor_c*pixel->blue);
if (resample_filter->image->colorspace == CMYKColorspace)
pixel->index = (MagickRealType) ClampToQuantum(divisor_c*pixel->index);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S c a l e R e s a m p l e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ScaleResampleFilter() does all the calculations needed to resample an image
% at a specific scale, defined by two scaling vectors. This not using
% a orthogonal scaling, but two distorted scaling vectors, to allow the
% generation of a angled ellipse.
%
% As only two deritive scaling vectors are used the center of the ellipse
% must be the center of the lookup. That is any curvature that the
% distortion may produce is discounted.
%
% The input vectors are produced by either finding the derivitives of the
% distortion function, or the partial derivitives from a distortion mapping.
% They do not need to be the orthogonal dx,dy scaling vectors, but can be
% calculated from other derivatives. For example you could use dr,da/r
% polar coordinate vector scaling vectors
%
% If u,v = DistortEquation(x,y)
% Then the scaling vectors dx,dy (in u,v space) are the derivitives...
% du/dx, dv/dx and du/dy, dv/dy
% If the scaling is only othogonally aligned then...
% dv/dx = 0 and du/dy = 0
% Producing an othogonally alligned ellipse for the area to be resampled.
%
% Note that scaling vectors are different to argument order. Argument order
% is the general order the deritives are extracted from the distortion
% equations, EG: U(x,y), V(x,y). Caution is advised if you are trying to
% define the ellipse directly from scaling vectors.
%
% The format of the ScaleResampleFilter method is:
%
% void ScaleResampleFilter(const ResampleFilter *resample_filter,
% const double dux,const double duy,const double dvx,const double dvy)
%
% A description of each parameter follows:
%
% o resample_filter: the resampling resample_filterrmation defining the
% image being resampled
%
% o dux,duy,dvx,dvy:
% The partial derivitives or scaling vectors for resampling.
% dx = du/dx, dv/dx and dy = du/dy, dv/dy
%
% The values are used to define the size and angle of the
% elliptical resampling area, centered on the lookup point.
%
*/
MagickExport void ScaleResampleFilter(ResampleFilter *resample_filter,
const double dux,const double duy,const double dvx,const double dvy)
{
double A,B,C,F, area;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
resample_filter->limit_reached = MagickFalse;
resample_filter->do_interpolate = MagickFalse;
/* A 'point' filter forces use of interpolation instead of area sampling */
if ( resample_filter->filter == PointFilter ) {
resample_filter->do_interpolate = MagickTrue;
return;
}
/* Find Ellipse Coefficents such that
A*u^2 + B*u*v + C*v^2 = F
With u,v relative to point around which we are resampling.
And the given scaling dx,dy vectors in u,v space
du/dx,dv/dx and du/dy,dv/dy
*/
#if 0
/* Direct conversions of derivatives to elliptical coefficients
No scaling will result in F == 1.0 and a unit circle.
*/
A = dvx*dvx+dvy*dvy;
B = (dux*dvx+duy*dvy)*-2.0;
C = dux*dux+duy*duy;
F = dux*dvy+duy*dvx;
F *= F;
#define F_UNITY 1.0
#else
/* This Paul Heckbert's recomended "Higher Quality EWA" formula, from page
60 in his thesis, which adds a unit circle to the elliptical area so are
to do both Reconstruction and Prefiltering of the pixels in the
resampling. It also means it is likely to have at least 4 pixels within
the area of the ellipse, for weighted averaging.
No scaling will result if F == 4.0 and a circle of radius 2.0
*/
A = dvx*dvx+dvy*dvy+1;
B = (dux*dvx+duy*dvy)*-2.0;
C = dux*dux+duy*duy+1;
F = A*C - B*B/4;
#define F_UNITY 4.0
#endif
/* DEBUGGING OUTPUT */
#if 0
fprintf(stderr, "dux=%lf; dvx=%lf; duy=%lf; dvy%lf;\n",
dux, dvx, duy, dvy);
fprintf(stderr, "A=%lf; B=%lf; C=%lf; F=%lf\n", A,B,C,F);
#endif
#if 0
/* Figure out the Ellipses Major and Minor Axis, and other info.
This information currently not needed at this time, but may be
needed later for better limit determination.
*/
{ double alpha, beta, gamma, Major, Minor;
double Eccentricity, Ellipse_Area, Ellipse_angle;
double max_horizontal_cross_section, max_vertical_cross_section;
alpha = A+C;
beta = A-C;
gamma = sqrt(beta*beta + B*B );
if ( alpha - gamma <= MagickEpsilon )
Major = MagickHuge;
else
Major = sqrt(2*F/(alpha - gamma));
Minor = sqrt(2*F/(alpha + gamma));
fprintf(stderr, "\tMajor=%lf; Minor=%lf\n",
Major, Minor );
/* other information about ellipse include... */
Eccentricity = Major/Minor;
Ellipse_Area = MagickPI*Major*Minor;
Ellipse_angle = atan2(B, A-C);
fprintf(stderr, "\tAngle=%lf Area=%lf\n",
RadiansToDegrees(Ellipse_angle), Ellipse_Area );
/* Ellipse limits */
/* orthogonal rectangle - improved ellipse */
max_horizontal_orthogonal = sqrt(A); /* = sqrt(4*A*F/(4*A*C-B*B)) */
max_vertical_orthogonal = sqrt(C); /* = sqrt(4*C*F/(4*A*C-B*B)) */
/* parallelogram bounds -- what we are using */
max_horizontal_cross_section = sqrt(F/A);
max_vertical_cross_section = sqrt(F/C);
}
#endif
/* Is default elliptical area, too small? Image being magnified?
Switch to doing pure 'point' interpolation of the pixel.
That is turn off EWA Resampling.
*/
if ( F <= F_UNITY ) {
resample_filter->do_interpolate = MagickTrue;
return;
}
/* If F is impossibly large, we may as well not bother doing any
* form of resampling, as you risk an infinite resampled area.
*/
if ( F > MagickHuge ) {
resample_filter->limit_reached = MagickTrue;
return;
}
/* Othogonal bounds of the ellipse */
resample_filter->sqrtA = sqrt(A)+1.0; /* Vertical Orthogonal Limit */
resample_filter->sqrtC = sqrt(C)+1.0; /* Horizontal Orthogonal Limit */
/* Horizontally aligned Parallelogram fitted to ellipse */
resample_filter->sqrtU = sqrt(F/A)+1.0; /* Parallelogram Width */
resample_filter->slope = -B/(2*A); /* Slope of the parallelogram */
/* The size of the area of the parallelogram we will be sampling */
area = 4 * resample_filter->sqrtA * resample_filter->sqrtU;
/* Absolute limit on the area to be resampled
* This limit needs more work, as it gets too slow for
* larger images involved with tiled views of the horizon. */
if ( area > 20.0*resample_filter->image_area ) {
resample_filter->limit_reached = MagickTrue;
return;
}
/* Scale ellipse formula to directly fit the Filter Lookup Table */
{ register double scale;
scale = (double)WLUT_WIDTH/F;
resample_filter->A = A*scale;
resample_filter->B = B*scale;
resample_filter->C = C*scale;
/* ..ple_filter->F = WLUT_WIDTH; -- hardcoded */
}
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilter() set the resampling filter lookup table based on a
% specific filter. Note that the filter is used as a radial filter not as a
% two pass othogonally aligned resampling filter.
%
% The default Filter, is Gaussian, which is the standard filter used by the
% original paper on the Elliptical Weighted Everage Algorithm. However other
% filters can also be used.
%
% The format of the SetResampleFilter method is:
%
% void SetResampleFilter(ResampleFilter *resample_filter,
% const FilterTypes filter,const double blur)
%
% A description of each parameter follows:
%
% o resample_filter: resampling resample_filterrmation structure
%
% o filter: the resize filter for elliptical weighting LUT
%
% o blur: filter blur factor (radial scaling) for elliptical weighting LUT
%
*/
MagickExport void SetResampleFilter(ResampleFilter *resample_filter,
const FilterTypes filter,const double blur)
{
register int
Q;
double
r_scale;
ResizeFilter
*resize_filter;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
resample_filter->filter = filter;
/* Scale radius so it equals 1.0, at edge of ellipse when a
default blurring factor of 1.0 is used.
Note that these filters are being used as a radial filter, not as
an othoginally alligned filter. How this effects results is still
being worked out.
Future: Direct use of teh resize filters in "resize.c" to set the lookup
table, based on the filters working support window.
*/
r_scale = sqrt(1.0/(double)WLUT_WIDTH)/blur;
r_scale *= 2; /* for 2 pixel radius of Improved Elliptical Formula */
switch ( filter ) {
case PointFilter:
/* This equivelent to turning off the EWA algroithm.
Only Interpolated lookup will be used. */
break;
default:
/*
Fill the LUT with a 1D resize filter function
But make the Sinc/Bessel tapered window 2.0
I also normalize the result so the filter is 1.0
*/
resize_filter = AcquireResizeFilter(resample_filter->image,filter,
(MagickRealType)1.0,MagickTrue,resample_filter->exception);
if (resize_filter != (ResizeFilter *) NULL) {
resample_filter->support = GetResizeFilterSupport(resize_filter);
resample_filter->support /= blur; /* taken into account above */
resample_filter->support *= resample_filter->support;
resample_filter->support *= (double)WLUT_WIDTH/4;
if ( resample_filter->support >= (double)WLUT_WIDTH )
resample_filter->support = (double)WLUT_WIDTH; /* hack */
for(Q=0; Q<WLUT_WIDTH; Q++)
if ( (double) Q < resample_filter->support )
resample_filter->filter_lut[Q] = (double)
GetResizeFilterWeight(resize_filter,sqrt((double)Q)*r_scale);
else
resample_filter->filter_lut[Q] = 0.0;
resize_filter = DestroyResizeFilter(resize_filter);
break;
}
else {
(void) ThrowMagickException(resample_filter->exception,GetMagickModule(),
ModuleError, "UnableToSetFilteringValue",
"Fall back to default EWA gaussian filter");
}
/* FALLTHRU - on exception */
/*case GaussianFilter:*/
case UndefinedFilter:
/*
Create Normal Gaussian 2D Filter Weighted Lookup Table.
A normal EWA guassual lookup would use exp(Q*ALPHA)
where Q = distantce squared from 0.0 (center) to 1.0 (edge)
and ALPHA = -4.0*ln(2.0) ==> -2.77258872223978123767
However the table is of length 1024, and equates to a radius of 2px
thus needs to be scaled by ALPHA*4/1024 and any blur factor squared
*/
/*r_scale = -2.77258872223978123767*4/WLUT_WIDTH/blur/blur;*/
r_scale = -2.77258872223978123767/WLUT_WIDTH/blur/blur;
for(Q=0; Q<WLUT_WIDTH; Q++)
resample_filter->filter_lut[Q] = exp((double)Q*r_scale);
resample_filter->support = WLUT_WIDTH;
break;
}
if (GetImageArtifact(resample_filter->image,"resample:verbose")
!= (const char *) NULL)
/* Debug output of the filter weighting LUT
Gnuplot the LUT with hoizontal adjusted to 'r' using...
plot [0:2][-.2:1] "lut.dat" using (sqrt($0/1024)*2):1 with lines
THe filter values is normalized for comparision
*/
for(Q=0; Q<WLUT_WIDTH; Q++)
printf("%lf\n", resample_filter->filter_lut[Q]
/resample_filter->filter_lut[0] );
return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r I n t e r p o l a t e M e t h o d %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilterInterpolateMethod() changes the interpolation method
% associated with the specified resample filter.
%
% The format of the SetResampleFilterInterpolateMethod method is:
%
% MagickBooleanType SetResampleFilterInterpolateMethod(
% ResampleFilter *resample_filter,const InterpolateMethod method)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o method: the interpolation method.
%
*/
MagickExport MagickBooleanType SetResampleFilterInterpolateMethod(
ResampleFilter *resample_filter,const InterpolatePixelMethod method)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->interpolate=method;
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r V i r t u a l P i x e l M e t h o d %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilterVirtualPixelMethod() changes the virtual pixel method
% associated with the specified resample filter.
%
% The format of the SetResampleFilterVirtualPixelMethod method is:
%
% MagickBooleanType SetResampleFilterVirtualPixelMethod(
% ResampleFilter *resample_filter,const VirtualPixelMethod method)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o method: the virtual pixel method.
%
*/
MagickExport MagickBooleanType SetResampleFilterVirtualPixelMethod(
ResampleFilter *resample_filter,const VirtualPixelMethod method)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->virtual_pixel=method;
(void) SetCacheViewVirtualPixelMethod(resample_filter->view,method);
return(MagickTrue);
}
|